NIST SPECIAL PUBLICATION 1800-14C

Protecting the Integrity of Internet Routing:

Border Gateway Protocol (BGP) Route Origin Validation

Volume C: How-To Guides

William Haag

Applied Cybersecurity Division Information Technology Laboratory

Doug Montgomery

Advanced Networks Technology Division Information Technology Laboratory

Allen Tan

The MITRE Corporation McLean, VA

William C. Barker

Dakota Consulting Silver Spring, MD

August 2018

DRAFT

This publication is available free of charge from: <u>https://www.nccoe.nist.gov/projects/building-blocks/secure-inter-domain-routing</u>

DISCLAIMER

Certain commercial entities, equipment, products, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST or NCCoE, nor is it intended to imply that the entities, equipment, products, or materials are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 1800-14C, Natl. Inst. Stand. Technol. Spec. Publ. 1800-14C, 61 pages, (August 2018), CODEN: NSPUE2

FEEDBACK

You can improve this guide by contributing feedback. As you review and adopt this solution for your own organization, we ask you and your colleagues to share your experience and advice with us.

Comments on this publication may be submitted to: sidr-nccoe@nist.gov.

Public comment period: August 30, 2018 through October 15, 2018

All comments are subject to release under the Freedom of Information Act (FOIA).

National Cybersecurity Center of Excellence National Institute of Standards and Technology 100 Bureau Drive Mailstop 2002 Gaithersburg, MD 20899 Email: <u>nccoe@nist.gov</u>

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and academic institutions work together to address businesses' most pressing cybersecurity issues. This public-private partnership enables the creation of practical cybersecurity solutions for specific industries, as well as for broad, cross-sector technology challenges. Through consortia under Cooperative Research and Development Agreements (CRADAs), including technology partners—from Fortune 50 market leaders to smaller companies specializing in IT security—the NCCoE applies standards and best practices to develop modular, easily adaptable example cybersecurity solutions using commercially available technology. The NCCoE documents these example solutions in the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework and details the steps needed for another entity to recreate the example solution. The NCCoE was established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, Md.

To learn more about the NCCoE, visit <u>https://www.nccoe.nist.gov/</u>. To learn more about NIST, visit <u>https://www.nist.gov</u>.

NIST CYBERSECURITY PRACTICE GUIDES

NIST Cybersecurity Practice Guides (Special Publication Series 1800) target specific cybersecurity challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the adoption of standards-based approaches to cybersecurity. They show members of the information security community how to implement example solutions that help them align more easily with relevant standards and best practices, and provide users with the materials lists, configuration files, and other information they need to implement a similar approach.

The documents in this series describe example implementations of cybersecurity practices that businesses and other organizations may voluntarily adopt. These documents do not describe regulations or mandatory practices, nor do they carry statutory authority.

ABSTRACT

The Border Gateway Protocol (BGP) is the default routing protocol to route traffic among internet domains. While BGP performs adequately in identifying viable paths that reflect local routing policies and preferences to destinations, the lack of built-in security allows the protocol to be exploited by route hijacking occurs when an entity accidentally or maliciously alters an intended route. Such attacks can (1) deny access to internet services, (2) detour internet traffic to permit eavesdropping and to facilitate on-path attacks on end points (sites), (3) misdeliver internet network traffic to malicious end points, (4) undermine internet protocol (IP) address-based reputation and filtering systems, and (5) cause routing instability in the internet. This document describes a security platform that

demonstrates how to improve the security of inter-domain routing traffic exchange. The platform provides route origin validation (ROV) by using the Resource Public Key Infrastructure (RPKI) in a manner that mitigates some misconfigurations and malicious attacks associated with route hijacking. The example solutions and architectures presented here are based upon standards-based, open-source, and commercially available products.

KEYWORDS

AS, autonomous systems, BGP, Border Gateway Protocol, DDoS, denial-of-service (DoS) attacks, internet service provider, ISP, Regional Internet Registry, Resource Public Key Infrastructure, RIR, ROA, route hijack, route origin authorization, route origin validation, routing domain, ROV, RPKI

ACKNOWLEDGMENTS

We are grateful to the following individuals for their generous contributions of expertise and time.

Name	Organization
Tim Battles	AT&T
Jay Borkenhagen	AT&T
Chris Boyer	AT&T
Nimrod Levy	AT&T
Kathryn Condello	CenturyLink
Christopher Garner	CenturyLink
Peter Romness	Cisco Systems
Tony Tauber	Comcast
Jonathan Morgan	Juniper Networks
Carter Wyant	Juniper Networks
Oliver Borchert	NIST ITL Advanced Networks Technologies Division

Name	Organization
Katikalapudi Sriram	NIST ITL Advanced Networks Technologies Division
Sean Morgan	Palo Alto Networks
Tom Van Meter	Palo Alto Networks
Andrew Gallo	The George Washington University
Sophia Applebaum	The MITRE Corporation
Yemi Fashina	The MITRE Corporation
Susan Prince	The MITRE Corporation
Susan Symington	The MITRE Corporation
0	

The Technology Partners/Collaborators who participated in this build submitted their capabilities in response to a notice in the Federal Register. Respondents with relevant capabilities or product components were invited to sign a Cooperative Research and Development Agreement (CRADA) with NIST, allowing them to participate in a consortium to build this example solution. We worked with:

Technology Partner/Collaborator	Build Involvement
AT&T	Subject Matter Expertise
<u>CenturyLink</u>	1 gigabit per second (Gbps) Ethernet Link Subject Matter Expertise
Cisco	7206 VXR Router v15.2 ISR 4331 Router v16.3 2921 Router v15.2 IOS XRv 9000 Router v6.4.1 Subject Matter Expertise
Comcast	Subject Matter Expertise

Technology Partner/Collaborator	Build Involvement
Juniper Networks	MX80 3D Universal Edge Router v15.1R6.7 Subject Matter Expertise
Palo Alto Networks	Palo Alto Networks Next-Generation Firewall PA-5060 v7.1.10 Subject Matter Expertise
The George Washington University	Subject Matter Expertise

1 Contents

2	1	Intr	oducti	ion	1
3		1.1	Practic	e Guide Structure	1
4		1.2	Build C)verview	2
5		1.3	Typogr	aphic Conventions	6
6	2	Pro	duct lı	nstallation Guides	6
7		2.1	RPKI V	alidators	7
8			2.1.1	RIPE NCC RPKI Validator Configuration/Installation	7
9			2.1.2	Dragon Research RPKI.net Validator Configuration/Installation	8
10		2.2	RPKI C	A and Repository	9
11			2.2.1	Dragon Research RPKI.net CA and Repository Configuration/Installation	9
12		2.3	BGP-SI	Rx Software Suite	15
13		2.4	Firewa	lls	16
14		2.5	Test H	arness Topology Configuration	18
15			2.5.1	RTR 1-1 Configuration – Cisco	18
16			2.5.2	RTR 2-1 Configuration – Cisco	21
17			2.5.3	RTR 2-2 Configuration – Cisco	23
18			2.5.4	RTR 1-1 Configuration – Juniper	24
19			2.5.5	RTR 2-1 Configuration – Juniper	27
20			2.5.6	RTR 2-2 Configuration – Juniper	29
21			2.5.7	Traffic Generator BIO Configuration	31
22		2.6	Live Da	ata Configuration	35
23			2.6.1	CenturyLink Configuration Router AS 65501 – Cisco	35
24			2.6.2	Router AS 65500 Configuration – Cisco	37
25			2.6.3	Router 65501 Configuration – Cisco	40
26			2.6.4	Router AS 65502 Configuration – Juniper	43
27			2.6.5	Router AS 65503 Configuration – Cisco	
28			2.6.6	Router AS 65504A Configuration – Cisco	
29			2.6.7	Router AS 65504B Configuration – Cisco	50

30	2.6.8	Router AS 65505 Configuration – Juniper	.51
31	2.6.9	Router AS 65507 Configuration – Cisco	53
32	2.6.10	Router AS 65508 Configuration – Cisco	. 55
33	2.6.11	Cisco IOS XRv Router Configuration	. 56

34 List of Figures

35	Figure 1-1 Test Harness Environment for SIDR RPKI-Based ROV Solution Testing4
36	Figure 1-2 Live Data Environment for SIDR RPKI-Based ROV Solution Testing5
37	Figure 2-1 Palo Alto Firewall Configuration

38 1 Introduction

- 39 The following guides show information technology (IT) professionals and security engineers how we
- 40 implemented the example Secure Inter-Domain Routing (SIDR) Project solution for Resource Public Key
- 41 Infrastructure (RPKI)-based route origin validation (ROV). We cover all of the products employed in this
- 42 reference design. We do not recreate the product manufacturers' documentation, which is presumed to
- 43 be widely available. Rather, these guides show how we incorporated the products together in our
- 44 environment.
- 45 Note: These are not comprehensive tutorials. There are many possible service and security
- 46 configurations for these products that are out of scope for this reference design.

47 1.1 Practice Guide Structure

- 48 This National Institute of Standards and Technology (NIST) Cybersecurity Practice Guide demonstrates a
- 49 standards-based reference design and provides users with the information they need to replicate the

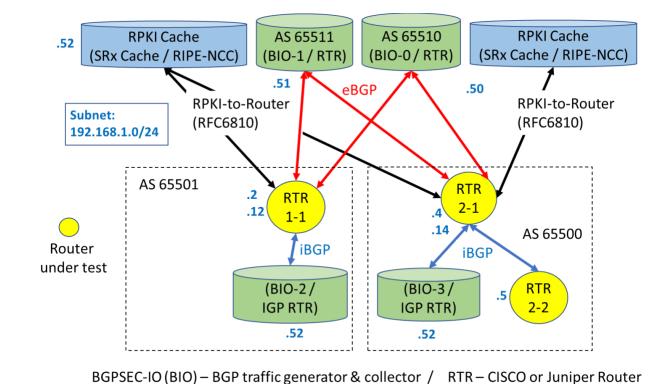
50 SIDR RPKI-based ROV solution. This reference design is modular and can be deployed in whole or in

- 51 parts.
- 52 NIST Special Publication (SP) 1800-14 contains three volumes:
- 53 NIST SP 1800-14A: Executive Summary
- 54 NIST SP 1800-14B: Approach, Architecture, and Security Characteristics what we built and why
- NIST SP 1800-14C: *How-To Guides* instructions for building the example solution (you are here)
- 57 Depending on your role in your organization, you might use this guide in different ways:
- 58 **Business decision makers, including chief security and technology officers,** will be interested in the 59 *Executive Summary* (NIST SP 1800-14A), which describes:
- 60 The challenges that enterprises face in implementing and maintaining route origin validation
- 61 An example solution built at the National Cybersecurity Center of Excellence (NCCoE)
- 62 Benefits of adopting the example solution

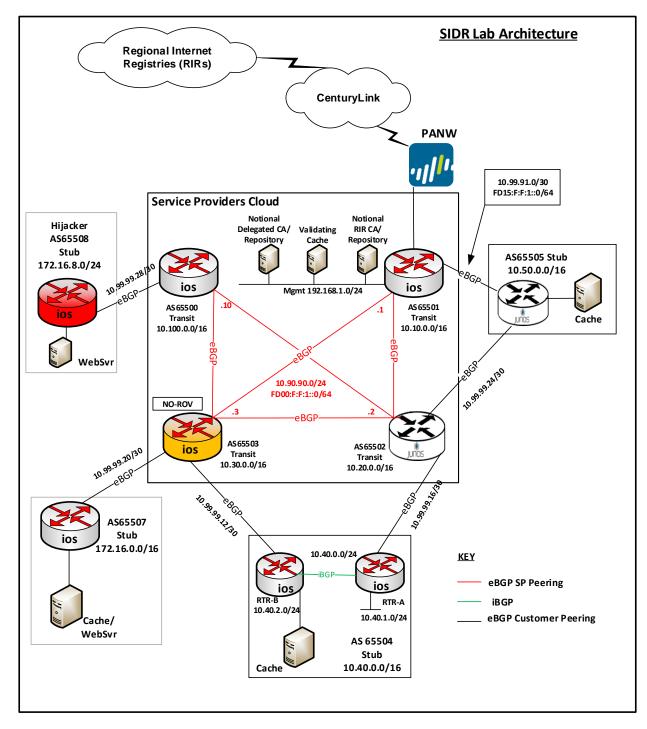
Technology or security program managers who are concerned with how to identify, understand, assess,
 and mitigate risk will be interested in NIST SP 1800-14B, which describes what we did and why. The
 following sections will be of particular interest:

