
DRAFT

NIST SPECIAL PUBLICATION 1800-15C

Securing Small-Business and Home
Internet of Things (IoT) Devices:
Mitigating Network-Based Attacks Using Manufacturer
Usage Description (MUD)

Volume C:
How-To Guides

Mudumbai Ranganathan
NIST

Steve Johnson
Ashwini Kadam
Craig Pratt
Darshak Thakore
CableLabs

Eliot Lear
Cisco

William C. Barker
Dakota Consulting

 Adnan Baykal
Global Cyber Alliance

Drew Cohen
Kevin Yeich
MasterPeace Solutions

Yemi Fashina
Parisa Grayeli
Joshua Harrington
Joshua Klosterman
Blaine Mulugeta
Susan Symington
The MITRE Corporation

September 2020

DRAFT

This publication is available free of charge from:
https://www.nccoe.nist.gov/projects/building-blocks/mitigating-iot-based-ddos

https://www.nccoe.nist.gov/projects/building-blocks/mitigating-iot-based-ddos

DRAFT

DISCLAIMER 1

Certain commercial entities, equipment, products, or materials may be identified by name or company 2
logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 3
experimental procedure or concept adequately. Such identification is not intended to imply special 4
status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it 5
intended to imply that the entities, equipment, products, or materials are necessarily the best available 6
for the purpose. 7

National Institute of Standards and Technology Special Publication 1800-15C, Natl. Inst. Stand. Technol. 8
Spec. Publ. 1800-15C, 273 pages, (September 2020), CODEN: NSPUE2 9

FEEDBACK 10

You can improve this guide by contributing feedback. As you review and adopt this solution for your 11
own organization, we ask you and your colleagues to share your experience and advice with us. 12

Comments on this publication may be submitted to: mitigating-iot-ddos-nccoe@nist.gov. 13

Public comment period: September 16, 2020 through October 16, 2020 14

All comments are subject to release under the Freedom of Information Act. 15

National Cybersecurity Center of Excellence 16
National Institute of Standards and Technology 17

100 Bureau Drive 18
Mailstop 2002 19

Gaithersburg, MD 20899 20
Email: nccoe@nist.gov 21

mailto:mitigating-iot-ddos-nccoe@nist.gov
mailto:nccoe@nist.gov

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices iii

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE 22

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards 23
and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and 24
academic institutions work together to address businesses’ most pressing cybersecurity issues. This 25
public-private partnership enables the creation of practical cybersecurity solutions for specific 26
industries, as well as for broad, cross-sector technology challenges. Through consortia under 27
Cooperative Research and Development Agreements (CRADAs), including technology partners—from 28
Fortune 50 market leaders to smaller companies specializing in information technology security—the 29
NCCoE applies standards and best practices to develop modular, easily adaptable example cybersecurity 30
solutions using commercially available technology. The NCCoE documents these example solutions in 31
the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework 32
and details the steps needed for another entity to re-create the example solution. The NCCoE was 33
established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, 34
Maryland. 35

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit 36
https://www.nist.gov. 37

NIST CYBERSECURITY PRACTICE GUIDES 38

NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity 39
challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the 40
adoption of standards-based approaches to cybersecurity. They show members of the information 41
security community how to implement example solutions that help them align more easily with relevant 42
standards and best practices, and provide users with the materials lists, configuration files, and other 43
information they need to implement a similar approach. 44

The documents in this series describe example implementations of cybersecurity practices that 45
businesses and other organizations may voluntarily adopt. These documents do not describe regulations 46
or mandatory practices, nor do they carry statutory authority. 47

ABSTRACT 48

The goal of the Internet Engineering Task Force’s Manufacturer Usage Description (MUD) architecture is 49
for Internet of Things (IoT) devices to behave as intended by the manufacturers of the devices. This is 50
done by providing a standard way for manufacturers to indicate the network communications that a 51
device requires to perform its intended function. When MUD is used, the network will automatically 52
permit the IoT device to send and receive only the traffic it requires to perform as intended, and the 53
network will prohibit all other communication with the device, thereby increasing the device’s resilience 54
to network-based attacks. In this project, the NCCoE has demonstrated the ability to ensure that when 55
an IoT device connects to a home or small-business network, MUD can be used to automatically permit 56

https://www.nccoe.nist.gov/
https://www.nist.gov/
https://tools.ietf.org/html/rfc8520

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices iv

the device to send and receive only the traffic it requires to perform its intended function. This NIST 57
Cybersecurity Practice Guide explains how MUD protocols and tools can reduce the vulnerability of IoT 58
devices to botnets and other network-based threats as well as reduce the potential for harm from 59
exploited IoT devices. It also shows IoT device developers and manufacturers, network equipment 60
developers and manufacturers, and service providers who employ MUD-capable components how to 61
integrate and use MUD to satisfy IoT users’ security requirements. 62

KEYWORDS 63

access control; bootstrapping; botnets; firewall rules; flow rules; Internet of Things; IoT; Manufacturer 64
Usage Description; MUD; network segment; onboarding; router; server; threat signaling; update server; 65
Wi-Fi Easy Connect. 66

DOCUMENT CONVENTIONS 67

The terms “shall” and “shall not” indicate requirements to be followed strictly to conform to the 68
publication and from which no deviation is permitted. 69

The terms “should” and “should not” indicate that among several possibilities, one is recommended as 70
particularly suitable without mentioning or excluding others or that a certain course of action is 71
preferred but not necessarily required or that (in the negative form) a certain possibility or course of 72
action is discouraged but not prohibited. 73

The terms “may” and “need not” indicate a course of action permissible within the limits of the 74
publication. 75

The terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or causal. 76

Acronyms used in figures can be found in the Acronyms appendix. 77

CALL FOR PATENT CLAIMS 78

This public review includes a call for information on essential patent claims (claims whose use would be 79
required for compliance with the guidance or requirements in this Information Technology Laboratory 80
[ITL] draft publication). Such guidance and/or requirements may be directly stated in this ITL publication 81
or by reference to another publication. This call also includes disclosure, where known, of the existence 82
of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant 83
unexpired U.S. or foreign patents. 84

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 85
written or electronic form, either: 86

1. assurance in the form of a general disclaimer to the effect that such party does not hold and 87
does not currently intend holding any essential patent claim(s); or 88

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices v

2. assurance that a license to such essential patent claim(s) will be made available to appli-89
cants desiring to utilize the license for the purpose of complying with the guidance or re-90
quirements in this ITL draft publication either: 91

a. under reasonable terms and conditions that are demonstrably free of any unfair dis-92
crimination or 93

b. without compensation and under reasonable terms and conditions that are demon-94
strably free of any unfair discrimination. 95

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its 96
behalf) will include in any documents transferring ownership of patents subject to the assurance, 97
provisions sufficient to ensure that the commitments in the assurance are binding on the transferee, 98
and that the transferee will similarly include appropriate provisions in the event of future transfers with 99
the goal of binding each successor-in-interest. 100

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of 101
whether such provisions are included in the relevant transfer documents. 102

Such statements should be addressed to mitigating-iot-ddos-nccoe@nist.gov 103

ACKNOWLEDGMENTS 104

We are grateful to the following individuals for their generous contributions of expertise and time. 105

Name Organization

Allaukik Abhishek Arm

Michael Bartling Arm

Mark Walker CableLabs

Tao Wan CableLabs

Russ Gyurek Cisco

Peter Romness Cisco

Brian Weis Cisco

mailto:mitigating-iot-ddos-nccoe@nist.gov

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices vi

Name Organization

Rob Cantu CTIA

Dean Coclin DigiCert

Avesta Hojjati DigiCert

Clint Wilson DigiCert

Katherine Gronberg Forescout

Tim Jones Forescout

Rae'-Mar Horne MasterPeace Solutions, Ltd.

Nate Lesser MasterPeace Solutions, Ltd.

Tom Martz MasterPeace Solutions, Ltd.

Daniel Weller MasterPeace Solutions, Ltd.

