DISCLAIMER

Certain commercial entities, equipment, products, or materials may be identified by name or company logo or other insignia in order to acknowledge their participation in this collaboration or to describe an experimental procedure or concept adequately. Such identification is not intended to imply special status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it intended to imply that the entities, equipment, products, or materials are necessarily the best available for the purpose.

FEEDBACK

You can improve this guide by contributing feedback. As you review and adopt this solution for your own organization, we ask you and your colleagues to share your experience and advice with us.

Comments on this publication may be submitted to: hit_nccoe@nist.gov.

Public comment period: November 16, 2020 through December 18, 2020

As a private-public partnership, we are always seeking feedback on our practice guides. We are particularly interested in seeing how businesses apply NCCoE reference designs in the real world. If you have implemented the reference design, or have questions about applying it in your environment, please email us at hit_nccoe@nist.gov.

All comments are subject to release under the Freedom of Information Act.

National Cybersecurity Center of Excellence
National Institute of Standards and Technology
100 Bureau Drive
Mailstop 2002
Gaithersburg, MD 20899
Email: nccoe@nist.gov
The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and academic institutions work together to address businesses’ most pressing cybersecurity issues. This public-private partnership enables the creation of practical cybersecurity solutions for specific industries, as well as for broad, cross-sector technology challenges. Through consortia under Cooperative Research and Development Agreements (CRADAs), including technology partners—from Fortune 50 market leaders to smaller companies specializing in information technology security—the NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity solutions using commercially available technology. The NCCoE documents these example solutions in the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework and details the steps needed for another entity to re-create the example solution. The NCCoE was established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, Maryland.

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit https://www.nist.gov.

NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the adoption of standards-based approaches to cybersecurity. They show members of the information security community how to implement example solutions that help them align with relevant standards and best practices, and provide users with the materials lists, configuration files, and other information they need to implement a similar approach.

The documents in this series describe example implementations of cybersecurity practices that businesses and other organizations may voluntarily adopt. These documents do not describe regulations or mandatory practices, nor do they carry statutory authority.

ABSTRACT

Increasingly, healthcare delivery organizations (HDOs) are relying on telehealth and remote patient monitoring (RPM) capabilities to treat patients at home. RPM is convenient and cost-effective, and its adoption rate has increased. However, without adequate privacy and cybersecurity measures, unauthorized individuals may expose sensitive data or disrupt patient monitoring services.

RPM solutions engage multiple actors as participants in a patient’s clinical care. These actors include HDOs, telehealth platform providers, and the patients themselves. Each participant uses, manages, and maintains different technology components within an interconnected ecosystem, and each is
This practice guide assumes that the HDO engages with a telehealth platform provider that is a separate entity from the HDO and patient. The telehealth platform provider manages a distinct infrastructure, applications, and set of services. The telehealth platform provider coordinates with the HDO to provision, configure, and deploy the RPM components to the patient home and assures secure communication between the patient and clinician.

The NCCoE analyzed risk factors regarding an RPM ecosystem by using risk assessment based on the NIST Risk Management Framework. The NCCoE also leveraged the NIST Cybersecurity Framework, NIST Privacy Framework, and other relevant standards to identify measures to safeguard the ecosystem. In collaboration with healthcare, technology, and telehealth partners, the NCCoE built an RPM ecosystem in a laboratory environment to explore methods to improve the cybersecurity of an RPM.

Technology solutions alone may not be sufficient to maintain privacy and security controls on external environments. This practice guide notes the application of people, process, and technology as necessary to implement a holistic risk mitigation strategy.

This practice guide’s capabilities include helping organizations assure the confidentiality, integrity, and availability of an RPM solution, enhancing patient privacy, and limiting HDO risk when implementing an RPM solution.

KEYWORDS

access control; authentication; authorization; behavioral analytics; cloud storage; data privacy; data security; encryption; HDO; healthcare; healthcare delivery organization; remote patient monitoring; RPM; telehealth

ACKNOWLEDGMENTS

We are grateful to the following individuals for their generous contributions of expertise and time.

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alex Mohseni</td>
<td>Accuhealth</td>
</tr>
<tr>
<td>Stephen Samson</td>
<td>Accuhealth</td>
</tr>
<tr>
<td>Brian Butler</td>
<td>Cisco</td>
</tr>
<tr>
<td>Matthew Hyatt</td>
<td>Cisco</td>
</tr>
<tr>
<td>Name</td>
<td>Organization</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Kevin McFadden</td>
<td>Cisco</td>
</tr>
<tr>
<td>Peter Romness</td>
<td>Cisco</td>
</tr>
<tr>
<td>Steven Dean</td>
<td>Inova Health System</td>
</tr>
<tr>
<td>Zach Furness</td>
<td>Inova Health System</td>
</tr>
<tr>
<td>James Carder</td>
<td>LogRhythm</td>
</tr>
<tr>
<td>Brian Coulson</td>
<td>LogRhythm</td>
</tr>
<tr>
<td>Steven Forsyth</td>
<td>LogRhythm</td>
</tr>
<tr>
<td>Jake Haldeman</td>
<td>LogRhythm</td>
</tr>
<tr>
<td>Andrew Hollister</td>
<td>LogRhythm</td>
</tr>
<tr>
<td>Zack Hollister</td>
<td>LogRhythm</td>
</tr>
<tr>
<td>Dan Kaiser</td>
<td>LogRhythm</td>
</tr>
<tr>
<td>Sally Vincent</td>
<td>LogRhythm</td>
</tr>
<tr>
<td>Vidya Murthy</td>
<td>MedCrypt</td>
</tr>
<tr>
<td>Axel Wirth</td>
<td>MedCrypt</td>
</tr>
<tr>
<td>Stephanie Domas</td>
<td>MedSec</td>
</tr>
<tr>
<td>Garrett Sipple</td>
<td>MedSec</td>
</tr>
<tr>
<td>Nancy Correll</td>
<td>The MITRE Corporation</td>
</tr>
<tr>
<td>Spike Dog</td>
<td>The MITRE Corporation</td>
</tr>
<tr>
<td>Name</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Robin Drake</td>
<td>The MITRE Corporation</td>
</tr>
<tr>
<td>Sallie Edwards</td>
<td>The MITRE Corporation</td>
</tr>
<tr>
<td>Donald Faatz</td>
<td>The MITRE Corporation</td>
</tr>
<tr>
<td>Nedu Irrechukwu</td>
<td>The MITRE Corporation</td>
</tr>
<tr>
<td>Karri Meldorf</td>
<td>The MITRE Corporation</td>
</tr>
<tr>
<td>Stuart Shapiro</td>
<td>The MITRE Corporation</td>
</tr>
<tr>
<td>Chris Grodzickyj</td>
<td>Onclave Networks</td>
</tr>
<tr>
<td>Marianne Meins</td>
<td>Onclave Networks</td>
</tr>
<tr>
<td>Christina Phillips</td>
<td>Onclave Networks</td>
</tr>
<tr>
<td>James Taylor</td>
<td>Onclave Networks</td>
</tr>
<tr>
<td>Chris Jensen</td>
<td>Tenable</td>
</tr>
<tr>
<td>Joshua Moll</td>
<td>Tenable</td>
</tr>
<tr>
<td>Jeremiah Stallcup</td>
<td>Tenable</td>
</tr>
<tr>
<td>Julio C. Cespedes</td>
<td>The University of Mississippi Medical Center</td>
</tr>
<tr>
<td>Saurabh Chandra</td>
<td>The University of Mississippi Medical Center</td>
</tr>
<tr>
<td>Donald Clark</td>
<td>The University of Mississippi Medical Center</td>
</tr>
<tr>
<td>Alan Jones</td>
<td>The University of Mississippi Medical Center</td>
</tr>
<tr>
<td>Kristy Simms</td>
<td>The University of Mississippi Medical Center</td>
</tr>
</tbody>
</table>
Name | Organization
--- | ---
Richard Summers | The University of Mississippi Medical Center
Steve Waite | The University of Mississippi Medical Center
Dele Atunrase | Vivify Health
Michael Hawkins | Vivify Health
Robin Hill | Vivify Health
Dennis Leonard | Vivify Health
David Norman | Vivify Health
Bill Paschall | Vivify Health
Eric Rock | Vivify Health

The collaborators who participated in this build submitted their capabilities in response to a notice in the Federal Register. Respondents with relevant capabilities or product components were invited to sign a Cooperative Research and Development Agreement (CRADA) with NIST, allowing them to participate in a consortium to build this example solution. We worked with:

### Technology Partner/Collaborator	Build Involvement
Accuhealth | Accuhealth Evelyn

Cisco | Cisco Firepower Version 6.3.0
Cisco Umbrella
Cisco Stealthwatch Version 7.0.0