- 66 Section 4.4.3, Risks, provides a description of the risk analysis we performed
- Section 4.4.4, Cybersecurity Framework Functions, Categories, and Subcategories Addressed by
 the Secure Inter-Domain Routing Project, maps the security characteristics of this example
 solution to cybersecurity standards and best practices
- 70 If you are a technology or security program manager, you might share the *Executive Summary*, NIST SP
- 1800-14A, with your leadership team members to help them understand the importance of adopting
 the standards-based SIDR RPKI-based ROV solution.
- 73 IT professionals who want to implement an approach like this can use the How-To portion of the guide,
- 74 NIST SP 1800-14C, to replicate all or parts of the build created in our lab. The How-To guide provides
- 75 specific product installation, configuration, and integration instructions for implementing the example
- solution. We do not recreate the product manufacturers' documentation, which is generally widely
- available. Rather, we show how we incorporated the products together in our environment to create an
- 78 example solution.
- 79 This guide assumes that IT professionals have experience implementing security products within the
- 80 enterprise. While we have used a suite of commercial products to address this challenge, it is not NIST
- 81 policy to endorse any particular products. Your organization can adopt this solution or one that adheres
- to these guidelines in whole, or you can use this guide as a starting point for tailoring and implementing
- 83 parts of an RPKI-based ROV solution. Your organization's security experts should identify the products
- 84 that will best integrate with your existing tools and IT system infrastructure. We hope that you will seek
- 85 products that are congruent with applicable standards and best practices. Section 4.5, Technologies, of
- 86 NIST SP 1800-14B lists the products that we used and maps them to the cybersecurity controls provided
- 87 by this reference solution.
- A NIST Cybersecurity Practice Guide does not describe "the" solution, but a possible solution. This is a
- 89 draft guide. We seek feedback on its contents and welcome your input. Comments, suggestions, and
- success stories will improve subsequent versions of this guide. Please contribute your thoughts to <u>sidr-</u>
 nccoe@nist.gov.

92 **1.2 Build Overview**


- 93 This NIST Cybersecurity Practice Guide addresses the challenge of using existing protocols to improve
- 94 the security of inter-domain routing traffic exchange in a manner that mitigates accidental and malicious
- 95 attacks associated with route hijacking. It implements and follows various Internet Engineering Task
- 96 Force (IETF) Request for Comments (RFC) documents that define RPKI-based Border Gateway Protocol
- 97 (BGP) ROV, such as RFC 6480, RFC 6482, RFC 6811, and RFC 7115, as well as recommendations of NIST

- 98 SP 800-54, Border Gateway Protocol Security. To the extent practicable from a system composition point
- 99 of view, the security platform design, build, and test processes have followed <u>NIST SP 800-160</u>, *Systems*
- 100 Security Engineering: Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy
- 101 Secure Systems.
- 102 The ROV capabilities demonstrated by the proof-of-concept implementation described in this Practice
- 103 Guide improve inter-domain routing security by using standards-conformant security protocols to
- 104 enable an entity that receives a route advertisement to validate whether the autonomous system (AS)
- 105 that has originated it is in fact authorized to do so.
- 106 In the NCCoE lab, the team built an environment that resembles portions of the internet. The SIDR lab
- 107 architecture is depicted in <u>Figure 1-1</u> and <u>Figure 1-2</u>. It consists of virtual and physical hardware, physical
- 108 links to ISPs, and access to the Regional Internet Registries (RIRs). The physical hardware mainly consists
- 109 of the routers performing ROV, workstations providing validator capabilities, and firewalls that protect
- 110 the lab infrastructure. The virtual environment hosts the RPKI repositories, validators, and caches used
- 111 for both the hosted and delegated RPKI scenarios. The architecture is organized into separate virtual
- local area networks (VLANs), each of which is designed to represent a different AS. For example, VLAN 1


represents an ISP with AS 64501, VLAN 2 represents the enterprise network of an organization with AS

- 114 64502, and VLAN 3 represents an ISP with AS 64503.
- 115 The configurations in this document provide a baseline for completing all the test cases that were 116 performed for the project.
- 117 There are two environments that are used: test harness and live data.
- The test harness environment consists of physical/virtual routers, a lab RPKI repository, RPKI 118 validators, and simulation tools (or test harness). The physical and virtual routers in this 119 120 environment are from Cisco and Juniper. The lab RPKI repository is configured using the 121 RPKI.net tool. The RPKI caches in this environment are the Réseaux IP Européens Network 122 Coordination Centre (RIPE NCC) validator and the RPKI.net validator. The test harness simulates 123 BGP routers sending and receiving advertisements and emulates RPKI data being sent from 124 validators/caches. There are two components of the test harness: the BGPSEC-IO (BIO) traffic generator and collector, which produces BGP routing data, and the SRx-RPKI validator cache test 125 126 harness, which simulates RPKI caches.
- 127 The live data environment leverages many of the same components from the test harness 128 environment. The difference is that this environment leverages live data from the internet, 129 rather than uses emulated BGP advertisements and RPKI data. The physical and virtual routers 130 in this environment are from Cisco and Juniper. The lab RPKI repository is configured using the 131 RPKI.net tool. Repositories from the RIRs (American Registry for Internet Numbers [ARIN], RIPE 132 NCC, African Network Information Center [AFRINIC], Latin America and Caribbean Network Information Center [LACNIC], and Asia-Pacific Network Information Center [APNIC]) are also 133 134 used to receive real-world route origin authorization (ROA) data. The RPKI caches in this

- environment are the RIPE NCC validator and the RPKI.net validator. A physical wide area network (WAN) link is used to connect to CenturyLink to receive a full BGP table and to connect
- network (WAN) link is used to connect to CenturyLink to receive a full BGP table and to connectto the RIRs.

138 Figure 1-1 Test Harness Environment for SIDR RPKI-Based ROV Solution Testing

140 Figure 1-2 Live Data Environment for SIDR RPKI-Based ROV Solution Testing

142 **1.3 Typographic Conventions**

143 The following table presents typographic conventions used in this volume.

Typeface/Symbol	Meaning	Example
Italics	filenames and pathnames references to documents that are not hyperlinks, new terms, and placeholders	For detailed definitions of terms, see the CSRC.NIST.GOV Glossary.
Bold	names of menus, options, command buttons, and fields	Choose File > Edit.
Monospace	command-line input, on- screen computer output, sample code examples, status codes	Mkdir
Monospace Bold	command-line user input contrasted with computer output	service sshd start
<u>blue text</u>	link to other parts of the document, a web URL, or an email address	All publications from NIST's National Cybersecurity Center of Excellence are available at <u>http://www.nccoe.nist.gov</u>

144 **2** Product Installation Guides

This section of the Practice Guide contains detailed instructions for installing and configuring all of theproducts used to build an instance of the SIDR RPKI-based ROV example solution. The main components

147 of the lab build consist of ROV-enabled routers, RPKI repositories, RPKI validators / validating caches

148 (VCs), a live internet circuit, and firewalls.

149 2.1 RPKI Validators

- 150 The RPKI validator receives and validates ROAs from the RPKI repositories of the trust anchors and
- delegated repositories. Currently, there are five trust anchors, all of which are managed by the RIRs:
- 152 AFRINIC, APNIC, ARIN, LACNIC, and the RIPE NCC. A subset of the data from ROAs, called validated ROA

payload (VRP), is then retrieved from the local RPKI validator by an RPKI-capable router to perform ROV

- 154 of BGP routes.
- 155 In this lab build, two RPKI validators (also referred to as VCs) are tested: the RIPE NCC RPKI validator and 156 the Dragon Research RPKI.net validator.

157 2.1.1 RIPE NCC RPKI Validator Configuration/Installation

- 158 The RIPE NCC RPKI validator is developed and maintained by RIPE NCC [RIPE Tools]. This validator tool is
- 159 free and open-source. The version used in the build is 2.24. It is available for download at
- 160 <u>https://www.ripe.net/manage-ips-and-asns/resource-management/certification/tools-and-resources.</u>
- 161 System requirements: a UNIX-like operating system (OS), Java 7 or 8, rsync, and 2 gigabytes (GB) of free 162 memory.
- Lab setup: CentOS 7 minimal install, Java 8, rsync, one central processing unit (CPU), 6 GB memory, and
 running on a virtual machine (VM) on VMware ESXi.
- For release notes, installation information, and source code, please view <u>https://github.com/RIPE-</u>
 <u>NCC/rpki-validator/blob/master/rpki-validator-app/README.txt</u>.
- 167 1. Use the CentOS template to create the VM with the system requirements provided above.
- a. Put the VM in the proper VLAN.
- 169 2. Install Java (must be Oracle 8) and open firewall to allow rsync.
- 170 3. In the VM, create a folder under home called "RPKI".
- 171 a. # mkdir RPKI
- 172 b. # cd RPKI
- 173 4. Download and install the RIPE NCC RPKI validator software in the VM.
- 174 a. # tar -xvf rpki-validator-app-2.24-dist.tar.gz
- 175 5. Set *JAVA_HOME* (only if the application complains that it does not see the *JAVA_HOME* path).
- 176 a. # cd /etc/environment
- 177 i. # nano environment

178	ii. # JAVA_HOME="/usr"
179	b. Source it and check echo.
180	<pre>i. # source /etc/environment</pre>
181	ii. # Echo \$java_home
182	6. Reboot the server.
183	7. Start the RPKI cache.
184	<pre>a. # ./rpki-validator.sh start</pre>
185 186 187	 Using a web browser, connect to the validator software that you just installed, by typing http://ip-address:8080 into the browser search window, replacing "ip-address" with the internet protocol (IP) address of the VM that you just created in step 1. (i.e., http://192.168.1.124:8080).
188 189	9. Once the validator is up, it receives data from the following RIR repositories: AFRINIC, APNIC, LACNIC, and RIPE NCC.
190 191	a. To retrieve ROAs from the ARIN repository, download the Trust Anchor Locator (TAL) file from https://www.arin.net/resources/rpki/tal.html .
192	b. Stop the validator.
193	İ. # ./rpki-validator.sh stop
194	c. Put the file in the <i>TAL</i> sub-directory.
195	d. Restart the validator.
196	İ. # ./rpki-validator.sh start
197	2.1.2 Dragon Research RPKI.net Validator Configuration/Installation
198 199	The Dragon Research Labs-developed RPKI.net toolkit contains both a VC and a certificate authority (CA). This section discusses the VC only.
200 201	System requirements: Ubuntu 16.04 Xenial server, 32 GB of hard disk, 1 GB of random access memory (RAM), and a minimum of one CPU.
202 203	Lab setup: Ubuntu 16.04 Xenial server, rsync, one CPU, 6 GB memory, and running on a VM on VMware ESXi.
204 205	For release notes, installation information, and additional information, please view https://github.com/dragonresearch/rpki.net/blob/master/doc/quickstart/xenial-rp.md .