Nancy Correll The MITRE Corporation

Sallie Edwards The MITRE Corporation

Drew Keller The MITRE Corporation

Sarah Kinling The MITRE Corporation

Karri Meldorf The MITRE Corporation

Mary Raguso The MITRE Corporation

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices vii

Name Organization

Allen Tan The MITRE Corporation

Mo Alhroub Molex

Jaideep Singh Molex

Bill Haag NIST

Tim Polk NIST

Murugiah Souppaya NIST

Paul Watrobski NIST

Bryan Dubois Patton Electronics

Stephen Ochs Patton Electronics

Karen Scarfone Scarfone Cybersecurity

Matt Boucher Symantec

Petros Efstathopoulos Symantec

Bruce McCorkendale Symantec

Susanta Nanda Symantec

Yun Shen Symantec

Pierre-Antoine Vervier Symantec

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices viii

Name Organization

John Bambenek ThreatSTOP

Russ Housley Vigil Security

The Technology Partners/Collaborators who participated in this build submitted their capabilities in 106
response to a notice in the Federal Register. Respondents with relevant capabilities or product 107
components were invited to sign a Cooperative Research and Development Agreement (CRADA) with 108
NIST, allowing them to participate in a consortium to build this example solution. We worked with: 109

Technology Partner/Collaborator Build Involvement

Arm Subject matter expertise

CableLabs Micronets Gateway
Micronets cloud infrastructure
Prototype IoT devices–Raspberry Pi with Wi-Fi Easy Con-
nect support
Micronets mobile application

Cisco Cisco Catalyst 3850S
MUD manager

CTIA Subject matter expertise

DigiCert Private Transport Layer Security certificate
Premium Certificate

Forescout Forescout appliance–VCT-R
Enterprise manager–VCEM-05

Global Cyber Alliance Quad9 DNS service, Quad9 Threat Application
Programming Interface

ThreatSTOP threat MUD file server

MasterPeace Solutions Yikes! router
Yikes! cloud
Yikes! mobile application

https://www.arm.com/
https://www.cablelabs.com/
https://www.cisco.com/
https://www.ctia.org/
https://www.digicert.com/
https://www.forescout.com/
https://www.globalcyberalliance.org/
https://www.masterpeaceltd.com/

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices ix

Technology Partner/Collaborator Build Involvement

Molex Molex light-emitting diode light bar
Molex Power over Ethernet Gateway

Patton Electronics Subject matter expertise

Symantec Subject matter expertise

https://www.molex.com/molex/home
https://www.patton.com/
https://www.symantec.com/

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices x

Contents 110

1 Introduction ... 1 111

1.1 How to Use this Guide ... 1 112

1.2 Build Overview .. 2 113

1.2.1 Usage Scenarios .. 3 114

1.2.2 Reference Architecture Overview ... 3 115

1.2.3 Physical Architecture Overview .. 7 116

1.3 Typographic Conventions .. 9 117

2 Build 1 Product Installation Guides .. 9 118

2.1 Cisco MUD Manager .. 9 119

2.1.1 Cisco MUD Manager Overview ... 9 120

2.1.2 Cisco MUD Manager Configurations ... 10 121

2.1.3 Setup ... 11 122

2.2 MUD File Server ... 22 123

2.2.1 MUD File Server Overview .. 22 124

2.2.2 Configuration Overview .. 22 125

2.2.3 Setup ... 22 126

2.3 Cisco Switch–Catalyst 3850-S .. 30 127

2.3.1 Cisco 3850-S Catalyst Switch Overview .. 30 128

2.3.2 Configuration Overview .. 31 129

2.3.3 Setup ... 33 130

2.4 DigiCert Certificates ... 37 131

2.4.1 DigiCert CertCentral® Overview .. 37 132

2.4.2 Configuration Overview .. 37 133

2.4.3 Setup ... 37 134

2.5 IoT Devices ... 38 135

2.5.1 Molex PoE Gateway and Light Engine .. 38 136

2.5.2 IoT Development Kits–Linux Based ... 38 137

2.5.3 IoT Development Kit–u-blox C027-G35 .. 42 138

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices xi

2.5.4 IoT Devices–Non-MUD-Capable ... 47 139

2.6 Update Server .. 48 140

2.6.1 Update Server Overview ... 48 141

2.6.2 Configuration Overview .. 48 142

2.6.3 Setup ... 48 143

2.7 Unapproved Server ... 49 144

2.7.1 Unapproved Server Overview ... 49 145

2.7.2 Configuration Overview .. 49 146

2.7.3 Setup ... 50 147

2.8 MQTT Broker Server .. 50 148

2.8.1 MQTT Broker Server Overview ... 50 149

2.8.2 Configuration Overview .. 50 150

2.8.3 Setup ... 51 151

2.9 Forescout–IoT Device Discovery ... 51 152

2.9.1 Forescout Overview .. 51 153

2.9.2 Configuration Overview .. 51 154

2.9.3 Setup ... 52 155

3 Build 2 Product Installation Guides .. 53 156

3.1 Yikes! MUD Manager... 53 157

3.1.1 Yikes! MUD Manager Overview .. 53 158

3.1.2 Configuration Overview .. 53 159

3.1.3 Setup ... 53 160

3.2 MUD File Server ... 54 161

3.2.1 MUD File Server Overview .. 54 162

3.3 Yikes! DHCP Server .. 54 163

3.3.1 Yikes! DHCP Server Overview ... 54 164

3.3.2 Configuration Overview .. 54 165

3.3.3 Setup ... 54 166

3.4 Yikes! Router ... 54 167

3.4.1 Yikes! Router Overview ... 55 168

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices xii

3.4.2 Configuration Overview .. 55 169

3.4.3 Setup ... 55 170

3.5 DigiCert Certificates ... 56 171

3.6 IoT Devices ... 56 172

3.6.1 IoT Development Kits—Linux Based ... 56 173

3.7 Update Server .. 57 174

3.8 Unapproved Server ... 57 175

3.9 Yikes! IoT Device Discovery, Categorization, and Traffic Policy Enforcement (Yikes! 176
Cloud and Yikes! Mobile Application) ... 57 177