Inova Health System | subject matter expertise

<table>
<thead>
<tr>
<th>Technology Partner/Collaborator</th>
<th>Build Involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogRhythm</td>
<td>LogRhythm XDR Version 7.4.9</td>
</tr>
<tr>
<td></td>
<td>LogRhythm NetworkXDR Version 4.0.2</td>
</tr>
<tr>
<td>MedCrypt</td>
<td>subject matter expertise</td>
</tr>
<tr>
<td>MedSec</td>
<td>subject matter expertise</td>
</tr>
<tr>
<td>Onclave Networks Inc. (Onclave)</td>
<td>Onclave Zero Trust Platform</td>
</tr>
<tr>
<td>Tenable</td>
<td>Tenable.sc Vulnerability Management Version 5.13.0 with Nessus</td>
</tr>
<tr>
<td>The University of Mississippi Medical Center</td>
<td>subject matter expertise</td>
</tr>
<tr>
<td>Vivify Health</td>
<td>Vivify Pathways Home</td>
</tr>
<tr>
<td></td>
<td>Vivify Pathways Care Team Portal</td>
</tr>
</tbody>
</table>
Contents

1 Introduction ... 1
 1.1 How to Use this Guide .. 1
 1.2 Build Overview .. 2
 1.3 Typographic Conventions ... 3
 1.4 Logical Architecture Summary ... 3

2 Product Installation Guides .. 4
 2.1 Telehealth Platform Provider ... 4
 2.1.1 Accuhealth ... 5
 2.1.2 Vivify Health ... 9
 2.2 Security Capabilities .. 12
 2.2.1 Risk Assessment Controls .. 12
 2.2.2 Identity Management, Authentication, and Access Control .. 30
 2.2.3 Security Continuous Monitoring ... 73

Appendix A List of Acronyms .. 139

Appendix B References .. 140

List of Figures

105 Figure 1-1 Final Architecture .. 4
1 Introduction

The following volumes of this guide show information technology (IT) professionals and security engineers how we implemented this example solution. We cover all of the products employed in this reference design. We do not re-create the product manufacturers’ documentation, which is presumed to be widely available. Rather, these volumes show how we incorporated the products together in our environment.

Note: These are not comprehensive tutorials. There are many possible service and security configurations for these products that are out of scope for this reference design.

1.1 How to Use this Guide

This National Institute of Standards and Technology (NIST) Cybersecurity Practice Guide demonstrates a standards-based reference design and provides users with the information they need to replicate the telehealth remote patient monitoring (RPM) environment. This reference design is modular and can be deployed in whole or in part.

This guide contains three volumes:

- NIST SP 1800-30A: Executive Summary
- NIST SP 1800-30C: How-To Guides – instructions for building the example solution (you are here)

Depending on your role in your organization, you might use this guide in different ways:

Business decision makers, including chief security and technology officers, will be interested in the Executive Summary, NIST SP 1800-30A, which describes the following topics:

- challenges that enterprises face in securing the remote patient monitoring ecosystem
- example solution built at the NCCoE
- benefits of adopting the example solution

Technology or security program managers who are concerned with how to identify, understand, assess, and mitigate risk will be interested in NIST SP 1800-30B, which describes what we did and why. The following sections will be of particular interest:

- Section 3.4, Risk Assessment, describes the risk analysis we performed.
- Section 3.5, Security Control Map, maps the security characteristics of this example solution to cybersecurity standards and best practices.
You might share the Executive Summary, NIST SP 1800-30A, with your leadership team members to help them understand the importance of adopting standards-based commercially available technologies that can help secure the RPM ecosystem.

IT professionals who want to implement an approach like this will find this whole practice guide useful. You can use this How-To portion of the guide, NIST SP 1800-30C, to replicate all or parts of the build created in our lab. This How-To portion of the guide provides specific product installation, configuration, and integration instructions for implementing the example solution. We do not recreate the product manufacturers’ documentation, which is generally widely available. Rather, we show how we incorporated the products together in our environment to create an example solution.

This guide assumes that IT professionals have experience implementing security products within the enterprise. While we have used a suite of commercial products to address this challenge, this guide does not endorse these particular products. Your organization can adopt this solution or one that adheres to these guidelines in whole, or you can use this guide as a starting point for tailoring and implementing parts of the National Cybersecurity Center of Excellences’ (NCCoE’s) risk assessment and deployment of a defense-in-depth strategy in a distributed RPM solution. Your organization’s security experts should identify the products that will best integrate with your existing tools and IT system infrastructure. We hope that you will seek products that are congruent with applicable standards and best practices. Section 3.6, Technologies, lists the products that we used and maps them to the cybersecurity controls provided by this reference solution.

A NIST Cybersecurity Practice Guide does not describe “the” solution, but a possible solution. This is a draft guide. We seek feedback on its contents and welcome your input. Comments, suggestions, and success stories will improve subsequent versions of this guide. Please contribute your thoughts to hit_nccoe@nist.gov.

Acronyms used in figures are in the List of Acronyms appendix.

1.2 Build Overview

The NCCoE constructed a virtual lab environment to evaluate ways to implement security capabilities across an RPM ecosystem, which consists of three separate domains: patient home, telehealth platform provider, and healthcare delivery organization (HDO). The project implements virtual environments for the HDO and patient home while collaborating with a telehealth platform provider to implement a cloud-based telehealth RPM environment. The telehealth environments contain simulated patient data that portray relevant cases that clinicians could encounter in real-world scenarios. The project then applies security controls to the virtual environments. Refer to NIST Special Publication (SP) 1800-30B, Section 5, Security Characteristic Analysis, for an explanation of why we used each technology.
1.3 Typographic Conventions

The following table presents typographic conventions used in this volume.

<table>
<thead>
<tr>
<th>Typeface/Symbol</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italics</td>
<td>file names and path names; references to documents that are not hyperlinks; new terms; and placeholders</td>
<td>For language use and style guidance, see the NCCoE Style Guide.</td>
</tr>
<tr>
<td>Bold</td>
<td>names of menus, options, command buttons, and fields</td>
<td>Choose File > Edit.</td>
</tr>
<tr>
<td>Monospace</td>
<td>command-line input, onscreen computer output, sample code examples, and status codes</td>
<td><code>mkdir</code></td>
</tr>
<tr>
<td>Monospace Bold</td>
<td>command-line user input contrasted with computer output</td>
<td><code>service sshd start</code></td>
</tr>
<tr>
<td>blue text</td>
<td>link to other parts of the document, a web URL, or an email address</td>
<td>All publications from NIST’s NCCoE are available at <code>https://www.nccoe.nist.gov</code>.</td>
</tr>
</tbody>
</table>

1.4 Logical Architecture Summary

Figure 1-1 illustrates the reference network architecture implemented in the NCCoE virtual environment, initially presented in NIST SP 1800-30B, Section 4.5, Final Architecture. The HDO environment utilizes network segmenting similar to the architecture segmentation used in NIST SP 1800-24, *Securing Picture Archiving and Communication System (PACS)* [1]. The telehealth platform provider is a vendor-managed cloud environment that facilitates data transmissions and communications between the patient home and the HDO. Patient home environments have a minimalistic structure, which incorporates the devices provided by the telehealth platform provider.
2 Product Installation Guides

This section of the practice guide contains detailed instructions for installing and configuring all the products used to build an instance of the example solution. This practice guide implemented several capabilities that included deploying components received from telehealth platform providers and components that represent the HDO. The telehealth platform providers provisioned biometric devices that were deployed to a patient home environment. Within the HDO, this practice guide deployed network infrastructure devices to implement network zoning and configure perimeter devices. This practice guide also deployed security capabilities that supported vulnerability management and a security incident event management (SIEM) tool. The following sections detail deployment and configuration of these components.

2.1 Telehealth Platform Provider

This practice guide implemented a model where an HDO partners with telehealth platform providers to enable RPM programs. Telehealth platform providers are third parties that, for this practice guide,
configured, deployed, and managed biometric devices and mobile devices (e.g., tablets) that were sent to the patient home. The telehealth platform provider managed data communications over cellular data where patients send biometric data to the telehealth platform provider. The telehealth platform provider implemented an application that allowed clinicians to access the biometric data.

This practice guide collaborated with two independent telehealth platform providers. Collaborating with two unique platforms enabled the team to apply NIST's Cybersecurity Framework to multiple telehealth platform implementations. One platform provides biomedical devices enabled with cellular data. These devices transmitted biometric data to the cloud-based telehealth platform. The second platform provider deployed biometric devices enabled with Bluetooth wireless technology. Biometric devices communicated with an interface device (i.e., a tablet). The telehealth platform provider configured the interface device by using a mobile device management solution, limiting the interface device's capabilities to those services required for RPM participation. The patient transmitted biometric data to the telehealth platform provider by using the interface device. The interface device transmitted data over cellular data communications. Both telehealth platform providers allowed HDOs to access patient data by using a web-based application. Both platforms implemented unique access control policies for access control, authentication, and authorization.