- 206 # wget -q -0 207 /etc/apt/sources.list.d/rpki.list https://download.rpki.net/APTng/rpki.xenial.l 208 ist
- 209 You may get a message that says that there were errors (i.e., "the following signatures couldn't be
- verified because the public key is not available"). To fix this, use the following command, along with thekey that showed up on the error:
- 211 Rey that showed up on the error.
- 212 # apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 40976EAF437D05B5
- 213 Note: *40976EAF437D05B5* is an example. Use the exact key that showed up in the error.
- Reference: <u>https://chrisjean.com/fix-apt-get-update-the-following-signatures-couldnt-be-verified-</u>
 because-the-public-key-is-not-available/.
- 216 # apt update
- 217 # apt install rpki-rp
- 218 This should install the VC. Next, access the VC by opening a browser and typing
- 219 http://192.168.2.106/rcynic into the search window.
- 220 Note: It takes up to an hour to completely update. The proper Uniform Resource Locator (URL) will not
- show up until then. Just wait for it. You will see a parent folder directory in the URL during that time.
- 222 Once it's ready, charts about the repositories from the different RIRs will show up.
- 223 Check to see if the VC is running by entering the following command:
- 224 # ps -aux | grep rpki

225 2.2 RPKI CA and Repository

- 226 The delegated model of RPKI for ROA creation and storage requires that two components be set up,
- 227 operated, and maintained by the address holder: a CA and a repository. Currently, only the Dragon
- 228 Research RPKI.net toolkit provides the components needed to set up a delegated model.

229 2.2.1 Dragon Research RPKI.net CA and Repository Configuration/Installation

- 230 The setup for the CA and repository is different from the setup for the relying-party VC.
- System requirements: Ubuntu 16.04 Xenial server, 32 GB of hard disk, 1 GB of RAM, and a minimum ofone CPU.
- Lab setup: Ubuntu 16.04 Xenial server, rsync, one CPU, 6 GB memory, and running on a VM on VMwareESXi.
- 235 For release notes, installation information, and additional information, please view
- 236 <u>https://github.com/dragonresearch/rpki.net/blob/master/doc/quickstart/xenial-ca.md</u>.

- 237 Steps for installing the rpki-ca (the CA software) toolkit for this lab build were different from the
- instructions provided by the GitHub documentation. Guidance for the lab build is provided below.

239 *2.2.1.1 Assumptions*

240 Prior to installing rpki-ca and rpki-rp (the repository software), ensure that you are working with two

hosts running the Ubuntu Xenial server. In our setup, we will call one host *primary_root* (parent) and the other host *remote child* (child); both are running the Ubuntu Xenial server.

243 2.2.1.2 Installation Instructions

- Run the initial setup to install rpki-ca. Follow the steps in the Xenial guide up to "CA Data initialization".
- 245 Execute the steps under rcynic and rsyncd, specifically the "cat" commands that are listed.

246 2.2.1.3 Getting rcynic to Run

- It's important to note that the rcynic software will NOT be installed correctly. You will need to
 add the following line to /var/spool/cron/crontabs/rcynic:
- 249 */10 * * * * exec /usr/bin/rcynic-cron
- a. This ensures that the rcynic software will be run periodically to update the certificates.
 This should be done on both hosts. Rcynic is designed to run periodically by default.
- 252b. Rcynic will error out when external TAL files are called. Delete all repository files in the253trust-anchors folder. To do this, run the following command:
- 254 # rm /etc/rpki/trust-anchors/*
 - i. This should be done on both hosts.
- 256 2. The next step is to edit the */etc/rpki.conf* file.
- a. On the host that we will be calling *primary_root*, make the following changes:
- i. Change the handle to *primary_root*.
- ii. Change rpkic_server_host to 0.0.0.0.
- 260 iii. Change irdb_server_host to 0.0.0.0.
- iv. Set run_pubd to yes.
- v. Change pubd_server_host to 0.0.0.0.
- 263 This should be sufficient for the changes on primary_root.

264 265	b. On the host that we will be calling <i>remote_child</i> , make the following changes to /etc/rpki.conf:
266	i. Change the handle to <i>remote_child</i> .
267	ii. Change rpkic_server_host to <i>localhost</i> .
268	iii. Change irdb_server_host to <i>localhost</i> .
269	iv. Set run_pubd to <i>no</i> .
270	v. Change pubd_server_host to primary_root.
271 272 273	This last change means that remote_child will look to primary_root as the publication server rather than running its own. To access primary_root, remote_child will need a Domain Name System entry for primary_root.
274 275	 To create this, first find primary_root's IP address by running ifconfig on primary_root. In our setup, this IP address is 192.168.2.115.
276	2) Then, on remote_child, we add the following line to the /etc/hosts file:
277 278	192.168.2.115: primary_root :(Replacing the IP address with whatever IP address is currently assigned to primary_root.)
279	At this point, rcynic, rpkic, and rsyncd should all be set up.
280	3. On both hosts, run the following commands to reboot the services:
281	<pre># systemctl restart xinetd</pre>
282	<pre># systemctl restart rpki-ca</pre>
283	2.2.1.4 GUI Setup
284	1. Set up the graphical user interface (GUI) on both VMs by running the following command:
285	# rpki-manage createsuperuser
286 287	2. Fill in the details appropriately. Verify that each GUI is up by opening a browser and visiting https://127.0.0.1 on both hosts.
288	2.2.1.5 Root CA Repository Setup
289 290	 For simplicity, create a folder named /root/CA-stuff on both VMs. Change the directory into this folder for both VMs.
291	2. Now, we will set up primary_root as a root server for all resources.

292	a.	On primary_root, run the following command:
293		<pre># rpkic create_identity primary_root</pre>
294		This will produce a file named primary_root.identity.xml.
295	b.	Next, run the following command:
296		<pre># rpkic configure_root</pre>
297 298		This will produce a file named <i>primary_root.primary_root.repository-request.xml</i> . We will return to this file later.
299	c.	Now, run the following command:
300		<pre># rpkic -i primary_root extract_root_certificate</pre>
301		<pre># rpkic -i primary_root extract_root_tal</pre>
302		These commands will respectively produce a <i>.cer</i> file and a <i>.tal</i> file.
303 304	d.	Copy both of these files into the <i>/usr/share/rpkic/rrdp-publication</i> folder. (Note: This step may not be necessary.)
305 306	e.	Copy the <i>.tal</i> file to <i>/etc/rpki/trust-anchors.</i> This step configures rcynic to look at this node as a repository.
307 308	f.	Now, we will copy the <i>.tal</i> file from primary_root to remote_child. One way to do this is with rsync as follows:
309		i. Copy the . <i>tal</i> file to /usr/share/rpki/publication on primary_root.
310 311		ii. On remote_child, run the following command to verify that rsync is working, replacing the IP address as appropriate in the command below:
312		# rsync rsync://192.168.2.115/rpki
313 314		iii. If the above runs correctly, copy the <i>.tal</i> file, replacing <file> as appropriate in the command below:</file>
315 316		<pre># rsync rsync://192.168.2.115/rpki/<file>.tal /etc/rpki/trust- anchors</file></pre>
317 318		Now, primary_root's . <i>tal</i> file should be on both VMs in the <i>/etc/rpki/trust-anchors</i> directory.

319 320	g. We now want to update rcynic. To force it to synchronize, we run the following command on both VMs:
321	# sudo -u rpki python /usr/bin/rcynic-cron
322	i. To verify that rcynic works, visit https://127.0.0.1/rcynic on both VMs.
323	h. We return to setting up primary_root.
324 325	 On primary_root, find the file named primary_root.primary_root.repository- request.xml. Once in the right directory, run the following command:
326 327	<pre># rpkic configure_publication_client primary_root.primary_root.repository-request.xml</pre>
328	This should produce a file named <i>primary_root.repository-response</i> .
329	ii. With this file, run the following command:
330	<pre># rpkic configure_repository primary_root.repository-response</pre>
331	Now, primary_root should be set up.
332 333	 On primary_root, visit https://127.0.0.1 and log in. You should see primary_root as a repository at the bottom of the page.
334	2.2.1.6 Child CA Repository Setup
335 336	 Our next step is to set up remote_child as a child of primary_root. On remote_child, run the following command:
337	<pre># rpkic create_identity remote_child</pre>
338	This will produce a file named remote_child.identity.xml.
339	2. We now want to copy this over to primary_root by using rsync.
340	a. First, copy the file to /usr/share/rpki/publication on remote_child.
341	b. Next, on primary_root, run the following command:
342	<pre># rsync rsync://192.168.2.116/rpki/remote_child.identity.xml ./</pre>
343	(Replace 192.168.2.116 with remote_child's IP address in the command above.)
344 345	This command will copy the child's identity file to the current working directory on primary_root.

346		c.	Now, on primary_root, run the following command:
347			<pre># rpkic configure_child remote_child.identity.xml</pre>
348			This will produce a file named primary_root.remote_child.parent-response.xml.
349	3.	We wi	Il copy this file over to remote_child.
350		a.	To do this, first (on primary_root) copy the file to /usr/share/rpki/publication.
351		b.	Next, on remote_child, run the following command:
352 353			<pre># rsync rsync://192.168.2.115/rpki/primary_root.remote_child.parent- response.xml ./</pre>
354 355			(Replace the IP address with the appropriate one for primary_root in the command above.)
356			This command will copy the response to the current working directory on remote_child.
357		c.	With this file, we now run the following command on remote_child:
358			<pre># rpkic configure_parent primary_root.remote_child.parent-response.xml</pre>
359			This will produce a file named remote_child.primary_root.repository-request.xml.
360	4.	We wi	ll copy this file to primary_root with rsync.
361		a.	To do this, on remote_child, copy the file to /usr/share/rpki/publication.
362		b.	Then, on primary_root, run the following command:
363 364			<pre># rsync rsync://192.168.2.116/rpki/remote_child.primary_root.repository- request.xml ./</pre>
365			(Replace the IP address in the command above with remote_child's IP address).
366			This will copy the file to the current working directory.
367		с.	Now, on primary_root, we run the following command:
368 369			<pre># rpkic configure_publication_client remote_child.primary_root.repository-request.xml</pre>
370			This will produce a file named remote_child.repository-response.xml.
371	5.	We wi	ll copy this file to the remote_child by using rsync.
372		a.	On primary_root, copy the file to /usr/share/rpki/publication.

373	b.	Then, on remote_child, run the following command:
374 375		<pre># rsync rsync://192.168.2.115/rpki/remote_child.repository-response.xml ./</pre>
376		(Replace the IP address as necessary in the command above.)
377		This will copy the file to the current working directory.
378	C.	Now, on remote_child, we run the following command:
379		<pre># rpkic configure_repository remote_child.repository-response.xml</pre>
380	2.2.1.7 Run	rcynic to Update Root and Child CA Repositories

- This will complete the parent-child setup between primary_root and remote_child. Before verifying, we run the following commands on both VMs:
- 383 # rpkic force_publication
- 384 # rpkic force_run_now
- 385 # rpkic synchronize
- 386 # sudo -u rpki python /usr/bin/rcynic-cron

This should force both VMs to fully update everything, including running rcynic. At this point, you should verify that primary_root shows up as a parent on remote_child's GUI, and that remote_child shows up as a child on primary_root's GUI. Now, we can assign resources. On primary_root's GUI, assign some resources to remote_child. Given enough time, remote_child should update its GUI to reflect that it has been assigned resources under the resources header on the GUI.

392 2.2.1.8 Adding Resources

When adding resources using the GUI, run the following commands to ensure that rcynic runs to updatethe repository:

- 395 # rpkic force_run_now
- 396 # rpkic synchronize
- 397 # sudo -u rpki python /usr/bin/rcynic-cron

398 2.3 BGP-SRx Software Suite

399 BGP Secure Routing Extension (BGP-SRx) is an open-source reference implementation and research

- 400 platform for investigating emerging BGP security extensions and supporting protocols, such as RPKI
- 401 Origin Validation and Border Gateway Protocol Security (BGPsec) Path Validation [NIST BGP-SRx].

- 402 For the latest installation information, please use the Quick Install Guide:
- 403 https://bgpsrx.antd.nist.gov/bgpsrx/documents/SRxSoftwareSuite-5.0-QuickInstallGuide.pdf.