3.9.1 Yikes! IoT Device Discovery, Categorization, and Traffic Policy Enforcement Overview178
 58 179

3.9.2 Configuration Overview .. 58 180

3.9.3 Setup ... 58 181

3.10 GCA Quad9 Threat Signaling in Yikes! Router ... 90 182

3.10.1 GCA Quad9 Threat Signaling in Yikes! Router Overview .. 91 183

3.10.2 Configuration Overview .. 91 184

3.10.3 Setup ... 91 185

4 Build 3 Product Installation Guides .. 91 186

4.1 Product Installation ... 92 187

4.1.1 DigiCert Certificates .. 92 188

4.1.2 MUD Manager... 92 189

4.1.3 MUD File Server .. 100 190

4.1.4 Micronets Gateway ... 103 191

4.1.5 IoT Devices .. 111 192

4.1.6 Update Server ... 144 193

4.1.7 Unapproved Server ... 144 194

4.1.8 CableLabs MUD Registry ... 144 195

4.1.9 CableLabs Micronets Manager for SDN Control ... 148 196

4.1.10 Micronets Websocket Proxy ... 155 197

4.1.11 Micronets iPhone Application for Device Onboarding ... 165 198

4.1.12 MSO Portal Bootstrapping Interface to the Onboarding Manager 183 199

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices xiii

4.2 Product Integration and Operation ... 190 200

4.2.1 Adding an MSO Subscriber ... 190 201

4.2.2 Associating the Micronets Gateway with a Subscriber .. 194 202

4.2.3 Integrating Micronets Proto-Pi Device ... 207 203

4.2.4 Updating MUD Registry .. 209 204

4.2.5 Integrating the Micronets iPhone App with MSO Portal .. 211 205

4.2.6 Onboarding Micronets Proto-Pi to a micronet ... 218 206

4.2.7 Interacting with Micronets Manager .. 224 207

4.2.8 Removing Micronets Proto-Pi from a Micronet ... 243 208

4.2.9 Removing an MSO Subscriber ... 245 209

5 Build 4 Product Installation Guides .. 248 210

5.1 NIST SDN Controller/MUD Manager ... 248 211

5.1.1 NIST SDN Controller/MUD Manager Overview .. 248 212

5.1.2 Configuration Overview .. 249 213

5.1.3 Preinstallation ... 249 214

5.1.4 Setup ... 249 215

5.2 MUD File Server ... 253 216

5.2.1 MUD File Sever Overview ... 253 217

5.2.2 Configuration Overview .. 253 218

5.2.3 Setup ... 254 219

5.3 Northbound Networks Zodiac WX Access Point ... 256 220

5.3.1 Northbound Networks Zodiac WX Access Point Overview 256 221

5.3.2 Configuration Overview .. 256 222

5.3.3 Setup ... 257 223

5.4 DigiCert Certificates ... 258 224

5.5 IoT Devices ... 258 225

5.5.1 IoT Devices Overview .. 258 226

5.5.2 Configuration Overview .. 258 227

5.5.3 Setup ... 259 228

5.6 Update Server .. 260 229

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices xiv

5.6.1 Update Server Overview ... 260 230

5.6.2 Configuration Overview .. 261 231

5.6.3 Setup ... 261 232

5.7 Unapproved Server ... 262 233

5.7.1 Unapproved Server Overview ... 262 234

5.7.2 Configuration Overview .. 262 235

5.7.3 Setup ... 262 236

Appendix A List of Acronyms .. 264 237

Appendix B Glossary .. 267 238

Appendix C Bibliography .. 271 239

List of Figures 240

Figure 1-1 Reference Architecture ..4 241

Figure 1-2 NCCoE Physical Architecture ...8 242

Figure 2-1 Physical Architecture–Build 1 ... 32 243

List of Tables 244

Table 2-1 Cisco 3850-S Switch Running Configuration .. 33 245

246

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 1

1 Introduction 247

This following volumes of this guide show information technology (IT) professionals and security 248
engineers how we implemented this example solution. We cover all of the products employed in this 249
reference design. We do not re-create the product manufacturers’ documentation, which is presumed 250
to be widely available. Rather, these volumes show how we incorporated the products together in our 251
environment. 252

Note: These are not comprehensive tutorials. There are many possible service and security configurations 253
for these products that are out of scope for this reference design. 254

1.1 How to Use this Guide 255

This National Institute of Standards and Technology (NIST) Cybersecurity Practice Guide demonstrates a 256
standards-based reference design for mitigating network-based attacks by securing home and small-257
business Internet of Things (IoT) devices. The reference design is modular, and it can be deployed in 258
whole or in part. This practice guide provides users with the information they need to replicate four 259
example MUD-based implementations of this reference design. These example implementations are 260
referred to as Builds, and this volume describes in detail how to reproduce each one. 261

This guide contains three volumes and a supplement: 262

 NIST SP 1800-15A: Executive Summary – why we wrote this guide, the challenge we address, why 263
it could be important to your organization, and our approach to solving this challenge 264

 NIST SP 1800-15B: Approach, Architecture, and Security Characteristics – what we built and why, 265
including the risk analysis performed, and the security control map 266

 NIST SP 1800-15C: How-To Guides – instructions for building the example implementations 267
including all the security relevant details that would allow you to replicate all or parts of this 268
project (you are here) 269

 Functional Demonstration Results - supplement to NIST SP 1800-15B: describes the functional 270
demonstration results for the four implementations of the MUD-based reference solution 271

Depending on your role in your organization, you might use this guide in different ways: 272

Business decision makers, including chief security and technology officers, will be interested in the 273
Executive Summary, NIST SP 1800-15A, which describes the following topics: 274

 challenges that enterprises face in trying to mitigate network-based attacks by securing home 275
and small-business IoT devices 276

 example solutions built at the National Cybersecurity Center of Excellence (NCCoE) 277

 benefits of adopting the example solutions 278

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 2

Technology or security program managers who are concerned with how to identify, understand, assess, 279
and mitigate risk will be interested in NIST SP 1800-15B, which describes what we did and why. The 280
following sections will be of particular interest: 281

 Section 3.4, Risk Assessment, describes the risk analysis we performed. 282

 Section 5.2, Security Control Map, maps the security characteristics of these example solutions 283
to cybersecurity standards and best practices. 284

You might share the Executive Summary, NIST SP 1800-15A, with your leadership team members to help 285
them understand the importance of adopting a standards-based solution for mitigating network-based 286
attacks by securing home and small-business IoT devices. 287

IT professionals who want to implement an approach like this will find this whole practice guide useful. 288
You can use this How-To portion of the guide, NIST SP 1800-15C, to replicate all or parts of one or all 289
four builds created in our lab. This How-To portion of the guide provides specific product installation, 290
configuration, and integration instructions for implementing the example solutions. We do not re-create 291
the product manufacturers’ documentation, which is generally widely available. Rather, we show how 292
we incorporated the products together in our environment to create an example solution. 293

This guide assumes that IT professionals have experience implementing security products within the 294
enterprise. While we have used a suite of products to address this challenge, this guide does not 295
endorse these particular products. Your organization can adopt one of these solutions or one that 296
adheres to these guidelines in whole, or you can use this guide as a starting point for tailoring and 297
implementing parts of a Manufacturer Usage Description (MUD)-based solution. Your organization’s 298
security experts should identify the products that will best integrate with your existing tools and IT 299
system infrastructure. We hope that you will seek products that are congruent with applicable standards 300
and best practices. NIST SP 1800-15B lists the products that we used in each build and maps them to the 301
cybersecurity controls provided by this reference solution. 302

A NIST Cybersecurity Practice Guide does not describe “the” solution, but a possible solution. In the case 303
of this guide, it describes four possible solutions. This is a draft guide. We seek feedback on its contents 304
and welcome your input. Comments, suggestions, and success stories will improve subsequent versions 305
of this guide. Please contribute your thoughts to mitigating-iot-ddos-nccoe@nist.gov. 306

1.2 Build Overview 307

This NIST Cybersecurity Practice Guide addresses the challenge of using standards-based protocols and 308
available technologies to mitigate network-based attacks by securing home and small-business IoT 309
devices. It identifies three key forms of protection: 310

 use of the MUD specification to automatically permit an IoT device to send and receive only the 311
traffic it requires to perform as intended, thereby reducing the potential for the device to be the 312

mailto:mitigating-iot-ddos-nccoe@nist.gov

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 3

victim of a network-based attack, as well as the potential for the device, if compromised, to be 313
used in a network-based attack 314

 use of network-wide access controls based on threat intelligence to protect all devices (both 315
MUD-capable and non-MUD-capable) from connecting to domains that are known current 316
threats 317

 automated secure software updates to all devices to ensure that operating system (OS) patches 318
are installed promptly 319

Four builds that serve as example solutions of how to support the MUD specification have been 320
implemented and demonstrated as part of this project. This practice guide provides instructions for 321
reproducing these four builds. 322

1.2.1 Usage Scenarios 323

Each of the four builds is designed to fulfill the use case of a MUD-capable IoT device being onboarded 324
and used on home and small-business networks, where plug-and-play deployment is required. All four 325
builds include both MUD-capable and non-MUD-capable IoT devices. MUD-capable IoT devices include 326
the Molex Power over Ethernet (PoE) Gateway and Light Engine as well as four development kits 327
(devkits) that the National Cybersecurity Center of Excellence (NCCoE) configured to perform actions 328
such as power a light-emitting diode (LED) bulb on and off, start network connections, and power a 329
connected lighting device on and off. These MUD-capable IoT devices interact with external systems to 330
access notional, secure updates and various cloud services, in addition to interacting with traditional 331
personal computing devices, as permitted by their MUD files. Non-MUD-capable IoT devices deployed in 332
the builds include three cameras, two mobile phones, two connected lighting devices, a connected 333
assistant, a connected printer, a baby monitor with remote control and video and audio capabilities, a 334
connected wireless access point, and a connected digital video recorder. The cameras, connected 335
lighting devices, baby monitor, and connected digital video recorder are all controlled and managed by a 336
mobile phone. In combination, these devices are capable of generating a wide range of network traffic 337
that could reasonably be expected on a home or small-business network. 338

1.2.2 Reference Architecture Overview 339

Figure 1-1 depicts a general reference design for all four builds. It consists of three main components: 340
support for MUD, support for threat signaling, and support for periodic updates. 341

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 4

Figure 1-1 Reference Architecture 342

 343

 344

1.2.2.1 Support for MUD 345

A new functional component, the MUD manager, is introduced to augment the existing networking 346
functionality offered by the home/small-business network router or switch. Note that the MUD manager 347
is a logical component. Physically, the functionality it provides can and often will be combined with that 348
of the network router or switch in a single device. 349