2.1.1 Accuhealth

Accuhealth provided biometric devices that included cellular data communication. Accuhealth also included a cloud-hosted application for HDOs to access patient-sent biometric data. Accuhealth provisioned biomedical devices with subscriber identity module (SIM) cards that enabled biomedical devices to transmit data via cellular data communications to the Accuhealth telehealth platform.

Accuhealth stored patient-transmitted data in an application. Individuals assigned with clinician roles accessed transmitted data hosted in the Accuhealth application. The biomedical data displayed in the following screen captures are notional in nature and do not relate to an actual patient.

2.1.1.1 Patient

This practice guide assumed that the HDO enrolls the patient in an RPM program. Clinicians would determine when a patient may be enrolled in the program appropriately, and conversations would occur about understanding the roles and responsibilities associated with participating in the RPM program.

When clinicians enrolled patients in the RPM program, the HDO would collaborate with Accuhealth. Accuhealth received patient contact information and configured biometric devices appropriate for the RPM program in which the patient was enrolled. Accuhealth configured biometric devices to communicate via cellular data. Biometric devices, thus, were isolated from the patient home network environment. Accuhealth assured device configuration and asset management.
2.1.1.2 HDO

The Accuhealth solution includes installing an application within the HDO environment. Clinicians access a portal hosted by Accuhealth that allows a clinician to view patient biometric data. The application requires unique user accounts and role-based access control. System administrators create accounts and assign roles through an administrative console. Sessions from the clinician to the hosted application use encryption to ensure data-in-transit protection.

This section discusses the HDO application installation and configuration procedures.

1. Access a device that has a web browser.
2. Navigate to accuhealth login page and provide a Username and Password. The following screenshots show a doctor’s point of view in the platform.
3. Click LOG IN.

After logging in, the Patient Overview screen displays.
4. To view patients associated with the account used to log in, navigate to the View Select drop-down list in the top left corner of the screen, and select My Patients.

5. Click a Patient to display the Patient Details page, which displays all patient biomedical readings.
6. To leave a comment on a reading, click no comments yet under the Comments column on the row of the reading to which the comment refers.

7. A Comment screen displays that allows free text input.

8. Click Comment.

9. Click Close.
10. To have a call with a patient, click Request an Appointment in the top left of the Patient Details page.

11. A notification box displays, asking if the Home Health Agency needs to schedule an appointment with the patient.

12. Click OK.

2.1.2 Vivify Health

Vivify provided biometric and interface devices (i.e., Vivify provisioned a tablet device) and a cloud-hosted platform. Vivify enabled biometric devices with Bluetooth communication and provisioned interface devices with SIM cards. Individuals provisioned with patient roles used the interface device to retrieve data from the biometric devices via Bluetooth. Individuals acting as patients then used the interface device to transmit data to Vivify using cellular data. Vivify’s application presented the received data. Individuals provisioned with clinician roles accessed the patient-sent data stored in the Vivify application via a web interface.

2.1.2.1 Patient

This practice guide assumed that the HDO enrolls the patient in an RPM program. Clinicians would determine when a patient may be enrolled in the program appropriately, and conversations then occur about understanding the roles and responsibilities associated with participating in the RPM program. When clinicians enroll patients in the RPM program, the HDO would collaborate with Vivify. Vivify received patient contact information and configured biometric devices and an interface device (i.e.,
tablet) appropriate for the RPM program in which the patient was enrolled. Vivify assured device configuration and asset management.

2.1.2.2 HDO

The Vivify solution includes installing an application within the HDO environment. Clinicians access a portal hosted by Vivify that allows a clinician to view patient biometric data. The application requires unique user accounts and role-based access control. System administrators create accounts and assign roles through an administrative console. Sessions from the clinician to the hosted application use encryption to ensure data-in-transit protection.

This section discusses the HDO application installation and configuration procedures.

1. Access a device that has a web browser.
2. Navigate to https://demonccoerpm.vivifyhealth.com/CaregiverPortal/index.html#/Login and provide the Username and Password of the administrative account provided by Vivify.
3. Click Login.

4. Navigate to the Care Team menu item on the left-hand side of the screen.

 Click + New User.
5. In the **New User** screen provide the following information:

 a. **First Name:** Test
 b. **Last Name:** Clinician
 c. **User Name:** TClinician1
 d. **Password:** **********
 e. **Confirm Password:** **********
 f. **Facilities:** Vivify General
 g. **Sites:** Default
 h. **Roles:** Clinical Level 1, Clinical Level 2
 i. **Email Address:** **********
 j. **Mobile Phone:** **********

6. Click **Save Changes**.

7. Navigate to **Patients** in the left-hand menu bar.

8. Select the **NCCoE, Patient** record.

9. Under **Care Team**, click the notepad and pencil in the top right of the box.

10. In the **Care Team** window, select **Clinician, Test** and click **Ok**.

11. Logout of the platform.

12. Login to the platform using the **Test Clinician** credentials and click **Login**.

13. Click the **NCCoE, Patient** record.

14. Navigate to the **Monitoring** tab to review patient readings.

15. Based on the patient’s data, the clinician needs to consult the patient.

16. Click the ellipsis in the **NCCoE, Patient** menu above the green counter.

17. Select **Call Patient**.

18. In the **Respond to Call Request** screen, select **Phone Call Now**.

19. After the consultation, record the action items performed during the call.

20. In the **Monitoring** window, click **Accept All** under the **Alerts** tab to record intervention steps.
21. In the **Select Intervention** window, select the steps performed to address any patient alerts.

22. Click **Accept**.

23. Navigate to **Notes** to review recorded interventions or add other clinical notes.

2.2 Security Capabilities

The following instruction and configuration steps depict how the NCCoE engineers along with project collaborators implemented provided cybersecurity tools to achieve the desired security capabilities identified in NIST SP 1800-30B, Section 4.4, Security Capabilities.

2.2.1 Risk Assessment Controls

Risk assessment controls align with the NIST Cybersecurity Framework’s ID.RA category. For this practice guide, the Tenable.sc solution was implemented as a component in an HDO’s risk assessment program. While Tenable.sc includes a broad functionality set, this practice guide leveraged Tenable.sc’s vulnerability scanning and management capabilities.

2.2.1.1 Tenable.sc

Tenable.sc is a vulnerability management solution. Tenable.sc includes vulnerability scanning and configuration checking, which displays information through a dashboard graphical user interface. Tenable.sc’s dashboard includes vulnerability scoring, enabling engineers to prioritize patching and remediation. This practice guide used Tenable.sc to manage a Nessus scanner, which performed vulnerability scanning against HDO domain-hosted devices. While the Tenable.sc solution includes configuration-checking functionality, this practice guide used the solution for vulnerability management.

System Requirements

- **Central Processing Unit (CPU):** 4
- **Memory:** 8 gigabytes (GB)
- **Storage:** 250 GB
- **Operating System:** CentOS 7
- **Network Adapter:** VLAN 1348

Tenable.sc Installation

This section discusses installation of the Tenable.sc vulnerability management solution.

1. Import the Tenable.sc open virtual appliance or appliance (OVA) file to the virtual environment.

2. Assign the virtual machine (VM) to **VLAN 1348**.
3. Start the VM and document the associated internet protocol (IP) address.

4. Open a web browser that can talk to virtual local area network (VLAN) and navigate to the VM’s IP address.

5. For the first login, use wizard as the Username and admin for the Password.

6. Tenable.sc prompts a popup window for creating a new admin username and password.

7. Repeat step 5 using the new username and password.
 a. Username: admin
 b. Password: *********
 c. Check the box beside Reuse my password for privileged tasks.

8. After logging in, the Tenable Management Console page displays.

9. Click the Tenable.sc menu option on the left side of the screen.

10. To access Tenable.sc, click the IP address next to the uniform resource locator (URL) field.
11. Log in to Tenable.sc using the credentials created in previous steps, and click **Sign In**.

 a. **Username:** admin

 b. **Password:** **********
12. After signing in, Tenable.sc’s web page displays.

13. Navigate to the System drop-down list in the menu ribbon.

14. Click Configuration.

15. Under Tenable.sc License, click Upload next to License File.

16. Navigate to the storage location of the Tenable.sc license key obtained from a Tenable representative and select the key file.

17. Click OK.

18. Click Validate.

19. When Tenable.sc accepts the key, a green Valid label will display next to License File.
20. Under Additional Licenses, input the Nessus license key provided by a Tenable representative next to Nessus Scanner.

21. Click Register.
This practice guide leveraged support from Tenable engineers. Collectively, engineers installed Tenable.sc and validated license keys for Tenable.sc and Nessus. Engineers created Organization, Repository, User, Scanner, and Scan Zones instances for the HDO lab environment. The configuration steps are below.