404 **2.4 Firewalls**

- 405 The firewall used for the lab build is the Palo Alto Next Generation Firewall. The firewall provides
- 406 protection against known and unknown threats. In this deployment, only ports and connections
- 407 necessary for the build are configured. All other ports and connections are denied.
- 408 System requirements: Palo Alto PA-5060 Next Generation Firewall running Version 7.1.10 software.
- 409 The configuration shown in <u>Figure 2-1</u> addressed all ports that are allowed by the firewall. Ports that are
- 410 allowed by the firewall are BGP, rsync, and RPKI Repository Delta Protocol (RRDP). All other ports are
- 411 denied by the firewall. <u>Figure 2-1</u> depicts the firewall rules.

Qo: Poli					e									
Poli		Name	Tags	Туре	Zone	Address	User	HIP Profile	Zone	Address	Application	Service	Action	Prof
Dec Apr Cap Do:	1	BGP_PE_AND_CE	none	interzone	بالمثل trust بالمثل untrust	CE_ROUTER	any	any	🕅 untrust	S PE_ROUTER	iii bgp	🗶 application-d	S Allow	none
005	2	ICMP-Untrust-Trust	none	universal	بالمار trust بالمار untrust	any	any	any	(22) trust (22) untrust	any	iii ping	🗶 application-d	🤡 Allow	none
	3	RPKI-In-Out	none	universal	ជ្រា trust ជ្រា untrust	any	any	any	ស្រា trust ស្រា untrust	S CE_ROUTER	Tsync	💥 application-d	🕙 Allow	non
	4	Deny-SSH-Telnet	none	universal	any	any	any	any	any	any	ssh	🗶 application-d	O Deny	non
er	5	RRDP-HTTPS	none	interzone	(22) trust	any	any	any	any	any	any	🧏 service-https	💙 Allow	non
	6	intrazone-default	none	intrazone	any	any	any	any	(intrazone)	any	any	any	🛛 Allow	non
	7	interzone-default	none	interzone	any	any	any	any	any	any	any	any	O Deny	none
lte														

412 Figure 2-1 Palo Alto Firewall Configuration

414 2.5 Test Harness Topology Configuration

- The configurations provided in this section are the configurations that are used on each of the routers
- 416 when operating in the test harness environment architecture provided in Figure 1-1 in Section 1.2.
- 417 Initially, Cisco routers were used as routers RTR 1-1, RTR 2-1, and RTR 2-2 in that architecture to perform
- the functional tests. The same tests were then repeated, replacing the Cisco routers with Juniper routers
- 419 as RTR 1-1, RTR 2-1, and RTR 2-2.
- 420 The systems and operating software used for the Cisco routers are as follows:
- 421 Cisco 7206 running *c7200p-adventerprisrk9-mz.152-4.s7.bin*, with a minimum of 4-gigabit
 422 Ethernet (GbE) ports. Routers AS 65500 (RTR 2-1) and AS 65501 (RTR 1-1) use this system and
 423 OS.
- 424 Cisco 4331 running *ISR4300-universalk9.16.03.04.SPA.bin*, with a minimum of 4 GbE ports.
 425 Router AS 65504A (RTR 2-2) uses this system and OS.
- 426 All Juniper routers have the following requirements: Juniper MX80 running on Juniper Operating System
- 427 (JUNOS) 15.1R6.7, with a minimum of 4 GbE ports. Routers AS 65500 (RTR 2-2), AS 65503-J (RTR 2-1),
- 428 and AS 65505 (RTR 1-1) use this system and OS.
- The BGP-SRx Software Suite traffic generators can run on a CentOS Linux system with minimumrequirements.

431 2.5.1 RTR 1-1 Configuration – Cisco

432 RTR 1-1 acts as an exterior border gateway protocol (eBGP) router receiving eBGP routes from BIO-1, as

- depicted in Figure 1-1. It updates its interior border gateway protocol (iBGP) peer, BIO-2, with iBGP
- 434 updates. VRP data is provided to RTR 1-1 by the RPKI validator.

435	hostname AS65501
436	!
437	interface GigabitEthernet0/1
438	ip address 10.90.90.1 255.255.255.0
439	ipv6 address FD00:F:F:1::1/64
440	!
441	interface FastEthernet0/2
442	description VLAN1
443	ip address 192.168.1.2 255.255.255.0

444	!
445	interface GigabitEthernet0/2
446	ip address x.x.x.x 255.255.255.252 #Actual IP address to CenturyLink removed.
447	!
448	interface GigabitEthernet0/3
449	ip address y.y.y.y 255.255.255.248 #Actual IP address to CenturyLink removed.
450	ipv6 address FD15:F:F:1::1/64
451	
452	!
453	router bgp 65501
454	bgp log-neighbor-changes
455	bgp rpki server tcp 192.168.1.52 port 8282 refresh 5
456	neighbor 10.90.90.4 remote-as 65501
457	neighbor 192.168.1.50 remote-as 65510
458	neighbor 192.168.1.51 remote-as 65511
459	neighbor 192.168.1.52 remote-as 65501
460	neighbor 192.168.1.53 remote-as 65512
461	neighbor FD00:F:F:1::3 remote-as 65503
462	!
463	address-family ipv4
464	bgp bestpath prefix-validate allow-invalid
465	no neighbor 10.90.90.4 activate
466	neighbor 192.168.1.50 activate
467	neighbor 192.168.1.51 activate
468	neighbor 192.168.1.52 activate
469	neighbor 192.168.1.52 send-community both

470	neighbor 192.168.1.52 announce rpki state
471	neighbor 192.168.1.53 activate
472	no neighbor FD00:F:F:1::3 activate
473	exit-address-family
474	!
475	address-family ipv6
476	redistribute connected
477	<pre>neighbor FD00:F:F:1::3 activate</pre>
478	exit-address-family
479	!
480	ip prefix-list WAN-OUT seq 10 permit 65.118.221.8/29
481	!
482	route-map rpki permit 10
483	match rpki invalid
484	set local-preference 100
485	!
486	route-map RPKI-TEST permit 10
487	match ip address prefix-list WAN-OUT
488	set community 13698023
489	!
490	end

491 2.5.2 RTR 2-1 Configuration – Cisco

RTR 2-1 acts as an eBGP router receiving eBGP routes from BIO-0, and as an iBGP peer providing updates
to RTR 2-2, as depicted in Figure 1-1. RTR 2-1 updates another iBGP peer, BIO-2, with iBGP updates. VRP
data is provided to RTR 1-1 by the RPKI validator.

495	hostname AS65500
496	!
497	interface Loopback1
498	ip address 10.100.0.1 255.255.0.0
499	ipv6 address 2010:10:10:10:1/64
500	!
501	interface GigabitEthernet0/1
502	ip address 10.90.90.10 255.255.255.0
503	ipv6 address FD00:F:F:1::10/64
504	!
505	interface FastEthernet0/2
506	ip address 192.168.1.4 255.255.255.0
507	!
508	interface GigabitEthernet0/2
509	ip address 10.99.99.21 255.255.255.252
510	!
511	interface GigabitEthernet0/3
512	description VLAN8
513	!
514	router bgp 65500
515	bgp log-neighbor-changes
516	bgp rpki server tcp 192.168.1.52 port 8282 refresh 5

517	bgp rpki server tcp 192.168.1.53 port 8282 refresh
518	neighbor 192.168.1.5 remote-as 65500
519	neighbor 192.168.1.50 remote-as 65510
520	neighbor 192.168.1.51 remote-as 65511
521	neighbor 192.168.1.52 remote-as 65500
522	neighbor 192.168.1.53 remote-as 65513
523	!
524	address-family ipv4
525	bgp bestpath prefix-validate allow-invalid
526	redistribute connected
527	neighbor 192.168.1.5 activate
528	neighbor 192.168.1.5 send-community both
529	neighbor 192.168.1.5 announce rpki state
530	neighbor 192.168.1.50 activate
531	neighbor 192.168.1.51 activate
532	neighbor 192.168.1.52 activate
533	neighbor 192.168.1.52 send-community both
534	neighbor 192.168.1.52 announce rpki state
535	neighbor 192.168.1.53 activate
536	exit-address-family
537	!
538	route-map 10 permit 10
539	!
540	end

541 2.5.3 RTR 2-2 Configuration – Cisco

542	RTR 2-2 acts as an iBGP router receiving iBGP routes from RTR 2-1, and as an eBGP peer providing
543	updates to BIO-6, as depicted in <u>Figure 1-1</u> .

544	version 16.3
545	!
546	hostname AS65504A
547	!
548	interface GigabitEthernet0/0/0
549	description VLNA5
550	ip address 10.40.0.1 255.255.255.0
551	ipv6 address FD34:F:F:1::4/64
552	!
553	interface GigabitEthernet0/0/1
554	description VLN6
555	ip address 10.99.99.18 255.255.255.252
556	ipv6 address FD24:F:F:1::4/64
557	!
558	interface GigabitEthernet0/0/2
559	ip address 192.168.1.5 255.255.255.0
560	ipv6 address 2004:4444:4444:4444:4444
561	!
562	router bgp 65500
563	bgp log-neighbor-changes
564	bgp rpki server tcp 192.168.1.53 port 8282 refresh 5
565	bgp rpki server tcp 192.168.1.52 port 8282 refresh 5
566	neighbor 192.168.1.4 remote-as 65500

567	neighbor 192.168.1.53 remote-as 65513
568	!
569	address-family ipv4
570	neighbor 192.168.1.4 activate
571	neighbor 192.168.1.4 send-community both
572	neighbor 192.168.1.4 announce rpki state
573	neighbor 192.168.1.53 activate
574	exit-address-family
575	!
576	route-map NO-EXPORT permit 10
577	set community no-export
578	!
579	end
580	2.5.4 RTR 1-1 Configuration – Juniper
580 581 582	 2.5.4 RTR 1-1 Configuration – Juniper RTR 1-1 acts as an eBGP router receiving eBGP routes from BIO-1, as depicted in Figure 1-1. RTR 1-1 updates its iBGP peer, BIO-2, with iBGP updates. VRP data is provided to it by the RPKI validator.
581	RTR 1-1 acts as an eBGP router receiving eBGP routes from BIO-1, as depicted in Figure 1-1. RTR 1-1
581 582	RTR 1-1 acts as an eBGP router receiving eBGP routes from BIO-1, as depicted in Figure 1-1. RTR 1-1 updates its iBGP peer, BIO-2, with iBGP updates. VRP data is provided to it by the RPKI validator.
581 582 583	RTR 1-1 acts as an eBGP router receiving eBGP routes from BIO-1, as depicted in <u>Figure 1-1</u> . RTR 1-1 updates its iBGP peer, BIO-2, with iBGP updates. VRP data is provided to it by the RPKI validator. set system host-name AS65501
581 582 583 584	RTR 1-1 acts as an eBGP router receiving eBGP routes from BIO-1, as depicted in <u>Figure 1-1</u> . RTR 1-1 updates its iBGP peer, BIO-2, with iBGP updates. VRP data is provided to it by the RPKI validator. set system host-name AS65501 set system login user nccoe uid 2000
581 582 583 584 585 586	RTR 1-1 acts as an eBGP router receiving eBGP routes from BIO-1, as depicted in Figure 1-1. RTR 1-1 updates its iBGP peer, BIO-2, with iBGP updates. VRP data is provided to it by the RPKI validator. set system host-name AS65501 set system login user nccoe uid 2000 set system login user nccoe class read-only set system login user nccoe authentication encrypted-password
581 582 583 584 585 586 587	RTR 1-1 acts as an eBGP router receiving eBGP routes from BIO-1, as depicted in Figure 1-1. RTR 1-1 updates its iBGP peer, BIO-2, with iBGP updates. VRP data is provided to it by the RPKI validator. set system host-name AS65501 set system login user nccoe uid 2000 set system login user nccoe class read-only set system login user nccoe authentication encrypted-password "\$5\$8.Yu28ng\$LbcoMQ9uqDO3.U4VaiG4bg5fWMeaMYAJjr09Aniu8c7"
581 582 583 584 585 586 587 588	RTR 1-1 acts as an eBGP router receiving eBGP routes from BIO-1, as depicted in Figure 1-1. RTR 1-1 updates its iBGP peer, BIO-2, with iBGP updates. VRP data is provided to it by the RPKI validator. set system host-name AS65501 set system login user nccoe uid 2000 set system login user nccoe class read-only set system login user nccoe authentication encrypted-password "\$5\$8.Yu28ng%LbcoMQ9uqDO3.U4VaiG4bg5fWMeaMYAJjr09Aniu8c7" set interfaces ge-1/3/0 unit 0 family inet address 192.168.1.12/24
581 582 583 584 585 586 587 588 588	RTR 1-1 acts as an eBGP router receiving eBGP routes from BIO-1, as depicted in Figure 1-1. RTR 1-1 updates its iBGP peer, BIO-2, with iBGP updates. VRP data is provided to it by the RPKI validator. set system host-name AS65501 set system login user nccoe uid 2000 set system login user nccoe class read-only set system login user nccoe authentication encrypted-password "\$5\$8.Yu28ng\$LbcoMQ9uqDO3.U4VaiG4bg5fWMeaMYAJjr09Aniu8c7" set interfaces ge-1/3/0 unit 0 family inet address 192.168.1.12/24 set interfaces ge-1/3/1 unit 0 family inet
581 582 583 584 585 586 587 588 589 590	RTR 1-1 acts as an eBGP router receiving eBGP routes from BIO-1, as depicted in Figure 1-1. RTR 1-1 updates its iBGP peer, BIO-2, with iBGP updates. VRP data is provided to it by the RPKI validator. set system host-name AS65501 set system login user nccoe uid 2000 set system login user nccoe class read-only set system login user nccoe authentication encrypted-password "\$5\$8.Yu28ng\$LbcoMQ9uqDO3.U4VaiG4bg5fWMeaMYAJjr09Aniu8c7" set interfaces ge-1/3/0 unit 0 family inet address 192.168.1.12/24 set interfaces ge-1/3/1 unit 0 family inet set interfaces ge-1/3/2 unit 0 family inet