IoT devices must somehow be associated with a MUD file. The MUD specification describes three 350
possible mechanisms through which the IoT device can provide the MUD file URL to the network: 351
inserting the MUD URL into the Dynamic Host Configuration Protocol (DHCP) address requests that they 352
generate when they attach to the network (e.g., when powered on), providing the MUD URL in a Link 353
Layer Discovery Protocol (LLDP) frame, or providing the MUD URL as a field in an X.509 certificate that 354
the device provides to the network via a protocol such as Tunnel Extensible Authentication Protocol. In 355
addition, the MUD specification provides flexibility to enable other mechanisms by which MUD file URLs 356

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 5

can be associated with IoT devices. One such alternative mechanism is to associate the device with its 357
MUD file by using the device’s bootstrapping information that is conveyed as part of the Wi-Fi Easy 358
Connect (also referred to as Device Provisioning Protocol—DPP) onboarding process. This is the 359
mechanism implemented in Build 3. 360

Figure 1-1 uses labeled arrows to depict the steps involved in supporting MUD: 361

 The IoT device emits a MUD URL by using a mechanism such as DHCP, LLDP, or X.509 certificate 362
(step 1). 363

 The router extracts the MUD URL from the protocol frame of whatever mechanism was used to 364
convey it and forwards this MUD URL to the MUD manager (step 2). 365

 Once the MUD URL is received, the MUD manager uses https to request the MUD file from the 366
MUD file server by using the MUD URL provided in the previous step (step 3a); if successful, the 367
MUD file server at the specified location will serve the MUD file (step 3b). 368

 Next, the MUD manager uses https to request the signature file associated with the MUD file 369
(step 4a) and upon receipt (step 4b) verifies the MUD file by using its signature file. 370

 The MUD file describes the communications requirements for the IoT device. Once the MUD 371
manager has determined the MUD file to be valid, the MUD manager converts the access 372
control rules in the MUD file into access control entries (e.g., access control lists—ACLs, firewall 373
rules, or flow rules) and installs them on the router or switch (step 5). 374

Once the device’s access control rules are applied to the router or switch, the MUD-capable IoT device 375
will be able to communicate with approved local hosts and internet hosts as defined in the MUD file, 376
and any unapproved communication attempts will be blocked. 377

1.2.2.2 Support for Updates 378

To provide additional security, the reference architecture also supports periodic updates. All builds 379
include a server that is meant to represent an update server to which MUD will permit devices to 380
connect. Each IoT device on an operational network should be configured to periodically contact its 381
update server to download and apply security patches, ensuring that it is running the most up-to-date 382
and secure code available. To ensure that such updates are possible, the IoT device’s MUD file must 383
explicitly permit the IoT device to receive traffic from the update server. Although regular manufacturer 384
updates are crucial to IoT security, the builds described in this practice guide demonstrate only the 385
ability to receive faux updates from a notional update server. 386

1.2.2.3 Support for Threat Signaling 387

To provide additional protection for both MUD-capable and non-MUD-capable devices, the reference 388
architecture also incorporates support for threat signaling. The router or switch can receive threat feeds 389
from a threat signaling server to use as a basis for restricting certain types of network traffic. For 390

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 6

example, both MUD-capable and non-MUD-capable devices can be prevented from connecting to 391
internet domains that have been identified as potentially malicious. 392

1.2.2.4 Build-Specific Features 393

The reference architecture depicted in Figure 1-1 is intentionally general. Each build instantiates this 394
reference architecture in a unique way, depending on the equipment used and the capabilities 395
supported. The logical and physical architectures of each build are depicted and described in NIST SP 396
1800-15B: Approach, Architecture, and Security Characteristics. While all four builds support MUD and 397
the ability to receive faux updates from a notional update server, only Build 2 currently supports threat 398
signaling. Only Build 3 currently supports onboarding MUD-capable devices using the Wi-Fi Alliance Wi-399
Fi Easy Connect protocol. Build 1 and Build 2 include nonstandard device discovery technology to 400
discover, inventory, profile, and classify attached devices. Such classification can be used to validate that 401
the access being granted to each device is consistent with that device’s manufacturer and model. In 402
Build 2, a device’s manufacturer and model can be used as a basis for identifying and enforcing that 403
device’s traffic profile. 404

Briefly, the four builds of the reference architecture that have been completed and demonstrated are as 405
follows: 406

 Build 1 uses products from Cisco Systems, DigiCert, Forescout, and Molex. The Cisco MUD 407
manager supports MUD, and the Forescout virtual appliances and enterprise manager perform 408
non-MUD-related device discovery on the network. Molex PoE Gateway and Light Engine is used 409
as a MUD-capable IoT device. Certificates from DigiCert are also used. 410

 Build 2 uses products from MasterPeace Solutions Ltd., Global Cyber Alliance (GCA), 411
ThreatSTOP, and DigiCert. The MasterPeace Solutions Yikes! router, cloud service, and mobile 412
application support MUD as well as perform device discovery on the network and apply 413
additional traffic rules to both MUD-capable and non-MUD-capable devices based on device 414
manufacturer and model. The GCA threat agent, Quad9 DNS service, and ThreatSTOP threat 415
MUD file server support threat signaling. Certificates from DigiCert are also used. 416

 Build 3 uses products from CableLabs and DigiCert. CableLabs Micronets (e.g., Micronets 417
Gateway, Micronets Manager, Micronets mobile phone application, and related service provider 418
cloud-based infrastructure) supports MUD and implements the Wi-Fi Alliance’s Wi-Fi Easy 419
Connect protocol to securely onboard devices to the network. It also uses software-defined 420
networking to create separate trust zones (e.g., network segments) called micronets to which 421
devices are assigned according to their intended network function. Certificates from DigiCert are 422
also used. 423

 Build 4 uses software developed at the NIST Advanced Networking Technologies laboratory. This 424
software supports MUD and is intended to serve as a working prototype of the MUD request for 425
comments (RFC) to demonstrate feasibility and scalability. Certificates from DigiCert are also 426
used. 427

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 7

The logical architectures and detailed descriptions of Builds 1, 2, 3, and 4 can be found in NIST SP 1800-428
15B: Approach, Architecture, and Security Characteristics. 429

1.2.3 Physical Architecture Overview 430

Figure 1-2 depicts the high-level physical architecture of the NCCoE laboratory environment. This 431
implementation currently supports four builds and has the flexibility to implement additional builds in 432
the future. As depicted, the NCCoE laboratory network is connected to the internet via the NIST data 433
center. Access to and from the NCCoE network is protected by a firewall. The NCCoE network includes a 434
shared virtual environment that houses an update server, a MUD file server, an unapproved server (i.e., 435
a server that is not listed as a permissible communications source or destination in any MUD file), a 436
Message Queuing Telemetry Transport (MQTT) broker server, and a Forescout enterprise manager. 437
These components are hosted at the NCCoE and are used across builds where applicable. The Transport 438
Layer Security (TLS) certificate and Premium Certificate used by the MUD file server are provided by 439
DigiCert. 440

The following four builds, as depicted in the diagram, are supported within the physical architecture: 441

 Build 1 network components consist of a Cisco Catalyst 3850-S switch, a Cisco MUD manager, a 442
FreeRADIUS server, and a virtualized Forescout appliance on the local network. Build 1 also 443
requires support from all components that are in the shared virtual environment, including the 444
Forescout enterprise manager. 445

 Build 2 network components consist of a MasterPeace Solutions Ltd. Yikes! router on the local 446
network. Build 2 requires support from the MUD file server, Yikes! cloud, and a Yikes! mobile 447
application that are resident on the Build 2 cloud. The Yikes! router includes threat-signaling 448
capabilities (not depicted) that have been integrated with it. Build 2 also requires support from 449
threat-signaling cloud services that consist of the ThreatSTOP threat MUD file server, Quad9 450
threat application programming interface (API), and Quad9 DNS service. Build 2 uses only the 451
update server and unapproved server components that are in the shared virtual environment. 452

 Build 3 network components consist of a CableLabs Micronets Gateway/wireless access point 453
(AP). The Gateway/wireless AP resides on the local network and operates in conjunction with 454
various service provider components and partner/service provider offerings that reside in the 455
Micronets virtual environment in the Build 3 cloud. The Micronets Gateway is controlled by a 456
Micronets Manager that resides in the Build 3 cloud and that coordinates a number of cloud-457
based Micronets micro-services, some of which are depicted. Build 3 also includes a Micronets 458
mobile application that provides the user and device interfaces for device onboarding. 459