Add an Organization

1. Navigate to **Organizations** in the menu ribbon.
2. Click **+Add** in the top right corner of the screen. An **Add Organization** page will appear.
3. Name the Organization **RPM HDO** and leave the remaining fields as their default values.
4. Click **Submit**.
1. Navigate to the **Repositories** drop-down list in the menu ribbon.

2. Click **Add** in the top right corner of the screen. An **Add Repository** screen displays.

3. Under Local, click **IPv4**. An **Add IPv4 Repository** page displays. Provide the following information:
 a. **Name**: HDO Repository
 b. **IP Ranges**: 0.0.0.0/24
 c. **Organizations**: RPM HDO

4. Click **Submit**.
Add a User

1. Navigate to the Users drop-down list in the menu ribbon.
2. Select Users.
3. Click +Add in the top right corner. An Add User page displays. Provide the following information:
 a. Role: Security Manager
 b. Organization: RPM HDO
c. **First Name:** Test

d. **Last Name:** User

e. **Username:** TestSecManager

f. **Password:** **********

g. **Confirm Password:** **********

h. Enable **User Must Change Password.**

i. **Time Zone:** America/New York

4. Click **Submit.**
For the lab deployment of Tenable.sc, the engineers instantiated one Nessus scanner in the Security Services subnet that has access to every subnet in the HDO environment.

Add a Scanner

1. Navigate to the **Resources** drop-down list in the menu ribbon.
2. Select **Nessus Scanners**.
3. Click **+Add** in the top right corner. An **Add Nessus Scanner** page displays. Fill in the following information:
 a. **Name**: HDO Scanner
 b. **Description**: Scans the Workstation, Enterprise, HIS, Remote, and Database VLANs
 c. **Host**: 192.168.45.100
 d. **Port**: 8834
 e. **Enabled**: on
 f. **Type**: Password
 g. **Username**: TestSecManager
 h. **Password**: *********
4. Click **Submit**.
The engineers created a scan zone for each subnet established on the HDO network. The process to create a scan zone is the same for each subnet aside from the IP address range.

As an example, the steps for creating the Workstation scan zone are as follows:

Add a Scan Zone

1. Navigate to the Resources drop-down list in the menu ribbon.
2. Select Scan Zones.
3. Click **Add**. An **Add Scan Zone** page will appear. Provide the following information:

a. **Name**: Workstations

b. **Ranges**: 192.168.44.0/24

c. **Scanners**: HDO Scanner

4. Click **Submit**.

Repeat steps in **Add a Scan Zone** section for each VLAN.

To fulfil the identified NIST Cybersecurity Framework Subcategory requirements, the engineers utilized Tenable’s host discovery and vulnerability scanning capabilities. The first goal was to identify the hosts
on each of the HDO VLANs. Once Tenable identifies the assets, Tenable.sc executes a basic network scan to identify any vulnerabilities on these assets.

Create Scan Policies

1. Engineers created a Security Manager account in a previous step when adding users. Log in to Tenable.sc using the Security Manager account.

2. Navigate to the Scans drop-down list in the menu ribbon.

4. Click +Add in the top right corner.

5. Click Host Discovery in the Add Policy page. An Add Policy > Host Discovery page will appear. Provide the following information:
 a. Name: HDO Assets
 b. Discovery: Host enumeration
 c. Leave the remaining options as their default values.

6. Click Submit.
7. Click +Add in the top right corner.

9. Name the scan HDO Network Scan and leave the remaining options to their default settings.

10. Click Submit.

Create Active Scans

1. Navigate to the Scans drop-down list in the menu ribbon.

2. Select Active Scans.

3. Click +Add in the top right corner. An Add Active Scan page will appear. Provide the following information for General and Target Type sections.

General

a. Name: Asset Scan

b. Description: Identify hosts on the VLANs

c. Policy: Host Discovery

Targets

a. Target Type: IP/DNS Name
b. **IPs/DNS Names:** 192.168.44.0/24, 192.168.40.0/24, 192.168.41.0/24, 192.168.42.0/24, 192.168.43.0/24

4. **Click Submit.**
Repeat steps in Create Active Scans section for the Basic Network Scan policy. Keep the same value as defined for Active Scan with the exception of the following:

a. Name the scan **HDO Network Scan**.

b. Set Policy to **HDO Network Scan**.

After the engineers created and correlated the Policies and Active Scans to each other, they executed the scans.

Execute Active Scans

1. Navigate to the **Scans** drop-down list in the menu ribbon.

2. Select **Active Scans**.

3. Next to **HDO Asset Scan** click ►.

4. Navigate to the **Scan Results** menu option shown at the top of the screen under the menu ribbon to see the status of the scan.

5. Click **HDO Asset Scan** to see the scan results.

6. Repeat the above steps for **HDO Network Scan**.

View Active Scan Results in the Dashboard

1. Navigate to the **Dashboard** drop-down list in the menu ribbon.

2. Select **Dashboard**.
3. In the top right, click **Switch Dashboard**.

4. Click **Vulnerability Overview**. A screen will appear that displays a graphical representation of the vulnerability results gathered during the HDO Host Scan and HDO Network Scan.

2.2.1.2 Nessus

Nessus is a vulnerability scanning engine that evaluates a host’s operating system and configuration to determine the presence of exploitable vulnerabilities. This project uses one Nessus scanner to scan each VLAN created in the HDO environment to identify hosts on each VLAN and the vulnerabilities associated with those hosts. Nessus sends the results back to Tenable.sc, which graphically represents the results in dashboards.

System Requirements

CPU: 4

Memory: 8 GB

Storage: 82 GB

Operating System: CentOS 7

Network Adapter: VLAN 1348

Nessus Installation

1. Import the **OVA file** to the virtual lab environment.

2. Assign the VM to **VLAN 1348**.

3. Start the VM and document the associated **IP address**.

4. Open a web browser that can talk to VLAN 1348 and navigate to the VM’s **IP address**.

5. Log in using **wizard** as the **Username** and **admin** for the **Password**.

6. Create a new **admin username** and **password**.

7. Log in using the new username and password.

 a. **Username:** admin

 b. **Password:** **********

 c. Enable Reuse my password for privileged tasks.
8. Click **Tenable.sc** on the left side of the screen.

9. To access Tenable.sc, click the **IP address** next to the URL field.
Nessus Configuration

The engineers utilized Tenable.sc to manage Nessus. To configure Nessus as managed by Tenable.sc, follow Tenable’s Managed by Tenable.sc guide [3].

2.2.2 Identity Management, Authentication, and Access Control

Identity management, authentication, and access control align with the NIST Cybersecurity Framework PR.AC control. This practice guide implemented capabilities in the HDO to address this control category. First, the practice guide implemented Microsoft Active Directory (AD), then installed a domain controller to establish an HDO domain. Next, the practice guide implemented Cisco Firepower as part of its network core infrastructure. The practice guide used Cisco Firepower to build VLANs that aligned to network zones. Cisco Firepower also was configured to provide other network services. Details on installation are included in the following sections.

2.2.2.1 Domain Controller

The engineers installed a Windows Server domain controller within the HDO to manage AD and local domain name service (DNS) for the enterprise. The following section details how the engineers installed the services.

Domain Controller Appliance Information
CPU: 4

Random Access Memory (RAM): 8 GB

Storage: 120 GB (Thin Provision)

Network Adapter 1: VLAN 1327

Operating System: Microsoft Windows Server 2019 Datacenter

Domain Controller Appliance Installation Guide

Install the appliance according to the instructions detailed in Microsoft’s Install Active Directory Domain Services (Level 100) documentation [4].

Verify Domain Controller Installation

1. Launch Server Manager.
2. Click Tools > Active Directory Domains and Trusts.
3. Right-click hdo.trpm.
4. Click Manage.
5. Click hdo.trpm > Domain Controllers.

6. Check that the Domain Controllers directory lists the new domain controller.

Configure Local DNS

1. Launch Server Manager.

2. Click **Tools > DNS**.
3. Click the **arrow symbol** for DC-HDO.

4. Right-click **Reverse Lookup Zones**.

5. Click **New Zone**.... The New Zone Wizard displays.

6. Click **Next >**.
7. Click **Primary zone**.

8. Check **Store the zone in Active Directory**.

9. Click **Next >**.
10. Check **To all DNS servers running on domain controllers in this forest: hdo.trpm.**

11. Click **Next >.**
12. Check **IPv4 Reverse Lookup Zone**.

13. Click **Next >**.
14. Check **Network ID**.

16. Click **Next >**.
17. Check **Allow only secure dynamic updates.**

18. Click **Next >.**
19. Click Finish.
20. Click the arrow symbol for Reverse Lookup Zones.

22. Click New Pointer (PTR)....
23. Under Host name, click **Browse**.
26. Click OK.
27. Click OK.
New Resource Record

Pointer (PTR)

Host IP Address:
192.168.40.10

Fully qualified domain name (FQDN):
10.40.168.192.in-addr.arpa

Host name:
dc-hdo.hdo.trpm

Allow any authenticated user to update all DNS records with the same name. This setting applies only to DNS records for a new name.