594	set routing-options validation group cache session 192.168.1.52 refresh-time 5
595	set routing-options validation group cache session 192.168.1.52 port 8282
596	set protocols bgp group external-as65511 type external
597	set protocols bgp group external-as65511 import validation
598	set protocols bgp group external-as65511 export allow-direct
599	set protocols bgp group external-as65511 peer-as 65511
600	set protocols bgp group external-as65511 neighbor 192.168.1.51
601	set protocols bgp group external-as65510 type external
602	set protocols bgp group external-as65510 import validation
603	set protocols bgp group external-as65510 export allow-direct
604	set protocols bgp group external-as65510 peer-as 65510
605	set protocols bgp group external-as65510 neighbor 192.168.1.50
606	set protocols bgp group internal-as65501 type internal
607	set protocols bgp group internal-as65501 neighbor 192.168.1.52
608	set protocols bgp group external-as65512 type external
609	set protocols bgp group external-as65512 import validation
610	set protocols bgp group external-as65512 export allow-direct
611	set protocols bgp group external-as65512 peer-as 65512
612	set protocols bgp group external-as65512 neighbor 192.168.1.53
613 614	set policy-options policy-statement allow-all from route-filter 0.0.0.0/0 orlonger
615	set policy-options policy-statement allow-all then accept
616 617	set policy-options policy-statement allow-direct term default from protocol direct
618	set policy-options policy-statement allow-direct term default then accept
619	set policy-options policy-statement validation term valid from protocol bgp
620 621	set policy-options policy-statement validation term valid from validation- database valid

622 623	set policy-options policy-statement validation term valid then local-preference 110
624 625	set policy-options policy-statement validation term valid then validation-state valid
626 627	set policy-options policy-statement validation term valid then community add origin-validation-state-valid
628	set policy-options policy-statement validation term valid then accept
629	set policy-options policy-statement validation term invalid from protocol bgp
630 631	set policy-options policy-statement validation term invalid from validation- database invalid
632 633	set policy-options policy-statement validation term invalid then local- preference 90
634 635	set policy-options policy-statement validation term invalid then validation- state invalid
636 637	set policy-options policy-statement validation term invalid then community add origin-validation-state-invalid
638	set policy-options policy-statement validation term invalid then accept
639	set policy-options policy-statement validation term unknown from protocol bgp
640 641	set policy-options policy-statement validation term unknown then validation- state unknown
642 643	set policy-options policy-statement validation term unknown then community add origin-validation-state-unknown
644	set policy-options policy-statement validation term unknown then accept
645	set policy-options community origin-validation-state-invalid members 0x4300:2
646	set policy-options community origin-validation-state-unknown members 0x4300:1
647	set policy-options community origin-validation-state-valid members 0x4300:0

648 2.5.5 RTR 2-1 Configuration – Juniper

649 650 651	RTR 2-1 acts as an eBGP router receiving eBGP routes from BIO-0, and as an iBGP peer providing updates to RTR 2-2, as depicted in <u>Figure 1-1</u> . It updates another iBGP peer, BIO-2, with iBGP updates. VRP data is provided to RTR 2-1 by the RPKI validator.
652	set system host-name AS65500-J
653	set interfaces ge-1/3/0 unit 0 family inet
654	set interfaces ge-1/3/1 unit 0 family inet address 192.168.1.14/24
655	set interfaces lo0 unit 0 family inet address 127.0.0.1/32
656	set routing-options autonomous-system 65500
657	set routing-options validation traceoptions file rpki-trace
658	set routing-options validation traceoptions flag all
659	deactivate routing-options validation traceoptions
660	set routing-options validation group cache session 192.168.1.52 refresh-time 5
661	set routing-options validation group cache session 192.168.1.52 port 8282
662	set protocols bgp group external-as65511 type external
663	set protocols bgp group external-as65511 import validation
664	set protocols bgp group external-as65511 export allow-direct
665	set protocols bgp group external-as65511 peer-as 65511
666	set protocols bgp group external-as65511 neighbor 192.168.1.51
667	set protocols bgp group external-as65510 type external
668	set protocols bgp group external-as65510 import validation
669	set protocols bgp group external-as65510 export allow-direct
670	set protocols bgp group external-as65510 peer-as 65510
671	set protocols bgp group external-as65510 neighbor 192.168.1.50
672	set protocols bgp group internal-as65500 type internal
673	set protocols bgp group internal-as65500 neighbor 192.168.1.52

674 675	set policy-options policy-statement allow-all from route-filter 0.0.0.0/0 orlonger
676	set policy-options policy-statement allow-all then accept
677 678	set policy-options policy-statement allow-direct term default from protocol direct
679	set policy-options policy-statement allow-direct term default then accept
680	set policy-options policy-statement validation term valid from protocol bgp
681 682	set policy-options policy-statement validation term valid from validation- database valid
683 684	set policy-options policy-statement validation term valid then local-preference 110
685 686	set policy-options policy-statement validation term valid then validation-state valid
687 688	set policy-options policy-statement validation term valid then community add origin-validation-state-valid
689	set policy-options policy-statement validation term valid then accept
690	set policy-options policy-statement validation term invalid from protocol bgp
691 692	set policy-options policy-statement validation term invalid from validation- database invalid
693 694	set policy-options policy-statement validation term invalid then local- preference 90
695 696	set policy-options policy-statement validation term invalid then validation- state invalid
697 698	set policy-options policy-statement validation term invalid then community add origin-validation-state-invalid
699	set policy-options policy-statement validation term invalid then accept
700	set policy-options policy-statement validation term unknown from protocol bgp
701 702	set policy-options policy-statement validation term unknown then validation- state unknown
703 704	set policy-options policy-statement validation term unknown then community add origin-validation-state-unknown
705	set policy-options policy-statement validation term unknown then accept

- **706** set policy-options community origin-validation-state-invalid members 0x4300:0:2
- 707 set policy-options community origin-validation-state-unknown members 0x4300:0:1
- 708 set policy-options community origin-validation-state-valid members 0x4300:0:0

709 2.5.6 RTR 2-2 Configuration – Juniper

RTR 2-2 acts as an iBGP router receiving iBGP routes from RTR 2-1, and as an eBGP peer providing updates to BIO-6, as depicted in Figure 1-1.

- 712 set system host-name AS65500
- 713 set interfaces ge-1/3/0 unit 0 family inet address 192.168.1.15/24
- 714 set interfaces ge-1/3/1 unit 0
- 715 set interfaces ge-1/3/2 unit 0
- 716 set interfaces ge-1/3/3 unit 0
- 717 set interfaces lo0 unit 0 family inet
- 718 set routing-options autonomous-system 65500
- 719 set routing-options validation group cache session 192.168.1.52 refresh-time 5
- 720 set routing-options validation group cache session 192.168.1.52 port 8282
- 721 set routing-options validation group cache session 192.168.1.53 refresh-time 5
- 722 set routing-options validation group cache session 192.168.1.53 port 8282
- 723 set protocols bgp group internal-as65500 type internal
- 724 set protocols bgp group internal-as65500 neighbor 192.168.1.14
- 725 set protocols bgp group external-as65513 type external
- 726 set protocols bgp group external-as65513 import validation
- 727 set protocols bgp group external-as65513 export allow-direct
- 728 set protocols bgp group external-as65513 peer-as 65513
- 729 set protocols bgp group external-as65513 neighbor 192.168.1.53
- 730 set policy-options policy-statement allow-all from route-filter 0.0.0.0/0
 731 orlonger
- 732 set policy-options policy-statement allow-all then accept

733 734	set policy-options policy-statement allow-direct term default from protocol direct
735	set policy-options policy-statement allow-direct term default then accept
736	set policy-options policy-statement validation term valid from protocol bgp
737 738	set policy-options policy-statement validation term valid from validation- database valid
739 740	set policy-options policy-statement validation term valid then local-preference 110
741 742	set policy-options policy-statement validation term valid then validation-state valid
743 744	set policy-options policy-statement validation term valid then community add origin-validation-state-valid
745	set policy-options policy-statement validation term valid then accept
746	set policy-options policy-statement validation term invalid from protocol bgp
747 748	set policy-options policy-statement validation term invalid from validation- database invalid
749 750	set policy-options policy-statement validation term invalid then local- preference 90
751 752	set policy-options policy-statement validation term invalid then validation- state invalid
753 754	set policy-options policy-statement validation term invalid then community add origin-validation-state-invalid
755	set policy-options policy-statement validation term invalid then accept
756	set policy-options policy-statement validation term unknown from protocol bgp
757 758	set policy-options policy-statement validation term unknown then validation- state unknown
759 760	set policy-options policy-statement validation term unknown then community add origin-validation-state-unknown
761	set policy-options policy-statement validation term unknown then accept
762	set policy-options community origin-validation-state-invalid members 0x4300:2
763	set policy-options community origin-validation-state-invalid members 0x43:100:2
764	set policy-options community origin-validation-state-unknown members 0x4300:1

```
2.5.7 Traffic Generator BIO Configuration
766
767
             ski file
                       = "/var/lib/key-volt/ski-list.txt";
768
             ski key loc = "/var/lib/key-volt/";
769
            preload eckey = false;
770
            mode = "BGP";
771
            max = 0;
772
             only extended length = true;
773
             session = (
774
             {
775
                 disconnect = 0;
776
                 ext msg cap = true;
777
                 ext msg liberal = true;
778
                 bgpsec v4 snd = false;
779
                 bgpsec v4 rcv = false;
780
                 bgpsec v6 snd = false;
781
          bgpsec v6 rcv = false; update = (
782
                          );
783
                 incl global updates = true;
784
                 algo id = 1;
                 signature generation = "BIO";
785
786
                 null signature mode = "FAKE";
787
                                          = "1BADBEEFDEADFEED" "2BADBEEFDEADFEED"
                 fake signature
788
                                                       "3BADBEEFDEADFEED" "4BADBEEFDEADFEED"
789
                                                       "5BADBEEFDEADFEED" "6BADBEEFDEADFEED"
790
                                                       "7BADBEEFDEADFEED" "8BADBEEFDEADFEED"
791
                                                       "ABADBEEFFACE";
792
                                              = "0102030405060708" "090A0B0C0D0E0F10"
                 fake ski
793
                                                      "11121314";
794
                 printOnSend = \{
```

```
795
                  update = true;
796
                 };
797
798
                 printOnReceive = {
799
                  update. = true;
800
                  notification = true;
801
                  unknown
                            = true;
802
                 };
803
                printSimple
                               = true;
804
                 printPollLoop = false;
805
                printOnInvalid = false;
806
              }
807
            );
808
             update = (
809
                     );
      2.5.7.1 AS – Peer Configuration: BIO-0 (AS 65510) – RTR-1-1 (AS 65501)
810
811
                               = 65510;
                 asn
812
                 bgp ident = "192.168.1.50";
813
                 hold timer = 180;
814
815
                 peer asn = 65501;
                 # For CISCO replace x with 2, For JUNIPER replace x with 12
816
817
                           = "192.168.1.x";
                 peer ip
818
                 peer port = 179;
      2.5.7.2 AS – Peer Configuration: BIO-0 (AS 65510) – RTR-2-1 (AS 65500)
819
820
             asn
                           = 65510;
821
                 bgp ident = "192.168.1.50";
822
                 hold timer = 180;
823
824
                 peer_asn = 65500;
```