 Build 4 network components consist of a software-defined networking (SDN)-capable 460
gateway/switch on the local network and an SDN controller/MUD manager and approved and 461
unapproved servers that are located remotely from the local network. Build 4 also uses the 462
MUD file server that is resident in the shared virtual environment. 463

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 8

IoT devices used in all four builds include both MUD-capable and non-MUD-capable IoT devices. The 464
MUD-capable IoT devices used, which vary across builds, include Raspberry Pi, ARTIK, u-blox, Intel UP 465
Squared, BeagleBone Black, NXP i.MX 8M (devkit), and the Molex Light Engine controlled by PoE 466
Gateway. Non-MUD-capable devices used, which also vary across builds, include a wireless access point, 467
cameras, a printer, mobile phones, lighting devices, a connected assistant device, a baby monitor, and a 468
digital video recorder. Each of the completed builds and the roles that their components play in their 469
architectures are explained in more detail in NIST SP 1800-15B. 470

The remainder of this guide describes how to implement Builds 1, 2, 3, and 4. 471

Figure 1-2 NCCoE Physical Architecture 472

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 9

1.3 Typographic Conventions 473

The following table presents typographic conventions used in this volume. 474

Typeface/Symbol Meaning Example

Italics file names and path names;
references to documents that
are not hyperlinks; new
terms; and placeholders

For language use and style guidance,
see the NCCoE Style Guide.

Bold names of menus, options,
command buttons, and fields

Choose File > Edit.

Monospace command-line input,
onscreen computer output,
sample code examples, and
status codes

Mkdir

Monospace Bold command-line user input
contrasted with computer
output

service sshd start

blue text link to other parts of the
document, a web URL, or an
email address

All publications from NIST’s NCCoE
are available at
https://www.nccoe.nist.gov.

2 Build 1 Product Installation Guides 475

This section of the practice guide contains detailed instructions for installing and configuring all the 476
products used to implement Build 1. For additional details on Build 1’s logical and physical architectures, 477
please refer to NIST SP 1800-15B. 478

2.1 Cisco MUD Manager 479

This section describes how to deploy Cisco’s MUD manager version 1.0, which uses a MUD-based 480
authorization system in the network, using Cisco Catalyst switches, FreeRADIUS, and Cisco MUD 481
manager. 482

2.1.1 Cisco MUD Manager Overview 483

The Cisco MUD manager is an open-source implementation that works with IoT devices that emit their 484
MUD URLs. In this implementation we tested two MUD URL emission methods: DHCP and LLDP. The 485
MUD manager is supported by a FreeRADIUS server that receives MUD URLs from the switch. The MUD 486
URLs are extracted by the DHCP server and are sent to the MUD manager via Remote Authentication 487
Dial-In User Service (RADIUS) messages. The MUD manager is responsible for retrieving the MUD file 488

https://www.nccoe.nist.gov/

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 10

and corresponding signature file associated with the MUD URL. The MUD manager verifies the 489
legitimacy of the file and then translates the contents to an internet protocol (IP) ACL-based policy that 490
is installed on the switch. 491

The version of the Cisco MUD manager used in this project is a proof-of-concept implementation that is 492
intended to introduce advanced users and engineers to the MUD concept. It is not a fully automated 493
MUD manager implementation, and some protocol features are not present. At implementation, the 494
“model” construct was not yet implemented. In addition, if a DNS-based system changes its address, this 495
will not be noticed. Also, IPv6 access has not been fully supported. 496

2.1.2 Cisco MUD Manager Configurations 497

The following subsections document the software, hardware, and network configurations for the Cisco 498
MUD manager. 499

2.1.2.1 Hardware Configuration 500

Cisco requires installing the MUD manager and FreeRADIUS on a single server with at least 2 gigabytes 501
of random access memory. This server must integrate with at least one switch or router on the network. 502
For this build we used a Catalyst 3850-S switch. 503

2.1.2.2 Network Configuration 504

The MUD manager and FreeRADIUS server instances were installed and configured on a dedicated 505
machine leveraged for hosting virtual machines in the Build 1 lab environment. This machine was then 506
connected to virtual local area network (VLAN) 2 on the Catalyst 3850-S and assigned a static IP address. 507

2.1.2.3 Software Configuration 508

For this build, the Cisco MUD manager was installed on an Ubuntu 18.04.01 64-bit server. However, 509
there are many approaches for implementation. Alternatively, the MUD manager can be built via docker 510
containers provided by Cisco. 511

The Cisco MUD manager can operate on Linux operating systems, such as 512

 Ubuntu 18.04.01 513

 Amazon Linux 514

The Cisco MUD manager requires the following installations and components: 515

 OpenSSL 516

 cJSON 517

 MongoDB 518

 Mongo C driver 519

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 11

 Libcurl 520

 FreeRADIUS server 521

At a high level, the following software configurations and integrations are required: 522

 The Cisco MUD manager requires integration with a switch (such as a Catalyst 3850-S) that 523
connects to an authentication, authorization, and accounting (AAA) server that communicates 524
by using the RADIUS protocol (i.e., a RADIUS server). 525

 The RADIUS server must be configured to identify a MUD URL received in an accounting request 526
message from a device it has authenticated. 527

 The MUD manager must be configured to process a MUD URL received from a RADIUS server 528
and return access control policy to the RADIUS server, which is then forwarded to the switch. 529

2.1.3 Setup 530

2.1.3.1 Preinstallation 531

Cisco’s DevNet GitHub page provides documentation that we followed to complete this section: 532
https://github.com/CiscoDevNet/MUD-Manager/tree/3.0.1#dependancies 533

1. Open a terminal window, and enter the following command to log in as root: 534
sudo su 535

 536
2. Change to the root directory: 537

cd / 538

3. To install OpenSSL from the terminal, enter the following command: 539

apt-get install openssl 540

a. If unable to link to OpenSSL, install the following by entering this command: 541

apt-get install -y libssl-dev 542

 543

https://github.com/CiscoDevNet/MUD-Manager/tree/3.0.1#dependancies

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 12

4. To install cJSON, download it from GitHub by entering the following command: 544
git clone https://github.com/DaveGamble/cJSON 545

a. Change directories to the cJSON folder by entering the following command: 546
cd cJSON 547

b. Build cJSON by entering the following commands: 548
make 549

make install 550

5. Change directories back a folder by entering the following command: 551
cd .. 552

6. To install MongoDB, enter the following commands: 553

a. Import the public key: 554
apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 555
9DA31620334BD75D9DCB49F368818C72E52529D4 556

b. Create a list file for MongoDB: 557

echo "deb [arch=amd64] https://repo.mongodb.org/apt/ubuntu trusty/mongodb-558
org/4.0 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-4.0.list 559

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 13

c. Reload the local package database: 560

apt-get update 561

d. Install the MongoDB packages: 562

apt-get install -y mongodb 563

7. To install the Mongo C driver, enter the following command: 564

wget https://github.com/mongodb/mongo-c-driver/releases/download/1.7.0/mongo-c-565
driver-1.7.0.tar.gz 566

a. Untar the file by entering the following command: 567

tar -xzf mongo-c-driver-1.7.0.tar.gz 568

b. Change into the mongo-c-driver-1.7.0 directory by entering the following command: 569
cd mongo-c-driver-1.7.0/ 570

c. Build the Mongo C driver by entering the following commands: 571
./configure --disable-automatic-init-and-cleanup --with-libbson=bundled 572

make 573

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 14

make install 574

8. Change directories back a folder by entering the following command: 575
cd .. 576

9. To install libcurl, enter the following command: 577
sudo apt-get install libcurl4-openssl-dev 578

2.1.3.2 MUD Manager Installation 579

A portion of the steps in this section are documented on Cisco’s DevNet GitHub page: 580
https://github.com/CiscoDevNet/MUD-Manager/tree/3.0.1#building-the-mud-manager 581

1. Open a terminal window, and enter the following command to log in as root: 582
sudo su 583

2. Change to the root directory by entering the following command: 584

cd / 585

3. To install the MUD manager, download it from Cisco’s GitHub by entering the following 586
command: 587
git clone https://github.com/CiscoDevNet/MUD-Manager.git 588