OK Cancel
2.2.2.2 Cisco Firepower

Cisco Firepower consists of two primary components: Cisco Firepower Management Center and Cisco Firepower Threat Defense (FTD). Cisco Firepower provides firewall, intrusion prevention, and other networking services. This project used Cisco Firepower to implement VLAN network segmentation, network traffic filtering, internal and external routing, applying an access control policy, and Dynamic Host Configuration Protocol (DHCP). Engineers deployed Cisco Firepower as a core component for the lab's network infrastructure.

Cisco Firepower Management Center (FMC) Appliance Information

- **CPU**: 4
- **RAM**: 8 GB
- **Storage**: 250 GB (Thick Provision)
- **Network Adapter 1**: VLAN 1327
- **Operating System**: Cisco Fire Linux 6.4.0

Cisco Firepower Management Center Installation Guide

Install the appliance according to the instructions detailed in the *Cisco Firepower Management Center Virtual Getting Started Guide* [5].

Cisco FTD Appliance Information

- **CPU**: 8
Install the appliance according to the instructions detailed in the Cisco Firepower Threat Defense Virtual for VMware Getting Started Guide in the “Deploy the Firepower Threat Defense Virtual” chapter [6].

The Cisco Firepower Threat Defense Virtual for VMware Getting Started Guide’s “Managing the Firepower Threat Defense Virtual with the Firepower Management Center” (FMC) chapter covers how we registered the FTD appliance with the FMC [7].

Once the FTD successfully registers with the FMC, it will appear under Devices > Device Management in the FMC interface.
From the Device Management section, the default routes, interfaces, and DHCP settings can be configured. To view general information for the FTD appliance, navigate to Devices > Device Management > FTD-TRPM > Device.
Configure Cisco FTD Interfaces for the RPM Architecture

By default, each of the Interfaces are defined as GigabitEthernet, and are denoted as 0 through 6.
1. From Devices > Device Management > FTD-TRPM > Device, click Interfaces.

2. On the Cisco FTD Interfaces window, an Edit icon appears on the far right. The first
GigabitEthernet interface configured is GigabitEthernet0/0. Click on the Edit icon to configure
the GigabitEthernet interface.

3. The Edit Physical Interface group box displays. Under the General tab, enter WAN in the Name
field.
4. Under **Security Zone**, click the drop-down arrow and select **New**...
5. The New Security Zone pop-up box appears. Enter **WAN** in the **Enter a name...** field.

6. Click **OK**.
7. On the Edit Physical Interface page group box, click the IPv4 tab.
8. Fill out the following information:

 a. **IP Type**: Use Static IP

 b. **IP Address**: 192.168.4.50/24

 c. Click **OK**.
9. Configure each of the other GigabitEthernet interfaces following the same pattern described above, populating the respective IP addresses that correspond to the appropriate VLAN. Values for each VLAN are described below:

 a. GigabitEthernet0/0 (VLAN 1316)
 i. **Name**: WAN
 ii. **Security Zone**: WAN
 iii. **IP Address**: 192.168.4.50/24

 b. GigabitEthernet0/1 (VLAN 1327)
 i. **Name**: Enterprise-Services
 ii. **Security Zone**: Enterprise-Services
 iii. **IP Address**: 192.168.40.1/24

 c. GigabitEthernet0/2 (VLAN 1328)
 i. **Name**: HIS-Services
ii. **Security Zone**: HIS-Services

iii. **IP Address**: 192.168.41.1/24

d. GigabitEthernet0/3 (VLAN 1329)

i. **Name**: Remote-Services

ii. **Security Zone**: Remote-Services

iii. **IP Address**: 192.168.42.1/24

e. GigabitEthernet0/4 (VLAN 1330)

i. **Name**: Databases

ii. **Security Zone**: Databases

iii. **IP Address**: 192.168.43.1/24

f. GigabitEthernet0/5 (VLAN 1347)

i. **Name**: Clinical-Workstations

ii. **Security Zone**: Clinical-Workstations

iii. **IP Address**: 192.168.44.1/24

g. GigabitEthernet0/6 (VLAN 1348)

i. **Name**: Security-Services

ii. **Security Zone**: Security-Services

iii. **IP Address**: 192.168.45.1/24

10. Click **Save**.

11. Click **Deploy**. Verify that the Interfaces have been configured properly. Selecting the Devices tab, the Device Management screen displays the individual interfaces, the assigned logical names, type of interface, security zone labelling, and the assigned IP address network that corresponds to the VLANs that are assigned per security zone.
1. From Devices > Device Management > FTD-TRPM > Interfaces, click DHCP.
2. Click the plus symbol next to Primary DNS Server.
3. The New Network Object popup window appears. Fill out the following information:
 a. Name: Umbrella-DNS-1
 b. Network (Host): 192.168.40.30
4. Click Save.

5. Click the plus symbol next to Secondary DNS Server.

6. The New Network Object popup window appears. Fill out the following information:
 a. **Name:** Umbrella-DNS-2
 b. **Network (Host):** 192.168.40.31

7. Under **Domain Name**, add hdo.trpm.

8. Click **Add Server**.

9. The Add Server popup window appears. Fill out the following information:
 a. **Interface:** Enterprise-Services
b. **Address Pool:** 192.168.40.100-192.168.40.254

c. **Enable DHCP Server:** Checked

10. Click **OK**.

11. Add additional servers following the same pattern described above, populating the respective Interface, Address Pool and check the Enable DHCP Server that correspond to the appropriate server. Values for each server are described below:

a. **Interface:** Enterprise-Services

i. **Address Pool:** 192.168.40.100-192.168.40.254

ii. **Enable DHCP Server:** Checked

b. **Interface:** HIS-Services

i. **Address Pool:** 192.168.41.100-192.168.41.254

ii. **Enable DHCP Server:** Checked

c. **Interface:** Remote-Services

i. **Address Pool:** 192.168.42.100-192.168.42.254

ii. **Enable DHCP Server:** Checked

d. **Interface:** Databases

i. **Address Pool:** 192.168.43.100-192.168.43.254

ii. **Enable DHCP Server:** Checked

e. **Interface:** Clinical-Workstations
12. Click **Save**.

13. Click **Deploy**. Verify that the DHCP servers have been configured properly. Select the **Devices** tab and review the DHCP server configuration settings. Values for **Ping Timeout** and **Lease Length** correspond to default values which were not altered. The **Domain Name** is set to `hdo.trpm`, with values that were set for the primary and secondary DNS servers. Below the DNS server settings, a **Server** tab displays the DHCP address pool that corresponds to each security zone. Under the **Interface** heading, one should view each security zone label that aligns to the assigned **Address Pool** and review that the **Enable DHCP Server** setting appears as a green check mark.
Configure Cisco FTD Static Route

1. From Devices > Device Management > FTD-TRPM > DHCP, click Routing.

2. Click Static Route.
3. Click **Add Route**.

4. The Add Static Route Configuration popup window appears. Fill out the following information:

 a. **Interface**: WAN

 b. **Selected Network**: any-ipv4
5. Click the **plus symbol** next to **Gateway**.

6. The New Network Object popup window appears. Fill out the following information:
 a. **Name**: HDO-Upstream-Gateway
 b. **Network (Host)**: 192.168.4.1

7. Click **Save**.
8. Click OK.
9. Click **Save**.

10. Click **Deploy**. Verify that the static route has been set correctly. From **Devices**, selecting the **Routing** tab, the **Static Route** will indicate the network routing settings. The screen displays the static route settings in a table format that includes values for **Network**, **Interface**, **Gateway**, **Tunneled** and **Metric**. The static route applies to the IP addressing that has been specified, where network traffic traverses the interface. Note the **Gateway** value. The **Tunneled** and **Metric** values display the default value.
Configure Cisco FTD Network Address Translation (NAT)

1. Click Devices > NAT.

2. Click New Policy > Threat Defense NAT.

3. The New Policy popup window appears. Fill out the following information:
 a. Name: TRPM NAT
 b. Selected Devices: FTD-TRPM

4. Click Save.
5. Click the **edit symbol** for **TRPM NAT**.

6. Click **Add Rule**.
The Edit NAT Rule popup window appears. Under **Interface Objects**, fill out the following information:

- **NAT Rule**: Auto NAT Rule
- **Type**: Dynamic
- **Source Interface Objects**: Enterprise-Services
- **Destination Interface Objects**: WAN

Click **Translation**.