825 # For CISCO replace x with 4, For JUNIPER replace x with 14 826 peer ip = "192.168.1.x"; 827 peer port = 179;2.5.7.3 AS – Peer Configuration: BIO-1 (AS 65511) – RTR-1-1 (AS 65501) 828 829 = 65511; asn 830 bgp ident = "192.168.1.51"; 831 hold timer = 180;832 833 peer asn = 65500; 834 # For CISCO replace x with 2, For JUNIPER replace x with 12 835 peer ip = "192.168.1.x"; 836 peer port = 179;2.5.7.4 AS – Peer Configuration: BIO-1 (AS 65511) – RTR-2-1 (AS 65500) 837 838 = 65511; asn 839 bgp ident = "192.168.1.51"; 840 hold timer = 180;841 842 = 65500; peer asn 843 # For CISCO replace x with 4, For JUNIPER replace x with 14 844 peer ip = "192.168.1.x"; 845 peer port = 179;2.5.7.5 AS – Peer Configuration: BIO-2 (AS 65501) – RTR-1-1 (AS 65501) 846 847 = 65501; asn bgp ident = "192.168.1.52"; 848 849 hold timer = 180; 850 851 peer asn = 65501; 852 # For CISCO replace x with 2, For JUNIPER replace x with 12 853 peer ip = "192.168.1.x"; 854 peer port = 179;

```
2.5.7.6 AS – Peer Configuration: BIO-3 (AS 65500) – RTR-2-1 (AS 65500)
855
856
                                = 65500;
                 asn
857
                 bgp ident = "192.168.1.52";
858
                 hold timer = 180;
859
860
                            = 65500;
                 peer asn
861
                 # For CISCO replace x with 4, For JUNIPER replace x with 14
862
                 peer ip
                            = "192.168.1.x";
863
                 peer port = 179;
      2.5.7.7 AS – Peer Configuration: BIO-5 (AS 65512) – RTR-1-1 (AS 65500)
864
865
                                = 65512;
                 asn
866
                 bgp ident = "192.168.1.53";
867
                 hold timer = 180;
868
869
                 peer asn = 65501;
870
                 # For CISCO replace x with 2, For JUNIPER replace x with 12
871
                           = "192.168.1.x";
                 peer ip
872
                 peer port = 179;
      2.5.7.8 AS – Peer Configuration: BIO-6 (AS 65513) – RTR-1-1 (AS 65513)
873
874
                                = 65513;
                 asn
875
                 bgp ident = "192.168.1.53";
876
                 hold timer = 180;
877
878
                 peer asn = 65500;
879
                 # For CISCO replace x with 4, For JUNIPER replace x with 14
880
                 peer ip
                           = "192.168.1.x";
881
                 peer port = 179;
```

882 2.6 Live Data Configuration

The configurations provided in this section are the configurations that are used on each of the routers when operating in the live data environment architecture shown in <u>Figure 1-2</u>. Live BGP data and RPKI data can be retrieved in this environment. The architecture is organized into eight separate networks, each of which is designed to represent a different AS.

- 887 The systems and operating software used for the Cisco routers are as follows:
- Cisco 7206 running *c7200p-adventerprisrk9-mz.152-4.s7.bin*, with a minimum of 4 GbE ports.
 Routers AS 65500, AS 65501, and AS 65503 use this system and OS.
- Cisco 4331 running *ISR4300-universalk9.16.03.04.SPA.bin*, with a minimum of 4 GbE ports.
 Routers AS 65504A and AS 65504B use this system and OS.
- Cisco 2921 running *c2900-universalk9-mz-SPA.152-4.M6.bin*, with a minimum of 4 GbE ports.
 Routers AS 65507 and AS 65508 use this system and OS.
- Cisco Internetwork Operating System (IOS) XRv 9000 router Version 6.4.1 running on VMware
 ESXi using the *xrv9k-fullk9-x.vrr-6.4.1.ova* file.
- All Juniper routers have the following requirements: Juniper MX80 running on JUNOS 15.1R6.7, with a minimum of 4 GbE ports. Routers AS 65502 and AS 65505 use this system and OS.
- 898 RPKI validators and repositories are configured based on <u>Section 2.1</u> and <u>Section 2.2</u>. Live ROV data is
- retrieved from the five trust anchors, and lab ROA data is retrieved from the lab delegated model of thelocal RPKI repository.
- 901 Note: Real IP addresses and AS numbers were removed from the configuration.

902 2.6.1 CenturyLink Configuration Router AS 65501 – Cisco

- To receive a full BGP route table, CenturyLink provided a physical link connecting the NCCoE lab with an
 eBGP peering. The configuration below illustrates the eBGP peering. An additional configuration for this
 router, related to the lab build, is provided in Section 2.5.3.
- 906
 version 15.2

 907
 !

 908
 hostname AS65501

 909
 !

 910
 ipv6 unicast-routing
- 911 ipv6 cef

912	!
913	interface GigabitEthernet0/1
914	ip address 10.90.90.1 255.255.255.0
915	ipv6 address FD00:F:F:1::1/64
916	!
917	interface FastEthernet0/2
918	description VLAN1
919	ip address 192.168.1.2 255.255.255.0
920	!
921	interface GigabitEthernet0/2
922	ip address a.a.a.a 255.255.255.252
923	!
924	interface GigabitEthernet0/3
925	ip address c.c.c.c 255.255.258.248
926	
927	ipv6 address FD15:F:F:1::1/64
928	!
929	router bgp aaa
930	bgp log-neighbor-changes
931	neighbor a.a.a.b remote-as bbb
932	!
933	address-family ipv4
934	network c.c.c.d mask 255.255.255.248
935	neighbor a.a.a.b activate
936	neighbor a.a.a.b send-community
937	neighbor a.a.a.b soft-reconfiguration inbound

938	neighbor a.a.a.b route-map RPKI-TEST out
939	exit-address-family
940	!
941	: ip prefix-list WAN-OUT seq 10 permit c.c.c.d/29
942	ipv6 router rip proc1
943	!
944	route-map rpki permit 10
945	match rpki invalid
946	set local-preference 100
947	!
948	route-map RPKI-TEST permit 10
949	match ip address prefix-list WAN-OUT
950	set community 13698023
951	!
952	end
953	2.6.2 Router AS 65500 Configuration – Cisco
954 955	Router AS 65500 represents an ISP. For the lab build, this router originates BGP updates from its own AS and receives and sends routes to and from its eBGP peers.
956	hostname AS65500
957	!
958	ip cef
959	ipv6 unicast-routing
960	ipv6 cef
961	!
962	interface Loopback1
963	ip address 10.10.0.1 255.255.0.0

964	ipv6 address FD10:10:10:10:1/64
965	ipv6 rip proc1 enable
966	!
967	interface GigabitEthernet0/1
968	ipv6 address FD00:F:F:1::1/64
969	ipv6 rip proc1 enable
970	!
971	interface FastEthernet0/2
972	description VLAN1
973	ip address 192.168.1.2 255.255.255.0
974	ipv6 address FD01:F:F:1::2/64
975	ipv6 rip proc1 enable
976	!
977	interface GigabitEthernet0/2
978	ip address a.a.a.a 255.255.255.252
979	!
980	interface GigabitEthernet0/3
981	ip address c.c.c.c 255.255.255.248
982	ipv6 address FD15:F:F:1::1/64
983	!
984	router rip
985	version 2
986	network 10.0.0.0
987	network 192.168.1.0
988	no auto-summary
989	1

990	router bgp aaa
991	bgp log-neighbor-changes
992	neighbor a.a.a.b remote-as bbb
993	!
994	address-family ipv4
995	network c.c.c.d mask 255.255.255.248
996	neighbor a.a.a.b activate
997	neighbor a.a.a.b send-community
998	neighbor a.a.a.b soft-reconfiguration inbound
999	neighbor a.a.a.b route-map RPKI-TEST out
1000	exit-address-family
1001	!
1002	ip route 10.20.0.0 255.255.0.0 192.168.1.3
1003	ip route 10.30.0.0 255.255.0.0 192.168.1.3
1004	ip route 10.40.0.0 255.255.0.0 192.168.1.3
1005	ip route 10.50.0.0 255.255.0.0 192.168.1.3
1006	ip route 10.70.0.0 255.255.0.0 192.168.1.3
1007	ip route 10.80.0.0 255.255.0.0 192.168.1.3
1008	ip route 10.90.90.0 255.255.255.0 192.168.1.3
1009	ip route 10.97.74.0 255.255.255.0 192.178.1.1
1010	ip route 10.99.99.0 255.255.255.0 192.168.1.3
1011	!
1012	ip prefix-list WAN-OUT seq 10 permit c.c.c.d /29
1013	ipv6 router rip proc1
1014	!
1015	route-map rpki permit 10

1016	match rpki invalid
1017	set local-preference 100
1018	!
1019	route-map RPKI-TEST permit 10
1020	match ip address prefix-list WAN-OUT
1021	set community 13698023
1022	!
1023	end

1024 2.6.3 Router 65501 Configuration – Cisco

.

Router AS 65501 represents an ISP. As indicated in <u>Section 2.5.1</u>, this router peers with the CenturyLink
router to receive a full BGP routing table. For the lab build, this router originates BGP updates from its
own AS and receives and sends routes to and from its eBGP peers. It is the gateway for all devices in the
lab, allowing ROAs from RIRs to be retrieved by RPKI validators. It also peers with stub AS A65505.

1029	hostname AS65501
1030	!
1031	ip cef
1032	ipv6 unicast-routing
1033	ipv6 cef
1034	!
1035	interface Loopback1
1036	ip address 10.10.0.1 255.255.0.0
1037	ipv6 address FD10:10:10:10:1/64
1038	ipv6 rip proc1 enable
1039	!
1040	interface GigabitEthernet0/1
1041	<pre>ipv6 address FD00:F:F:1::1/64</pre>
1042	ipv6 rip proc1 enable

1043	!
1044	interface FastEthernet0/2
1045	ip address 192.168.1.2 255.255.255.0
1046	ipv6 address FD01:F:F:1::2/64
1047	ipv6 rip proc1 enable
1048	!
1049	interface GigabitEthernet0/2
1050	ip address a.a.a.a 255.255.255.252
1051	!
1052	interface GigabitEthernet0/3
1053	ip address c.c.c.c 255.255.255.248
1054	ipv6 address FD15:F:F:1::1/64
1055	!
1056	router rip
1057	version 2
1058	network 10.0.0.0
1059	network 192.168.1.0
1060	no auto-summary
1061	!
1062	router bgp aaa
1063	bgp log-neighbor-changes
1064	neighbor a.a.a.b remote-as bbb
1065	!
1066	address-family ipv4
1067	network c.c.c.d mask 255.255.255.248
1068	neighbor a.a.a.b activate

1069	neighbor a.a.a.b send-community
1070	neighbor a.a.a.b soft-reconfiguration inbound
1071	neighbor a.a.a.b route-map RPKI-TEST out
1072	exit-address-family
1073	!
1074	ip route 10.20.0.0 255.255.0.0 192.168.1.3
1075	ip route 10.30.0.0 255.255.0.0 192.168.1.3
1076	ip route 10.40.0.0 255.255.0.0 192.168.1.3
1077	ip route 10.50.0.0 255.255.0.0 192.168.1.3
1078	ip route 10.70.0.0 255.255.0.0 192.168.1.3
1079	ip route 10.80.0.0 255.255.0.0 192.168.1.3
1080	ip route 10.90.90.0 255.255.255.0 192.168.1.3
1081	ip route 10.97.74.0 255.255.255.0 192.178.1.1
1082	ip route 10.99.99.0 255.255.255.0 192.168.1.3
1083	!
1084	ip prefix-list WAN-OUT seq 10 permit c.c.c.d /29
1085	ipv6 router rip procl
1086	!
1087	route-map rpki permit 10
1088	match rpki invalid
1089	set local-preference 100
1090	!
1091	route-map RPKI-TEST permit 10
1092	match ip address prefix-list WAN-OUT
1093	set community 13698023
1094	!