4. Change into the MUD manager directory: 589
cd MUD-Manager 590

https://github.com/CiscoDevNet/MUD-Manager/tree/3.0.1#building-the-mud-manager

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 15

5. Build the MUD manager by entering the following commands: 591

./configure 592

Note: If a “pkg-config error” is thrown, run the command below to install the missing package:
 apt-get install pkg-config

make 593

Note: If an “ac.local error” is thrown, run the command below to install the missing package:
 apt-get install automake

make install 594

2.1.3.3 MUD Manager Configuration 595

This section describes configuring the MUD manager to communicate with the NCCoE MUD file server 596
and defining the attributes used for translating the fetched MUD files. Details about the configuration 597
file and additional fields that can be set within this file can be accessed here: 598
https://github.com/CiscoDevNet/MUD-Manager#editing-the-configuration-file. 599

1. In the terminal, change to the MUD manager directory: 600

cd /MUD-Manager 601

https://github.com/CiscoDevNet/MUD-Manager#editing-the-configuration-file

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 16

2. Copy the contents of the sample mud_manager_conf.json file to a different file: 602

sudo cp examples/mud_manager_conf.json mud_manager_conf_nccoe.json 603
 604

 605
3. Modify the contents of the new MUD manager configuration file: 606

sudo vim mud_manager_conf_nccoe.json 607
 608

 609
{ 610
 "MUD_Manager_Version" : 3, 611
 "MUDManagerAPIProtocol" : "http", 612
 "ACL_Prefix" : "ACS:", 613
 "ACL_Type" : "dACL-ingress-only", 614
 "COA_Password" : "cisco", 615
 "VLANs" : [616
 { "VLAN_ID" : 3, 617
 "v4addrmask" : "192.168.13.0 0.0.0.255" 618
 }, 619
 { "VLAN_ID" : 4, 620
 "v4addrmask" : "192.168.14.0 0.0.0.255" 621
 }, 622
 { "VLAN_ID" : 5, 623
 "v4addrmask" : "192.168.15.0 0.0.0.255" 624
 } 625
], 626
 "Manufacturers" : [627
 { "authority" : "mudfileserver", 628
 "cert" : "/home/mudtester/digicertca-chain.crt", 629
 "web_cert": "/home/mudtester/digicertchain.pem", 630
 "my_controller_v4" : "192.168.10.125", 631
 "my_controller_v6" : "2610:20:60CE:630:B000::7", 632
 "local_networks_v4" : "192.168.10.0 0.0.0.255", 633
 "local_networks_v6" : "2610:20:60CE:630:B000::", 634
 "vlan_nw_v4" : "192.168.13.0 0.0.0.255", 635
 "vlan" : 3 636
 }, 637
 { 638
 "authority" : "www.gmail.com", 639
 "cert" : "/home/mudtester/digicertca-chain.crt", 640
 "web_cert": "/home/mudtester/digicertchain.pem", 641
 "vlan_nw_v4" : "192.168.14.0 0.0.0.255", 642
 "vlan" : 4 643

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 17

 } 644
], 645
 "DNSMapping" : { 646
 "www.osmud.org" : "198.71.233.87", 647
 "www.mqttbroker.com" : "192.168.4.6", 648
 "us.dlink.com" : "54.187.217.118", 649
 "www.nossl.net": "40.68.201.127", 650
 "www.trytechy.com" : "99.84.104.21" 651
 }, 652
 653
 "DNSMapping_v6" : { 654
 "www.mqttbroker.com" : "2610:20:60CE:630:B000::6", 655
 "www.updateserver.com" : "2610:20:60CE:630:B000::7", 656
 "www.dominiontea.com": "2a03:2880:f10c:83:face:b00c:0:25de" 657
 }, 658
 "ControllerMapping" : { 659
 "https://www.google.com" : "192.168.10.104", 660
 "http://lightcontroller.example2.com": "192.168.4.77", 661
 "http://lightcontroller.example.com": "192.168.4.78" 662
 }, 663
 "ControllerMapping_v6" : { 664
 "https:/www.google.com" : "ffff:2343:4444:::", 665
 "http://lightcontroller.example2.com": "ffff:2343:4444:::", 666
 "http://lightcontroller.example.com": "ffff:2343:4444:::" 667
 668
 }, 669
 "DefaultACL" : ["permit tcp any eq 22 any","permit udp any eq 68 any eq 670
67","permit udp any any eq 53", "deny ip any any"], 671
 "DefaultACL_v6" : ["permit udp any any eq 53", "deny ipv6 any any"] 672

} 673
 674

Details about the contents of the configuration file can be found at the link provided at the start of this 675
section. 676

2.1.3.4 FreeRADIUS Installation 677

1. Install the dependencies for FreeRADIUS: 678

a. sudo apt-get install -y libtalloc-dev 679

 680
b. sudo apt-get install -y libjson-c-dev 681

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 18

 682
c. sudo apt-get install -y libcurl4-gnutls-dev 683

 684
d. sudo apt-get install -y libperl-dev 685

 686
e. sudo apt-get install -y libkqueue-dev 687

 688
f. sudo apt-get install -y libssl-dev 689

 690
2. Download the source by entering the following command (Note: Version 3.0.19 and later are 691

recommended): 692

wget ftp://ftp.freeradius.org/pub/freeradius/freeradius-server-3.0.19.tar.gz 693

 694
3. Untar the downloaded file by entering the following command: 695

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 19

tar -xf freeradius-server-3.0.19.tar.gz 696

 697
4. Move the FreeRADIUS directory to the root directory: 698

sudo mv freeradius-server-3.0.19/ / 699

 700
5. Change to the FreeRADIUS directory: 701

cd /freeradius-server-3.0.19/ 702

 703
6. Make and install the source by entering the following: 704

a. sudo ./configure --with-rest --with-json-c --with-perl 705

 706

b. sudo make 707

 708

c. sudo make install 709

2.1.3.5 FreeRADIUS Configuration 710

1. Change to the FreeRADIUS subdirectory in the MUD manager directory: 711

cd /MUD-Manager/examples/AAA-LLDP-DHCP/ 712

 713
2. Run the setup script: 714

sudo ./FR-setup.sh 715

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 20

 716

3. Enter the following command to log in as root: 717
sudo su 718

4. Change to the RADIUS directory: 719

cd /usr/local/etc/raddb/ 720

5. Open the clients.conf file: 721

vim clients.conf 722

6. Add the network access server (NAS) as an authorized client in the configuration file on the 723

server by adding an entry for the NAS in the client.conf file that is opened (Note: Replace the IP 724
address below with the IP address of the NAS, and insert the “secret” configured on the NAS to 725
talk to the RADIUS servers): 726

client 192.168.10.2 { 727
ipaddr = 192.168.10.2 728
secret = cisco 729

 } 730
 731

 732

7. Save and close the file. 733

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 21

2.1.3.6 Start MUD Manager and FreeRADIUS Server 734

1. Start and enable the database by executing the following commands: 735

sudo systemctl start mongod 736

sudo systemctl enable mongod 737

2. Start the MUD manager in the foreground with logging enabled by entering the following 738
command: 739

sudo mud_manager -f /MUD-Manager/mud_manager_conf_nccoe.json -l 3 740

The following output should appear if the service started successfully: 741

 742

3. Start the FreeRADIUS service in the foreground with logging enabled by entering the following 743
command: 744

sudo radiusd -Xxx 745

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 22

At this point all the processes required to support MUD are running on the server side, and the next step 746
is to configure the Cisco Catalyst switch. Once the switch configuration detailed in the Cisco Switch–747
Catalyst 3850-S setup section is completed, any DHCP activity on the network should appear in the 748
output of the FreeRADIUS and MUD manager logs. 749

2.2 MUD File Server 750

2.2.1 MUD File Server Overview 751

For this build, the NCCoE built a MUD file server hosted within the lab infrastructure. This file server 752
signs and stores the MUD files along with their corresponding signature files for the MUD-capable IoT 753
devices used in the build. The MUD file server is also responsible for serving the MUD file and the 754
corresponding signature file upon request from the MUD manager. 755

2.2.2 Configuration Overview 756

The following subsections document the software and network configurations for the MUD file server. 757

2.2.2.1 Network Configuration 758

This server was hosted in the NCCoE’s virtual environment, functioning as a cloud service. Its IP address 759
was statically assigned. 760

2.2.2.2 Software Configuration 761

For this build, the server ran on the CentOS 7 operating system. The MUD files and signatures were 762
hosted by an Apache web server and configured to use secure sockets layer/Transport Layer Security 763
(SSL/TLS) encryption. 764