Under **Translation**, fill out the following information:

- **Original Source**: Enterprise-Services
- **Translated Source**: Destination Interface IP

Click **OK**.
11. Create additional rules following the same pattern described above, populating the respective information for each rule. Values for each rule are described below:

 a. HIS-Services

 i. **NAT Rule**: Auto NAT Rule

 ii. **Type**: Dynamic

 iii. **Source Interface Objects**: HIS-Services

 iv. **Destination Interface Objects**: WAN

 v. **Original Source**: HIS-Services

 vi. **Translated Source**: Destination Interface IP

 b. Remote-Services

 i. **NAT Rule**: Auto NAT Rule

 ii. **Type**: Dynamic

 iii. **Source Interface Objects**: Remote-Services

 iv. **Destination Interface Objects**: WAN

 v. **Original Source**: Remote-Services

 vi. **Translated Source**: Destination Interface IP
c. Databases
 i. **NAT Rule:** Auto NAT Rule
 ii. **Type:** Dynamic
 iii. **Source Interface Objects:** Databases
 iv. **Destination Interface Objects:** WAN
 v. **Original Source:** Databases
 vi. **Translated Source:** Destination Interface IP

d. Clinical-Workstations
 i. **NAT Rule:** Auto NAT Rule
 ii. **Type:** Dynamic
 iii. **Source Interface Objects:** Clinical-Workstations
 iv. **Destination Interface Objects:** WAN
 v. **Original Source:** Clinical-Workstations
 vi. **Translated Source:** Destination Interface IP

e. Security-Services
 i. **NAT Rule:** Auto NAT Rule
 ii. **Type:** Dynamic
 iii. **Source Interface Objects:** Security-Services
 iv. **Destination Interface Objects:** WAN
 v. **Original Source:** Security-Services
 vi. **Translated Source:** Destination Interface IP

12. Click **Save**.

13. Click **Deploy**. Verify the NAT settings through the **Devices** screen. The **NAT** rules are displayed in a table format. The table includes values for **Direction** of the NAT displayed as a directional arrow, the **NAT Type**, the **Source Interface Objects** (i.e. the security zone IP networks), the **Destination Interface Objects**, the **Original Sources** (i.e. these addresses correspond to the IP network from where the network traffic originates), the **Translated Sources**, and **Options**. The
settings indicate that IP addresses from the configured security zones are translated behind the Interface IP address.

Configure Cisco FTD Access Control Policy

1. Click Policies > Access Control > Access Control.

2. Click the edit symbol for Default-TRPM.

3. Click Add Category.
4. Fill out the following information:
 a. **Name:** Security Services
 b. **Insert:** into Mandatory

5. Click **OK.**

![Add Category](image)

6. Repeat the previous steps of **Add Category** section for each network segment in the architecture.

7. Click **Add Rule.**

![Add Rule](image)

8. The **Add Rule** screen appears, fill out the following information:
 a. **Name:** Nessus-Tenable
 b. **Action:** Allow
 c. **Insert:** into Category, Security Services
 d. Under **Networks,** click the **plus symbol** next to **Available Networks,** and select **Add Object.**
9. The New Network Object pop-up window appears, fill out the following information:
 a. **Name:** Tenable.sc
 b. **Network (Host):** 192.168.45.101

10. Click **Save.**

11. In the Add Rule screen, under the **Networks** tab, set **Destination Networks** to Tenable.sc.

12. Click **Ports.**
13. In the Add Rule screen, under the Ports tab, set **Selected Destination Ports** to 8834.

14. Click **Add**.

15. Repeat the previous steps for any network requirement rules if necessary.

16. Click **Save**.

17. Click **Deploy**.

2.2.3 Security Continuous Monitoring

This practice guide implemented a set of tools that include Cisco Stealthwatch, Cisco Umbrella, and LogRhythm to address security continuous monitoring. This practice guide uses Cisco Stealthwatch for...
NetFlow analysis. Cisco Umbrella is a service used for DNS-layer monitoring. The LogRhythm tools aggregate log file information from across the HDO infrastructure and allow behavioral analytics.

2.2.3.1 Cisco Stealthwatch

Cisco Stealthwatch provides network visibility and analysis through network telemetry. This project integrates Cisco Stealthwatch with Cisco Firepower, sending NetFlow directly from the Cisco FTD appliance to a Stealthwatch Flow Collector (SFC) for analysis.

Cisco Stealthwatch Management Center (SMC) Appliance Information

- **CPU:** 4
- **RAM:** 16 GB
- **Storage:** 200 GB (Thick Provision)
- **Network Adapter 1:** VLAN 1348
- **Operating System:** Linux

Cisco SMC Appliance Installation Guide

Install the appliance according to the instructions detailed in the *Cisco Stealthwatch Installation and Configuration Guide 7.1* [8].

Cisco SFC Appliance Information

- **CPU:** 4
- **RAM:** 16 GB
- **Storage:** 300 GB (Thick Provision)
- **Network Adapter 1:** VLAN 1348
- **Operating System:** Linux

Cisco SFC Appliance Installation Guide

Install the appliance according to the instructions detailed in the *Cisco Stealthwatch Installation and Configuration Guide 7.1* [8].

Accept the default port value 2055 for NetFlow.

Configure Cisco FTD NetFlow for Cisco SFC

1. Click Objects > Object Management > FlexConfig > Text Object.
2. In the search box, type **netflow**.

3. Click the **edit symbol** for **netflow_Destination**.

4. The Edit Text Object popup window appears, fill out the following information:
 a. **Count**: 3
 b. **1**: Security Services
 c. **2**: 192.168.45.31
 d. **3**: 2055
 e. **Allow Overrides**: Checked

5. Click **Save**.
6. Click the **edit symbol** for `netflow_Event_Types`.

```plaintext
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Security-Services</td>
</tr>
<tr>
<td>2</td>
<td>192.168.45.31</td>
</tr>
<tr>
<td>3</td>
<td>2055</td>
</tr>
</tbody>
</table>
```
7. The Edit Text Object popup window appears, fill out the following information:
 a. **Count:** 1
 b. **1:** All
 c. **Allow Overrides:** Checked

8. Click **Save.**
9. Click Devices > FlexConfig.

10. Click New Policy.

11. The New Policy screen appears, fill out the following information:
 a. Name: FTD-FlexConfig
 b. Selected Devices: FTD-TRPM

12. Click Save.
13. Click the edit symbol for FTD-FlexConfig.

14. Under the Devices tab, select Netflow_Add_Destination and Netflow_Set_Parameters.

15. Click the right-arrow symbol to move the selections to the Selected Append FlexConfigs section.
16. Click **Save**.

17. Click **Deploy**. From the **Devices** screen, verify the **FlexConfig** settings. Select the **FlexConfig** tab. The **NetFlow** configurations appear in the lower right of the screen as a table. Under **Selected Append FlexConfigs**, the table includes columns labelled # which corresponds to the number of configurations that have been made, **Name** and **Description**.
Creating a Custom Policy Management Rule

1. Click Configure > Policy Management.

2. Click Create New Policy > Role Policy.
3. Give the policy a **name** and **description**.

4. Under **Host Groups**, click the **plus symbol**.

5. Under **Outside Hosts**, select **Eastern Asia** and **Eastern Europe**.

6. Click **Apply**.
7. Under Core Events, click Select Events.
889 8. Select Recon.
890 9. Click Apply.
10. Under Core Events > Recon > When Host is Source, select On + Alarm.

11. Click the expand arrow next to Recon.

12. Select Behavioral and Threshold.
13. Click Save.
2.2.3.2 Cisco Umbrella

Cisco Umbrella is a cloud service that provides protection through DNS-layer security. Engineers deployed two Umbrella virtual appliances in the HDO to provide DNS routing and protection from malicious web services.

Cisco Umbrella Forwarder Appliance Information

- **CPU:** 1
- **RAM:** 0.5 GB
- **Storage:** 6.5 GB (Thick Provision)
- **Network Adapter 1:** VLAN 1327
- **Operating System:** Linux

Cisco Umbrella Forwarder Appliance Installation Guide

Install the appliance according to the instructions detailed in Cisco’s Deploy VAs in VMware guidance [9].

Create an Umbrella Site

1. Click Deployments > Configuration > Sites and Active Directory.
2. Click Settings.
3. Click Add New Site.
4. In the Add New Site popup window, set Name to HDO.

5. Click Save.

6. Click Deployments > Configuration > Sites and Active Directory.

7. Click the edit symbol for the Site of forwarder-1.

8. Under Site, select HDO.

9. Click Save.
10. Repeat the previous steps for **forwarder-2**.

Configure an Umbrella Policy

1. Click **Policies > Management > All Policies**.

2. Click **Add**.

3. Expand the **Sites** identity.
4. Select HDO.

5. Click Next.
6. Click **Next**.

What should this policy do?