1096 2.6.4 Router AS 65502 Configuration – Juniper

Router AS 65502 represents an ISP using a Juniper router. For the lab build, this router originates BGP
updates from its own AS and receives and sends routes to and from its eBGP peers. It also provides
eBGP routes to stub AS 65504.

1100 set system host-name AS65502

end

1101	set interfaces ge-1/3/0 unit 0 family inet address 10.90.90.2/24
1102	set interfaces ge-1/3/0 unit 0 family inet6 address fd00:f:f:1::2/64
1103	set interfaces ge-1/3/1 unit 0 family inet address 10.99.99.17/30
1104	set interfaces ge-1/3/1 unit 0 family inet6 address fd24:f:f:1::2/64
1105	set interfaces ge-1/3/2 unit 0 family inet address 10.99.99.25/30
1106	set interfaces ge-1/3/2 unit 0 family inet6 address fd25:f:f:1::2/64
1107	set interfaces ge-1/3/3 unit 0 family inet address 10.20.0.1/16
1108	set interfaces ge-1/3/3 unit 0 family inet6 address 2020:2020:2020:1::2/64
1109	set interfaces lo0 unit 0 family inet address 127.0.0.1/32
1110	set routing-options validation group cache session 192.168.1.146 port 8282
1111 1112	set policy-options policy-statement allow-all from route-filter $0.0.0.0/0$ orlonger
1113	set policy-options policy-statement allow-all then accept
1114	set routing-instances rpki instance-type virtual-router
1115	set routing-instances rpki interface ge-1/3/0.0
1116	set routing-instances rpki interface ge-1/3/1.0
1117	set routing-instances rpki interface ge-1/3/2.0
1118	set routing-instances rpki interface ge-1/3/3.0
1119	set routing-instances rpki interface lo0.1
1120	set routing-instances rpki routing-options router-id 2.2.2.2
1121	set routing-instances rpki routing-options autonomous-system 65502

1122	set routing-instances rpki protocols bgp group external-as65500 type external
1123	set routing-instances rpki protocols bgp group external-as65500 import allow-
1124	all
1125	set routing-instances rpki protocols bgp group external-as65500 export allow-
1126	all
1127	set routing-instances rpki protocols bgp group external-as65500 peer-as 65500
1128	set routing-instances rpki protocols bgp group external-as65500 neighbor
1129	10.90.90.10
1130	set routing-instances rpki protocols bgp group external-as65500 neighbor
1131	fd00:f:f:1::10
1132	set routing-instances rpki protocols bgp group external-as65501 type external
1133	set routing-instances rpki protocols bgp group external-as65501 import allow-
1134	all
1135 1136	set routing-instances rpki protocols bgp group external-as65501 export allow-all
1137	set routing-instances rpki protocols bgp group external-as65501 peer-as 65501
1138	set routing-instances rpki protocols bgp group external-as65501 neighbor
1139	10.90.90.1
1140	set routing-instances rpki protocols bgp group external-as65501 neighbor
1141	fd00:f:f:1::1
1142	set routing-instances rpki protocols bgp group external-as65503 type external
1143	set routing-instances rpki protocols bgp group external-as65503 import allow-
1144	all
1145 1146	set routing-instances rpki protocols bgp group external-as65503 export allow-all
1147	set routing-instances rpki protocols bgp group external-as65503 peer-as 65503
1148	set routing-instances rpki protocols bgp group external-as65503 neighbor
1149	10.90.90.3
1150	set routing-instances rpki protocols bgp group external-as65503 neighbor
1151	fd00:f:f:1::3
1152	set routing-instances rpki protocols bgp group external-as65505 type external
1153 1154	set routing-instances rpki protocols bgp group external-as65505 import allow-all

1155	set routing-instances rpki protocols bgp group external-as65505 export allow-
1156	all
1157	set routing-instances rpki protocols bgp group external-as65505 peer-as 65505
1158	set routing-instances rpki protocols bgp group external-as65505 neighbor
1159	fd25:f:f:1::5
1160	set routing-instances rpki protocols bgp group external-as65505 neighbor
1161	10.99.99.26
1162	set routing-instances rpki protocols bgp group external-as65504 type external
1163	set routing-instances rpki protocols bgp group external-as65504 import allow-
1164	all
1165	set routing-instances rpki protocols bgp group external-as65504 export allow-
1166	all
1167	set routing-instances rpki protocols bgp group external-as65504 peer-as 65504
1168	set routing-instances rpki protocols bgp group external-as65504 neighbor
1169	10.99.99.18
1170	set routing-instances rpki protocols bgp group external-as65504 neighbor
1171	fd24:f:f:1::4

1172 2.6.5 Router AS 65503 Configuration – Cisco

Router AS 65503 represents an ISP without ROV capabilities. For the lab build, this router originates BGP
updates from its own AS and receives and sends routes to and from its eBGP peers without performing
BGP origin validation. This router peers with two transit routers, AS 65500 and AS 65502, as well as two
stub ASes, AS 65504 and AS 65507.

1177 hostname AS65503 1178 ! 1179 ip cef 1180 ipv6 unicast-routing 1181 ipv6 cef 1182 ! 1183 interface Loopback1 1184 ip address 10.30.0.1 255.255.0.0 1185 ipv6 address 2003:3333:3333:3333::1/64

1186	!
1187	interface GigabitEthernet0/1
1188	ip address 10.90.90.3 255.255.255.0
1189	ipv6 address FD00:F:F:1::3/64
1190	!
1191	interface FastEthernet0/2
1192	ip address 192.168.1.251 255.255.255.0
1193	!
1194	interface GigabitEthernet0/2
1195	ip address 10.99.99.13 255.255.255.252
1196	!
1197	interface GigabitEthernet0/3
1198	description VLAN7
1199	ip address 10.99.99.21 255.255.255.252
1200	ipv6 address FD37:F:F:1::1/64
1201	!
1202	router bgp 65503
1203	bgp log-neighbor-changes
1204	bgp rpki server tcp 192.168.1.146 port 8282 refresh 10
1205	neighbor 10.90.90.1 remote-as 65501
1206	neighbor 10.90.90.2 remote-as 65502
1207	neighbor 10.90.90.10 remote-as 65500
1208	neighbor 10.99.99.14 remote-as 65504
1209	neighbor 10.99.99.22 remote-as 65507
1210	neighbor FD00:F:F:1::1 remote-as 65501
1211	neighbor FD00:F:F:1::2 remote-as 65502

1212	neighbor FD00:F:F:1::10 remote-as 65500
1213	neighbor FD34:F:F:1::4 remote-as 65504
1214	neighbor FD34:F:F:1::7 remote-as 65507
1215	!
1216	address-family ipv4
1217	redistribute connected
1218	redistribute static
1219	neighbor 10.90.90.1 activate
1220	neighbor 10.90.90.2 activate
1221	neighbor 10.90.90.10 activate
1222	neighbor 10.99.99.14 activate
1223	neighbor 10.99.99.22 activate
1224	<pre>no neighbor FD00:F:F:1::1 activate</pre>
1225	<pre>no neighbor FD00:F:F:1::2 activate</pre>
1226	<pre>no neighbor FD00:F:F:1::10 activate</pre>
1227	no neighbor FD34:F:F:1::4 activate
1228	no neighbor FD34:F:F:1::7 activate
1229	exit-address-family
1230	!
1231	address-family ipv6
1232	redistribute connected
1233	<pre>neighbor FD00:F:F:1::1 activate</pre>
1234	<pre>neighbor FD00:F:F:1::2 activate</pre>
1235	<pre>neighbor FD00:F:F:1::10 activate</pre>
1236	<pre>neighbor FD34:F:F:1::4 activate</pre>
1237	exit-address-family

- 1239 ipv6 router rip proc1
- 1240 !
- 1241 end

1242 2.6.6 Router AS 65504A Configuration – Cisco

Router AS 65504A represents an enterprise edge router for AS 65504. For the lab build, this router
originates BGP updates from its own AS and receives and sends routes to and from its eBGP peer, AS
65502. It peers with Router AS 65504B to exchange iBGP routes.

1246	hostname AS65504A
1247	!
1248	ipv6 unicast-routing
1249	!
1250	interface Loopback1
1251	ip address 10.40.1.1 255.255.255.0
1252	!
1253	interface GigabitEthernet0/0/0
1254	ip address 10.40.0.1 255.255.255.0
1255	ipv6 address FD00:F:F:1::40/64
1256	ipv6 address FD34:F:F:1::4/64
1257	!
1258	interface GigabitEthernet0/0/1
1259	ip address 10.99.99.18 255.255.255.252
1260	ipv6 address FD24:F:F:1::4/64
1261	!
1262	interface GigabitEthernet0/0/2
1263	ip address 10.40.4.1 255.255.255.0

1265 ! 1266 router bgp 65504 1267 bgp log-neighbor-changes	
1267 bgp log-neighbor-changes	
1268 neighbor 10.40.0.2 remote-as 65504	
1269 neighbor 10.99.99.17 remote-as 65502	
1270 neighbor FD24:F:F:1::2 remote-as 65502	
1271 !	
1272 address-family ipv4	
1273 redistribute connected	
1274 redistribute static	
1275 no neighbor 10.40.0.2 activate	
1276 neighbor 10.99.99.17 activate	
1277 no neighbor FD24:F:F:1::2 activate	
1278 exit-address-family	
1279 !	
1280 address-family ipv6	
1281 redistribute connected	
1282 neighbor FD24:F:F:1::2 activate	
1283 exit-address-family	
1284 !	
1285 ip route 10.40.2.0 255.255.0 10.40.0.2	
1286 !	
1287 route-map NO-EXPORT permit 10	
1288 set community no-export	
1289 !	

end

1291 2.6.7 Router AS 65504B Configuration – Cisco

Router AS 65504B represents an enterprise edge router for AS 65504. For the lab build, this router
originates BGP updates from its own AS and receives and sends routes to and from its eBGP peer, AS
65503. It peers with Router AS 65504A to exchange iBGP routes.