2.2.2.3 Hardware Configuration 765

The MUD file server was hosted in the NCCoE’s virtual environment, functioning as a cloud service. 766

2.2.3 Setup 767

The following subsections describe the process for configuring the MUD file server. 768

2.2.3.1 Apache Web Server 769

The Apache web server was set up by using the official Apache documentation at 770
https://httpd.apache.org/docs/current/install.html. After that, SSL/TLS encryption was set up by using 771

https://httpd.apache.org/docs/current/install.html

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 23

the digital certificate and key obtained from DigiCert. This was set up by using the official Apache 772
documentation, found at https://httpd.apache.org/docs/current/ssl/ssl_howto.html. 773

2.2.3.2 MUD File Creation and Signing 774

This section details creating and signing a MUD file on the MUD file server. The MUD specification does 775
not mandate that this signing process be performed on the MUD file server itself. 776

2.2.3.2.1 MUD File Creation 777
An online tool called MUD Maker was used to build MUD files. Once the permitted communications 778
have been defined for the IoT device, proceed to www.mudmaker.org to leverage the online tool. There 779
is also a list of sample MUD files on the site, which can be used as a reference. Upon navigating to 780
www.mudmaker.org, complete the following steps to create a MUD file: 781

1. Specify the host that will be serving the MUD file and the model name of the device in the ap-782
propriate input fields, which are outlined in red in the screenshot below (Note: This will result in 783
the MUD URL for this device): 784

Sample input: mudfileserver, testmudfile 785

https://httpd.apache.org/docs/current/ssl/ssl_howto.html
http://www.mudmaker.org/
http://www.mudmaker.org/

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 24

 786

2. Specify the Manufacturer Name of the device in the appropriate input field, which is outlined in 787
red in the screenshot below: 788

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 25

 789

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 26

3. Include a URL to provide documentation about this device in the appropriate input field, which 790
is outlined in red in the screenshot below: 791

 792

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 27

4. Include a short description of the device in the appropriate input field, which is outlined in red in 793
the screenshot below: 794

 795

5. Check the boxes for the types of network communication that are allowed for the device: 796

 797

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 28

6. Specify the internet protocol version that the device leverages: 798

7. Specify values for the fields (Internet Hosts, Protocol, Local Port, Remote Port, and Initiated by) 799
that describe the communications that will be permitted for the device: 800

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 29

8. Click Submit to generate the MUD file: 801

9. Once completed, the page will redirect to the following page that outputs the MUD file on the 802
screen. Click Download to download the MUD file, which is a .JSON file: 803

 804

10. Click Save to store a copy of the MUD file: 805

 806

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 30

2.2.3.2.2 MUD File Signature Creation and Verification 807
In this build, OpenSSL is used to sign and verify MUD files. This example uses the MUD file created in the 808
previous section, which is named ublox.json; the Signing Certificate; the Private Key for the Signing 809
Certificate; the Intermediate Certificate for the Signing Certificate; and the Certificate of the Trusted 810
Root Certificate Authority (CA) for the Signing Certificate. 811

1. Sign the MUD file by using the following command: 812

sudo openssl cms -sign -signer <Signing Certificate> -inkey <Private Key for 813
Signing Certificate> -in <Name of MUD File> -binary -outform DER -binary -814
certfile <Intermediate Certificate for Signing Certificate> -out <Name of MUD 815
File without the .json file extension>.p7s 816

This will create a signature file for the MUD file that has the same name as the MUD file but 817
ends with the .p7s file extension, i.e., in our case ublox.p7s. 818

2. Manually verify the MUD file signature by using the following command: 819

sudo openssl cms -verify -in <Name of MUD File>.p7s -inform DER -content <Name 820
of MUD File>.json -CAfile <Certificate of Trusted Root Certificate Authority 821
for Signing Certificate> 822

If a valid file signature was created successfully, a corresponding message should appear. Both the MUD 823
file and MUD file signature should be placed on the MUD file server in the Apache server directory. 824

2.3 Cisco Switch–Catalyst 3850-S 825

2.3.1 Cisco 3850-S Catalyst Switch Overview 826

The switch used in this build is an enterprise-class, layer 3 switch. It is a Cisco Catalyst 3850-S that had 827
been modified to support MUD functionality as a proof-of-concept implementation. In addition to 828
providing DHCP services, the switch acts as a broker for connected IoT devices for authentication, 829
authorization, and accounting through a FreeRADIUS server. The Link Layer Discovery Protocol (LLDP) is 830
enabled on ports that MUD-capable devices are plugged into to help facilitate recognition of connected 831
IoT device features, capabilities, and neighbor relationships at layer 2. Additionally, an access session 832
policy is configured on the switch to enable port control for multihost authentication and port 833
monitoring. The combined effect of these switch configurations is a dynamic access list, which has been 834

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 31

generated by the MUD manager, being active on the switch to permit or deny access to and from MUD-835
capable IoT devices. 836

2.3.2 Configuration Overview 837

The following subsections document the network, software, and hardware configurations for the Cisco 838
Catalyst 3850-S switch. 839

2.3.2.1 Network Configuration 840

This section describes how to configure the required Cisco Catalyst 3850-S switch to support the build. A 841
special image for the Catalyst 3850-S was provided by Cisco to support MUD-specific functionality. In our 842
build, the switch is integrated with a DHCP server and a FreeRADIUS server, which together support 843
delivery of the MUD URL to the MUD manager via either DHCP or LLDP. The MUD manager is also able 844
to generate and send a dynamic access list to the switch, via the RADIUS server, to permit or deny access 845
to and from the IoT devices. In addition to hosting directly connected IoT devices on VLANs 1, 3, and 4, 846
the switch hosts both the MUD manager and the FreeRADIUS servers on VLAN 2. As illustrated in Figure 847
2-1, each locally configured VLAN is protected by a firewall that connects the lab environment to the 848
NIST data center, which provides internet access for all connected devices. 849

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 32

Figure 2-1 Physical Architecture–Build 1 850

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 33

2.3.2.2 Software Configuration 851

The prototype, MUD-capable Cisco 3850-S used in this build is running internetwork operating system 852
(IOS) version 16.09.02. 853

2.3.2.3 Hardware Configuration 854

The Catalyst 3850-S switch configured in the lab consists of 24 one-gigabit Ethernet ports with two 855
optional 10-gigabit Ethernet uplink ports. A customized version of Cat-OS is installed on the switch. The 856
versions of the OS are as follows: 857

 Cat3k_caa-guestshell.16 858

 Cat3k_caa-rpbase.16.06 859

 Cat3k_caa-rpcore.16.06 860

 Cat3k_caa-srdriver.16.06.0 861

 Cat3k_caa-webui.16.06.0 862

2.3.3 Setup 863

Table 2-1 lists the Cisco 3850-S switch running configuration used for the lab environment. In addition to 864
the IOS version and a few generic configuration items, configuration items specifically relating to 865
integration with the MUD manager and IoT devices are highlighted in bold fonts; these include DHCP, 866
LLDP, AAA, RADIUS, and policies regarding access session. Table 2-1 also provides a description of each 867
configuration item for ease of understanding. 868

Table 2-1 Cisco 3850-S Switch Running Configuration 869

Configuration Item Description
version 16.9
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
service call-home
no platform punt-keepalive disable-kernel-core
!
hostname Build1
!

general overview of configuration information
needed to configure AAA to use RADIUS and
configure the RADIUS server itself. Note that the
FreeRADIUS and AAA passwords must match.

aaa new-model
!

enables AAA

aaa authentication dot1x default group radius creates an 802.1X AAA authentication method list

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 34

Configuration Item Description
aaa authorization network default group radius

configures network authorization via RADIUS,
including network-related services such as VLAN
assignment

aaa accounting identity default start-stop group
radius

enables accounting method list for session-aware
networking subscriber services

aaa accounting network default start-stop group
radius
!

enables accounting for all network-related service
requests

aaa server radius dynamic-author
 client 192.168.11.45 server-key cisco
 server-key cisco
!
aaa session-id common

enables dynamic authorization local server
configuration mode and specifies a RADIUS
client/key from which a device accepts change of
authorization (CoA) and disconnect requests

radius server AAA
 address ipv4 192.168.11.45 auth-port 1812

enables AAA server from the list of multiple AAA
servers configured

acct-port 1813
 key cisco

uses the IP address and ports on which the
FreeRADIUS server is listening

ip routing
!

ip dhcp excluded-address 192.168.10.1
192.168.10.100
!