Choose the policy components that you’d like to enable.

- **Enforce Security at the DNS Layer**
 Ensure domains are blocked when they host malware, command and control, phishing, and more.

- **Inspect Files**
 Selectively inspect files for malicious content using antivirus signatures and Cisco Advanced Malware Protection.

- **Limit Content Access**
 Block or allow sites based on their content, such as file sharing, gambling, or blogging.

- **Control Applications**
 Block or allow applications and application groups for identities using this policy.

- **Apply Destination Lists**
 Lists of destinations that can be explicitly blocked or allowed for any identities using this policy.

- **Advanced Settings**
7. Click Next.

Security Settings
Ensure identities using this policy are protected by selecting or creating a security setting. Click Edit Setting to make changes to any existing settings, or select Add New Setting from the dropdown menu.

Select Setting
Default Settings

Categories To Block
Malware
Websites and other servers that host malicious software, drive-by downloads/exploits, mobile threats and more.

Newly Seen Domains
Domains that have become active very recently. These are often used in new attacks.

Command and Control Callbacks
Prevent compromised devices from communicating with attackers’ infrastructure.

Phishing Attacks
Fraudulent websites that aim to trick users into handing over personal or financial information.

Dynamic DNS
Block sites that are hosting dynamic DNS content.

Potentially Harmful Domains
Domains that exhibit suspicious behavior and may be part of an attack.

DNS Tunneling VPN
VPN services that allow users to disguise their traffic by tunneling it through the DNS protocol. These can be used to bypass corporate policies regarding access and data transfer.

Cryptomining
Cryptomining allows organizations to control cryptominer access to mining pools and web miners.

8. Select Moderate.

9. Click Next.
10. Under Application Settings, use the drop-down menu to select Create New Setting.

11. Under the Control Applications screen, fill out the following information:
a. **Name:** HDO Application Control

b. **Applications to Control:** Cloud Storage

12. Click **Save.**

13. Click **Next.**
14. Click **Next**.
15. Click **Next**.

16. Click **Next**.
17. In the Policy Summary screen, set the **Name** to **HDO Site Policy**.

18. Click **Save**.
Configure Windows Domain Controller as the Local DNS Provider

1. Click Deployments > Configuration > Domain Management.
2. Click Add.
3. Add New Bypass Domain or Server popup window appears, fill out the following information:
 a. **Domain:** hdo.trpm
 b. **Applies To:** All Sites, All Devices

4. Click **Save.** Verify the rule for the `hdo.trpm` has been added.
LogRhythm XDR (Extended Detection and Response)

LogRhythm XDR is a SIEM system that receives log and machine data from multiple end points and evaluates the data to determine when cybersecurity events occur. The project utilizes LogRhythm XDR in
the HDO environment to enable a continuous view of business operations and detect cyber threats on assets.

System Requirements

CPU: 20 virtual central processing unit (vCPU)

Memory: 96 GB RAM

Storage:

- **hard drive C:** 220 GB
- **hard drive D:** 1 terabyte (TB)
- **hard drive L:** 150 GB

Operating System: Microsoft Windows Server 2016 X64 Standard Edition

Network Adapter: VLAN 1348

LogRhythm XDR Installation

This section describes LogRhythm installation processes.

Download Installation Packages

1. Acquire the installation packages from LogRhythm, Inc.
2. Prepare a virtual Windows Server per the system requirements.
3. Create three new drives.
4. Create a new folder from C:\ on the Platform Manager server and name the folder LogRhythm.
5. Extract the provided Database Installer tool and LogRhythm XDR Wizard from the installation package in C:\LogRhythm.

Install Database

1. Open LogRhythmDatabaseInstallTool folder.
2. Double-click LogRhythmDatabaseInstallTool application file.
3. Click Run.
4. A LogRhythm Database Setup window will appear. Provide the following information:
 a. Which setup is this for?: PM
 b. Disk Usage:
5. The remaining fields will automatically populate with the appropriate values. Click **Install**.

6. Click **Done** to close the **LogRhythm Database Setup** window.

Install LogRhythm XDR

1. Navigate to `C:\` and open **LogRhythm XDR Wizard** folder.

2. Double-click the **LogRhythmInstallerWizard** application file.

3. The LogRhythm Install Wizard 7.4.8 window will appear.

4. Click **Next**.

5. A **LogRhythm Install Wizard Confirmation** window will appear.

6. Click **Yes** to continue.

7. Check the box beside **I accept the terms in the license agreement** to accept the License Agreement.

8. Click **Next**.
9. In the **Selected Applications** window, select the following attributes:

 a. **Configuration**: Select the XM radio button.

 b. **Optional Applications**: Check both **AI Engine** and **Web Console** boxes.

10. Click **Install**.

11. A **LogRhythm Deployment Tool** window displays.

12. Click **Configure New Deployment**.
13. In the Deployment Properties window, keep the default configurations and click Ok.
14. Click **Add Host IP** in the bottom right corner of the screen, and provide the following information:

 a. **IP Address**: 192.168.45.20
 b. **Nickname**: XM

15. Click **Save**.
16. Click **Create Deployment Package** in the bottom right corner of the screen.

17. A Create Deployment Package window displays.

18. Click **Create Deployment Package**.

19. A Select Folder window appears.

20. Navigate to **C:\LogRhythm**.

21. Click **Select Folder**.
22. Click **Next Step**.

23. Click **Run Host Installer on this Host**.
24. After the Host Installer has finished, click **Verify Status**.

25. Click **Exit to Install Wizard**.
26. A notification window displays stating the installation could take up to 30 minutes. Click OK.
27. After the Install Wizard has successfully installed the services, click **Exit**.
LogRhythm XDR Configuration

The LogRhythm XDR configuration includes multiple related components:

- System Monitor
- LogRhythm Artificial Intelligence (AI) Engine
- Mediator Server
- Job Manager
- LogRhythm Console

Configure System Monitor

1. Open File Explorer and navigate to C:\Program Files\LogRhythm.
3. Double-click the lrconfig application file.
4. In the LogRhythm System Monitor Local Configuration Manager window, provide the following information and leave the remaining fields as their default values:
 a. Data Processor Address: 192.168.45.20
 b. System Monitor IP Address/Index: 192.168.45.20
5. Click Apply, and then click OK.
 Configure LogRhythm AI Engine

1. Open File Explorer and navigate to C:\Program Files\LogRhythm.
2. Navigate to LogRhythm AI Engine.
3. Double-click the lrconfig application file.
4. In the LogRhythm AI Engine Local Configuration Manager window, provide the following information, and leave the remaining fields as their default values:
 a. Server: 192.168.45.20
 b. Password: *********
5. Click Test Connection, then follow the instruction of the alert window to complete the test connection.
6. Click Apply, and then click OK.
Configure Mediator Server

1. Open File Explorer and navigate to C:\Program Files\LogRhythm.
4. In the LogRhythm Data Processor Local Configuration Manager window, provide the following information, and leave the remaining fields as their default values:
 a. Server: 192.168.45.20
 b. Password: **********
5. Click **Test Connection**, then follow the instruction of the alert window to complete the test connection.

6. Click **Apply**, and then click **OK**.

Configure Job Manager
1. Open File Explorer and navigate to `C:\Program Files\LogRhythm`.

2. Navigate to **Job Manager**.

3. Double-click the **lrconfig** application file.

4. In the **LogRhythm Platform Manager Local Configuration Manager** window, provide the following information, and leave the remaining fields as their default values:
 a. **Server**: 192.168.45.20
 b. **Password**: ********

5. Click **Test Connection**, then follow the instruction of the alert window to complete the test connection.

6. Click **Apply**, and then click **OK**.
7. Navigate to the **Alarming and Response Manager** tab in the bottom menu ribbon.

8. In the **Alarming and Response Manager** window, provide the following information, and leave the remaining fields as their default values:

 a. **Server**: 192.168.45.20
b. **Password:** **********

9. Click **Test Connection**, then follow the instruction of the alert window to complete the test connection.

10. Click **Apply**, and then click **OK**.
Configure LogRhythm Console

1. Open File Explorer and navigate to **C:\Program Files\LogRhythm**.

2. Navigate to **LogRhythm Console**.

4. In the LogRhythm Login window, provide the following information:
 a. **EMDB Server**: 192.168.45.20
 b. **UserID**: LogRhythmAdmin
 c. **Password**: ********

5. Click **OK**.

6. A New Platform Manager Deployment Wizard window displays. Provide the following information:
 a. **Windows host name for Platform Manager**: LogRhythm-XDR
 b. **IP Address for Platform Manager**: 192.168.45.20
 c. Check the box next to **The Platform Manager is also a Data Processor (e.g., an XM appliance)**.
d. Check the box next to **The Platform Manager is also an AI Engine Server.**

7. Click the **ellipsis button** next to `<Path to LogRhythm License File>` and navigate to the location of the LogRhythm License File.