1295	hostname AS65504B
1296	!
1297	ipv6 unicast-routing
1298	!
1299	interface Loopback1
1300	ip address 10.40.2.1 255.255.255.0
1301	ipv6 address 4040:4040:4040:4242::1/64
1302	!
1303	interface GigabitEthernet0/0/0
1304	ip address 10.99.99.14 255.255.255.252
1305	ipv6 address FD34:F:F:1::4/64
1306	!
1307	interface GigabitEthernet0/0/1
1308	ip address 10.40.0.2 255.255.255.0
1309	ipv6 address FD40:F:F:1::2/64
1310	!
1311	router bgp 65504
1312	bgp log-neighbor-changes
1313	neighbor 10.40.0.1 remote-as 65504
1314	neighbor 10.99.99.13 remote-as 65503
1315	neighbor FD34:F:F:1::2 remote-as 65503

1316	neighbor FD40:F:F:1::1 remote-as 65504
1317	!
1318	address-family ipv4
1319	redistribute connected
1320	no neighbor 10.40.0.1 activate
1321	neighbor 10.99.99.13 activate
1322	no neighbor FD34:F:F:1::2 activate
1323	no neighbor FD40:F:F:1::1 activate
1324	exit-address-family
1325	!
1326	address-family ipv6
1327	redistribute connected
1328	neighbor FD34:F:F:1::2 activate
1329	neighbor FD40:F:F:1::1 activate
1330	exit-address-family
1331	!
1332	route-map NO-EXPORT permit 10
1333	set community no-export
1334	!
1335	end
1336	2.6.8 Router AS 65505 Configuration – Juniper
1337 1338 1339	Router AS 65505 represents an enterprise edge router. For the lab build, this router originates BGP updates from its own AS and receives and sends routes to and from its eBGP peers, AS 65501 and AS 65502.
1340	set system bost-name AS65505

- 1340 set system host-name AS65505
- 1341 set interfaces ge-1/3/0 unit 0 family inet

set interfaces ge-1/3/0 unit 0 family inet6

1343	set interfaces ge-1/3/1 unit 0 family inet address 10.99.99.2/30
1344	set interfaces ge-1/3/1 unit 0 family inet6 address fd15:f:f:1::5/64
1345	set interfaces ge-1/3/2 unit 0 family inet address 10.99.99.26/30
1346	set interfaces ge-1/3/2 unit 0 family inet6 address fd25:f:f:1::5/64
1347	set interfaces ge-1/3/3 unit 0 family inet address 10.50.0.1/16
1348	set interfaces ge-1/3/3 unit 0 family inet6 address 5050:5050:5050:1::5/64
1349	set interfaces lo0 unit 0 family inet address 127.0.0.1/32
1350	set routing-options autonomous-system 65505
1351	set routing-options validation group cache session 192.168.1.146 port 8282
1352	set protocols bgp group external-as65501 type external
1353	set protocols bgp group external-as65501 import validation
1354	set protocols bgp group external-as65501 export allow-direct
1355	set protocols bgp group external-as65501 peer-as 65501
1356	set protocols bgp group external-as65501 neighbor 10.99.99.1
1357	set protocols bgp group external-as65501 neighbor fd15:f:f:1::1
1358	set protocols bgp group external-as65502 type external
1359	set protocols bgp group external-as65502 import validation
1360	set protocols bgp group external-as65502 export allow-direct
1361	set protocols bgp group external-as65502 peer-as 65502
1362	set protocols bgp group external-as65502 neighbor 10.99.99.25
1363	set protocols bgp group external-as65502 neighbor fd25:f:f:1::2
1364 1365	set policy-options policy-statement allow-all from route-filter 0.0.0.0/0 orlonger
1366	set policy-options policy-statement allow-all then accept
1367 1368	set policy-options policy-statement allow-direct term default from protocol direct

1369	set policy-options policy-statement allow-direct term default then accept	
1370	set policy-options policy-statement validation term valid from protocol bgp	
1371 1372	set policy-options policy-statement validation term valid from validation- database valid	
1373 1374	set policy-options policy-statement validation term valid then local-preferent	ence
1375 1376	set policy-options policy-statement validation term valid then validation-s valid	tate
1377	set policy-options policy-statement validation term valid then accept	
1378	set policy-options policy-statement validation term invalid from protocol be	gp
1379 1380	set policy-options policy-statement validation term invalid from validation database invalid	-
1381 1382	set policy-options policy-statement validation term invalid then local- preference 90	
1383 1384	set policy-options policy-statement validation term invalid then validation state invalid	-
1385	set policy-options policy-statement validation term invalid then reject	
1386	set policy-options policy-statement validation term unknown from protocol be	gp
1387 1388	set policy-options policy-statement validation term unknown then validation state unknown	-
1389	set policy-options policy-statement validation term unknown then accept	
1390	.6.9 Router AS 65507 Configuration – Cisco	

Router AS 65507 represents an enterprise edge router for AS 65507. For the lab build, this router
originates BGP updates from its own AS and receives and sends routes to and from its eBGP peer, AS
65503.

- hostname AS65507
- 1395 !
- 1396 interface Loopback1
- 1397 ip address 10.70.0.1 255.255.0.0
- 1398 ipv6 address 7070:7070:7070:1/64

1399	!
1400	interface GigabitEthernet0/0
1401	ip address 10.99.99.22 255.255.255.252
1402	ipv6 address FD37:F:F:1::7/64
1403	!
1404	interface GigabitEthernet0/1
1405	ip address 172.16.0.1 255.255.0.0
1406	!
1407	router bgp 65507
1408	bgp log-neighbor-changes
1409	neighbor 10.99.99.21 remote-as 65503
1410	neighbor FD37:F:F:1::3 remote-as 65503
1411	!
1412	address-family ipv4
1413	redistribute connected
1414	neighbor 10.99.99.21 activate
1415	no neighbor FD37:F:F:1::3 activate
1416	exit-address-family
1417	!
1418	address-family ipv6
1419	redistribute connected
1420	neighbor FD37:F:F:1::3 activate
1421	exit-address-family
1422	!
1423	access-list 23 permit 10.10.10.0 0.0.0.7
1424	ipv6 router rip procl

- 1425
- 1426 end

!

1427 2.6.10 Router AS 65508 Configuration – Cisco

Router AS 65508 represents a hijacker masquerading as an enterprise edge router. For the lab build, this
router originates BGP updates for routes that are held by other ASes (i.e., for routes for which it is not
authorized to originate updates), in order to demonstrate route hijacks.

1431	hostname AS65508
1432	!
1433	ipv6 unicast-routing
1434	ipv6 cef
1435	!
1436	interface Loopback1
1437	ip address 10.80.0.1 255.255.0.0
1438	ipv6 address 8080:8080:8080:8080::1/64
1439	!
1440	interface GigabitEthernet0/0
1441	ip address 10.99.99.30 255.255.255.252
1442	ipv6 address FD00:F:F:1::61/64
1443	ipv6 address FD08:F:F:1::8/64
1444	!
1445	interface GigabitEthernet0/1
1446	ip address 172.16.8.1 255.255.255.0
1447	!
1448	router bgp 65508
1449	bgp log-neighbor-changes
1450	neighbor 10.99.99.29 remote-as 65500

1451	neighbor FD08:F:F:1::10 remote-as 65500
1452	!
1453	address-family ipv4
1454	redistribute connected
1455	neighbor 10.99.99.29 activate
1456	no neighbor FD08:F:F:1::10 activate
1457	exit-address-family
1458	!
1459	address-family ipv6
1460	redistribute connected
1461	<pre>neighbor FD08:F:F:1::10 activate</pre>
1462	exit-address-family
1463	!
1464	ipv6 router rip procl
1465	!
1466	end

1467 2.6.11 Cisco IOS XRv Router Configuration

The Cisco IOS XRv software was also used to perform many of the functional tests, as many ISPs
currently use it in their network environment. The baseline configuration is provided below. Depending
on the test case, this router can replace any other router shown in Figure 1-2, in order to properly
perform the test.

1472	RP/0/RP0/CPU0:ios#sho run
1473	<pre>!! IOS XR Configuration version = 6.4.1</pre>
1474	!
1475	interface MgmtEth0/RP0/CPU0/0
1476	ipv4 address 192.168.1.201 255.255.255.0
1477	ipv6 address fd00:f:f:1::201/64

1478	!
1479	route-policy pass-all
1480	pass
1481	end-policy
1482	!
1483	router bgp 65501
1484	bgp router-id 1.1.1.1
1485	rpki server 192.168.1.146
1486	transport tcp port 8282
1487	refresh-time 15
1488	!
1489	address-family ipv4 unicast
1490	bgp bestpath origin-as allow invalid
1491	!
1492	address-family ipv6 unicast
1493	bgp bestpath origin-as allow invalid
1494	!
1495	neighbor 192.168.1.62
1496	remote-as 65501
1497	address-family ipv4 unicast
1498	route-policy pass-all in
1499	route-policy pass-all out
1500	!
1501	!
1502	neighbor fd00:f:f:1::62
1503	remote-as 65501

1504	address-family ipv6 unicast
1505	route-policy pass-all in
1506	route-policy pass-all out
1507	!
1508	!
1509	!
1510	end

1511 Appendix A List of Acronyms

	-
AFRINIC	African Network Information Center
APNIC	Asia-Pacific Network Information Center
ARIN	American Registry for Internet Numbers
AS	Autonomous System
BGP	Border Gateway Protocol
BGPsec	Border Gateway Protocol Security
BGP-SRx	BGP Secure Routing Extension
BIO	BGPSEC-IO
СА	Certificate Authority
CPU	Central Processing Unit
eBGP	Exterior Border Gateway Protocol
Gb	Gigabyte(s)
GbE	Gigabit(s) Ethernet
GUI	Graphical User Interface
iBGP	Interior Border Gateway Protocol
IETF	Internet Engineering Task Force
IOS	Internetwork Operating System
IP	Internet Protocol
ISP	Internet Service Provider
IT	Information Technology
JUNOS	Juniper Operating System
LACNIC	Latin America and Caribbean Network Information Center
NCCoE	National Cybersecurity Center of Excellence
NIST	National Institute of Standards and Technology
OS	Operating System

RFC	Request for Comments
RIPE NCC	Réseaux IP Européens Network Coordination Centre
RIR	Regional Internet Registry
ROA	Route Origin Authorization
ROV	Route Origin Validation
RPKI	Resource Public Key Infrastructure
RRDP	RPKI Repository Delta Protocol
RTR	Router
SIDR	Secure Inter-Domain Routing
SP	Special Publication
TAL	Trust Anchor Locator
URL	Uniform Resource Locator
VLAN	Virtual Local Area Network
VM	Virtual Machine
VRP	Validated ROA Payload
WAN	Wide Area Network

1513 Appendix B References

[NIST BGP-SRx]	BGP Secure Routing Extension (BGP SRx) Prototype, National Institute of
	Standards and Technology, [website]. <u>https://www.nist.gov/services-</u>
	resources/software/bgp-secure-routing-extension-bgp-srx-prototype
[NIST SP 800-54]	D. R. Kuhn, K. Sriram, and D. Montgomery, Border Gateway Protocol
	Security, NIST SP 800-54, July 2007.
	http://csrc.nist.gov/publications/nistpubs/800-54/SP800-54.pdf
[NIST SP 800-160]	Systems Security Engineering: An Integrated Approach to Building
	Trustworthy Resilient Systems, NIST SP 800-160 Second Public Draft,
	National Institute of Standards and Technology, November 2016.
	http://csrc.nist.gov/publications/drafts/800-160/sp800_160_second-
	draft.pdf
[RFC 6480]	M. Lepinski and S. Kent, An Infrastructure to Support Secure Internet
	Routing, RFC 6480, February 2012. <u>https://tools.ietf.org/html/rfc6480</u>
[RFC 6482]	M. Lepinski, S. Kent, and D. Kong, A Profile for Route Origin
	Authorizations (ROAs), RFC 6482, February 2012.
	https://tools.ietf.org/html/rfc6482
[RFC 6811]	P. Mohapatra, J. Scudder, D. Ward, R. Bush, and R. Austein, BGP Prefix
	Origin Validation, RFC 6811, January 2013.
	https://tools.ietf.org/pdf/rfc6811.pdf
[RFC 7115]	R. Bush, Origin Validation Operation Based on the Resource Public Key
	Infrastructure (RPKI), RFC 7115, January 2014.
	https://tools.ietf.org/html/rfc7115
[RIPE Tools]	Tools and Resources, RIPE Network Coordination Centre (NCC),
	[website]. https://www.ripe.net/manage-ips-and-asns/resource-
	management/certification/tools-and-resources