8. The New Knowledge Base Deployment Wizard window displays and shows the import progress status. Once LogRhythm has successfully imported the file, a message window will appear stating more configurations need to be made for optimum performance. Click **OK** to open the **Platform Manager Properties** window.

9. In the Platform Manager Properties window, provide the following information:
 a. **Email address:** no_reply@logrhythm.com
 b. **Address:** 192.168.45.20

10. Click the button next to **Platform**, enable the **Custom Platform** radio button, and complete the process by clicking **Apply**, followed by clicking **OK**.
11. After the Platform Manager Properties window closes, a message window displays for configuring the Data Processor. Click OK to open the Data Processor Properties window.

12. Click the button next to Platform and enable the Custom Platform radio button.

13. Click OK.

14. Leave the remaining fields in the Data Processor Properties window as their default values and click Apply.

15. Click OK to close the window.
Set LogRhythm-XDR for System Monitor

1. Back in the LogRhythm console, navigate to the Deployment Manager tab in the menu ribbon.
2. Navigate to System Monitors on the Deployment Manager menu ribbon.
3. Double-click LogRhythm-XDR.
4. In the **System Monitor Agent Properties** window, navigate to **Syslog and Flow Settings**.

5. Click the checkbox beside **Enable Syslog Server**.

6. Click **OK** to close the System Monitor Agent Properties window.

Use the LogRhythm Web Console

1. Open a web browser and navigate to https://localhost:8443.
2. Enter the **Username**: logrhythmadmin
3. Enter the **Password**: ********

2.2.3.4 LogRhythm NetworkXDR

LogRhythm NetworkXDR paired with LogRhythm XDR enables an environment to monitor network traffic between endpoints and helps suggest remediation techniques for identified concerns. This project utilizes NetworkXDR for continuous visibility on network traffic between HDO VLANs and incoming traffic from the telehealth platform provider.

System Requirements

CPU: 24 vCPU

Memory: 64 GB RAM

Storage:
- Operating System Hard Drive: 220 GB
- Data Hard Drive: 3 TB
- Operating System: CentOS 7

Network Adapter: VLAN 1348

LogRhythm NetworkXDR Installation

LogRhythm provides an International Organization for Standardization (.iso) disk image to simplify installation of NetMon. The .iso is a bootable image that installs CentOS 7.7 Minimal and NetMon. Note: Because this is an installation on a Linux box, there is no need to capture the screenshots.
Download the Installation Software

2. Log in using the appropriate credentials.
3. Click **LogRhythm Community**.
4. Navigate to **Documentation & Downloads**.
5. Register a **Username**.
6. Click **Accept**.
7. Click **Submit**.
8. Navigate to **NetMon**.
9. Click **downloads: netmon4.0.2**.
10. Select **NetMon ISO** under Installation Files.

Create a New Firewall Rule

NetMon communicates over TCP 443. The lab environment was configured to allow network sessions connecting to the LogRhythm agent.

Install LogRhythm NetworkXDR

1. In the host server, mount the .iso for the installation.
2. Start the VM with the mounted .iso.
3. When the welcome screen loads, select **Install LogRhythm Network Monitor**.
4. The installer completes the installation, and the system reboots.
5. When the system reboots, log in to the console by using **logrhythm** as the login and ****** as the password.
6. Then change the password by typing the command `passwd`, type the default password, and then type and verify the new password.

LogRhythm NetworkXDR Configuration

1. **Data Process Address**: 192.168.45.20
2. Click **Apply**.
3. Click the **Windows Service** tab.

4. Change the **Service Type** to **Automatic**.

5. Click **Apply**.
6. Click the Log File tab.

7. Click Refresh to ensure NetworkXDR log collection.

8. Click OK to exit the Local Configuration Manager.
2.2.3.5 LogRhythm System Monitor Agent

LogRhythm System Monitor Agent is a component of LogRhythm XDR that receives end-point log files and machine data in an IT infrastructure. The system monitor transmits ingested data to LogRhythm XDR where a web-based dashboard displays any identified cyber threats. This project deploys LogRhythm's System Monitor Agents on end points in each identified VLAN.

Install the LogRhythm System Monitor Agent on one of the end points (e.g., Clinical Workstation) in the HDO environment so that the LogRhythm XDR can monitor the logs, such as syslog and eventlog, of this workstation.

System Monitor Agent Installation
This section describes installation of the system monitor agent.

Download Installation Packages

1. Using a Clinical Workstation, open a web browser.
3. Log in using the credentials made when installing and configuring LogRhythm XDR.
4. Navigate to LogRhythm Community.
5. Click Documents & Downloads.
6. Click SysMon.
7. Click SysMon – 7.4.10.
8. Click Windows System Monitor Agents and save to the Downloads folder on the Workstation.

Install System Monitor Agent

1. On the Workstation, navigate to Downloads folder.
2. Click LRWindowsSystemMonitorAgents.
3. Click LRSystemMonitor_64_7.
4. On the Welcome page, follow the Wizard, and click Next...
5. On the ready to begin installation page, click **Install**.

6. Click **Finish**.

System Monitor Agent Configuration

1. After exiting the LogRhythm System Monitor Service Install Wizard, a LogRhythm System Monitor Local Configuration window displays. Under the **General** tab, provide the following information:
a. **Data Process Address:** 192.168.45.20

b. **System Monitor IP Address/Index:** 192.168.45.20

2. Click **Apply**.

3. Click the **Windows Service** tab.

4. Change the **Service Type** to **Automatic**.

5. Click **Apply**.
6. Click the Log File tab.

7. Click Refresh to ensure NetworkXDR log collection.

8. Click OK to exit the Local Configuration Manager.
Add Workstation for System Monitor

Engineers added Clinical Workstation for System Monitor and Set Its Message Source Types in the LogRhythm Deployment Manager.

1. Log in to the LogRhythm Console.
 a. User ID: LogRhythmAdmin
 b. Password: **********
2. Navigate to the Deployment Manager in the menu ribbon.

3. Under the Entity tab on the Deployment Manager menu ribbon.

4. Click New to open the Host pop-up window, and enter the following under the Basic Information tab:
 a. Name: ClinicalWS
 b. Host Zone: Internal
5. Navigate to the **Identifiers** tab, provide the following information in the appropriate fields, and click **Add**.

 a. **IP Address**: 192.168.44.251

 b. **Windows Name**: clinicalws (Windows Name)
6. Add the ClinicalWS as a new system monitor agent by navigating to the System Monitors tab, right-clicking in the empty space, and selecting New.

7. In the System Monitor Agent Properties window, click the button next to Host Agent is Installed on, and select Primary Site: ClinicalWS.
8. Go to System Monitors.
9. Double-click ClinicalWS.
10. Under LogSource of the System Monitor Agent Property window, right-click in the empty space, and select New. The Log Message Source Property window will open.
11. Under the Log Message Source Property window, click the button associated with Log Message Source Type. It will open the Log Source Selector window.
12. In the text box to the right of the Log Source Selector window, type XML, and click Apply.
13. Select the Log Source Type and click OK.
Appendix A List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Active Directory</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name Service</td>
</tr>
<tr>
<td>FMC</td>
<td>Firepower Management Center</td>
</tr>
<tr>
<td>FTD</td>
<td>Firepower Threat Defense</td>
</tr>
<tr>
<td>GB</td>
<td>Gigabyte</td>
</tr>
<tr>
<td>HDO</td>
<td>Healthcare Delivery Organization</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>NAT</td>
<td>Network Address Translation</td>
</tr>
<tr>
<td>NCCoE</td>
<td>National Cybersecurity Center of Excellence</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>OVA</td>
<td>Open Virtual Appliance or Application</td>
</tr>
<tr>
<td>PACS</td>
<td>Picture Archiving and Communication System</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RPM</td>
<td>Remote Patient Monitoring</td>
</tr>
<tr>
<td>SFC</td>
<td>Stealthwatch Flow Collector</td>
</tr>
<tr>
<td>SIEM</td>
<td>Security Incident Event Management</td>
</tr>
<tr>
<td>SMC</td>
<td>Stealthwatch Management Center</td>
</tr>
<tr>
<td>SP</td>
<td>Special Publication</td>
</tr>
<tr>
<td>TB</td>
<td>Terabyte</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
<tr>
<td>vCPU</td>
<td>Virtual Central Processing Unit</td>
</tr>
<tr>
<td>VLAN</td>
<td>Virtual Local Area Network</td>
</tr>
<tr>
<td>VM</td>
<td>Virtual Machine</td>
</tr>
<tr>
<td>XDR</td>
<td>Extended Detection and Response</td>
</tr>
</tbody>
</table>
Appendix B References