DHCP server configuration to exclude selected
addresses from pool

ip dhcp pool NCCOE-V3
 network 192.168.13.0 255.255.255.0
 default-router 192.168.13.1
 dns-server 8.8.8.8
 lease 0 12
!

DHCP server configuration to assign IP address to
devices on VLAN 3

ip dhcp pool NCCOE-V4
 network 192.168.14.0 255.255.255.0
 default-router 192.168.14.1
 dns-server 8.8.8.8
!

DHCP server configuration to assign IP address to
devices on VLAN 4

ip dhcp pool NCCOE
 network 192.168.10.0 255.255.255.0
 default-router 192.168.10.2
 dns-server 8.8.8.8
 lease 0 12
!

DHCP server configuration to assign IP address to
devices on VLAN 1

ip dhcp snooping
ip dhcp snooping vlan 1,3

enables DHCP snooping globally

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 35

Configuration Item Description
! specifically enables DHCP snooping on VLANs 1

and 3
access-session attributes filter-list list mudtest
 lldp
 dhcp
access-session accounting attributes filter-spec
include list mudtest
access-session monitor
!

configures access-session attributes to cause LLDP
Time Length Values (including the MUD URL) to be
forwarded in an accounting message to the AAA
server

dot1x logging verbose

global configuration command to filter 802.1x
authentication verbose messages

ldp run
!

enables LLDP, a discovery protocol that runs over
layer 2 (the data link layer) to gather information
on non-Cisco-manufactured devices

policy-map type control subscriber mud-mab-
test
 event session-started match-all
 10 class always do-until-failure
 10 authenticate using mab
!

configures identity control policies that define the
actions that session-aware networking takes in
response to specified conditions and subscriber
events

template mud-mab-test
 switchport mode access
 mab
 access-session port-control auto
 service-policy type control subscriber mud-
mab-test
!

enables policy-map (mud-mab-test) and template
to cause media access control (MAC) address
bypass (MAB) to happen

dynamically applies an interface template to a
target

sets the authorization state of a port. The default
value is force-authorized.

applies the above previously configured control
policy called mud-mab-test

interface GigabitEthernet1/0/13
 source template mud-mab-test
!

statically applies an interface template to a target,
i.e., an IoT device

interface GigabitEthernet1/0/14
 source template mud-mab-test
!

statically applies an interface template to a target,
i.e., an IoT device

interface GigabitEthernet1/0/15
 source template mud-mab-test
!

statically applies an interface template to a target,
i.e., an IoT device

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 36

Configuration Item Description
interface GigabitEthernet1/0/16
 source template mud-mab-test
!

statically applies an interface template to a target,
i.e., an IoT device

interface GigabitEthernet1/0/17
 source template mud-mab-test
!

statically applies an interface template to a target,
i.e., an IoT device

interface GigabitEthernet1/0/18
 source template mud-mab-test
!

statically applies an interface template to a target,
i.e., an IoT device

interface GigabitEthernet1/0/19
 source template mud-mab-test
!

statically applies an interface template to a target,
i.e., an IoT device

interface GigabitEthernet1/0/20
 source template mud-mab-test

statically applies an interface template to a target,
i.e., an IoT device

interface Vlan1
 ip address 192.168.10.2 255.255.255.0
 !

configure and address VLAN1 interface for inter-
VLAN routing

interface Vlan2
 ip address 192.168.11.1 255.255.255.0
 !

configure and address VLAN2 interface for inter-
VLAN routing

interface Vlan3
 ip address 192.168.13.1 255.255.255.0
!

configure and address VLAN3 interface for inter-
VLAN routing

interface Vlan4
 ip address 192.168.14.1 255.255.255.0
!

configure and address VLAN4 interface for inter-
VLAN routing

interface Vlan5
 ip address 192.168.15.1 255.255.255.0
!

configure and address VLAN5 interface for inter-
VLAN routing

!
ip default-gateway 192.168.10.1
ip forward-protocol nd
ip http server
ip http authentication local
ip http secure-server
ip route 0.0.0.0 0.0.0.0 192.168.10.1
ip route 192.168.12.0 255.255.255.0 192.168.5.1
!

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 37

2.4 DigiCert Certificates 870

2.4.1 DigiCert CertCentral® Overview 871

DigiCert’s CertCentral® web-based platform allows provisioning and management of publicly trusted 872
X.509 certificates for a variety of purposes. After establishing an account, clients can log in, request, 873
renew, and revoke certificates by using only a browser. For this build, two certificates were provisioned: 874
a private TLS certificate for the MUD file server to support the https connection from the MUD manager 875
to the MUD file server, and a Premium Certificate for signing the MUD files. 876

2.4.2 Configuration Overview 877

This section typically documents the network, software, and hardware configurations, but that is not 878
necessary for this component. 879

2.4.3 Setup 880

DigiCert allows certificates to be requested through its web-based platform, CertCentral. A user account 881
is needed to access CertCentral. For details on creating a user account and setting up an account, follow 882
the steps described here: https://docs.digicert.com/get-started/ 883

2.4.3.1 TLS Certificate 884

For this build, we leveraged DigiCert’s private TLS certificate because the MUD file server is hosted 885
internally. This certificate supports https connections to the MUD file server, which are required by the 886
MUD manager. Additional information about the TLS certificates offered by DigiCert can be found at 887
https://www.digicert.com/security-certificate-support/. 888

For instructions on how to order a TLS certificate, proceed to the DigiCert documentation found here, 889
and follow the process for the specific TLS certificate being requested: 890
https://docs.digicert.com/manage-certificates/order-your-ssltls-certificates/ 891

Once requested, integrate the certificate onto the MUD file server as described in Section 2.2.3.1. 892

2.4.3.2 Premium Certificate 893

To sign MUD files according to the MUD specification, a client certificate is required. For this 894
implementation, we leveraged DigiCert’s Premium Certificate to sign MUD files. This certificate supports 895
signing or encrypting Secure/Multipurpose Internet Mail Extensions messages, which is required by the 896
specification. 897

For detailed instructions on how to request and implement a Premium Certificate, proceed to the 898
DigiCert documentation found here: https://docs.digicert.com/manage-certificates/client-certificates-899
guide/. 900

https://www.digicert.com/certcentral/
https://docs.digicert.com/get-started/
https://www.digicert.com/security-certificate-support/
https://docs.digicert.com/manage-certificates/order-your-ssltls-certificates/
https://docs.digicert.com/manage-certificates/client-certificates-guide/
https://docs.digicert.com/manage-certificates/client-certificates-guide/

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 38

Once requested, sign MUD files as described in Section 2.2.3.2.2. 901

2.5 IoT Devices 902

2.5.1 Molex PoE Gateway and Light Engine 903

This section provides configuration details of the MUD-capable Molex PoE Gateway and Light Engine 904
used in the build. This component emits a MUD URL that uses LLDP. 905

2.5.1.1 Configuration Overview 906

The Molex PoE Gateway runs firmware created and provided by Molex. This firmware was modified by 907
Molex to emit a MUD URL that uses an LLDP message. 908

2.5.1.1.1 Network Configuration 909
The Molex PoE Gateway is connected to the network over a wired Ethernet connection. The IP address 910
is assigned dynamically by using DHCP. 911

2.5.1.1.2 Software Configuration 912
For this build, the Molex PoE Gateway is configured with Molex’s PoE Gateway firmware, version 913
1.6.1.8.4. 914

2.5.1.1.3 Hardware Configuration 915
The Molex PoE Gateway used in this build is model number 180993-0001, dated March 2017. 916

2.5.1.2 Setup 917

The Molex PoE Gateway is controlled via the Constrained Application Protocol (CoAP), and CoAP 918
commands were used to ensure that device functionality was maintained during the MUD process. 919

2.5.1.2.1 DHCP Client Configuration 920
The device uses the default DHCP client included in the Molex PoE Gateway firmware. 921

2.5.2 IoT Development Kits–Linux Based 922

This section provides configuration details for the Linux-based IoT development kits used in the build, 923
which emit MUD URLs by using DHCP. It also provides information regarding a basic IoT application used 924
to test the MUD process. 925

2.5.2.1 Configuration Overview 926

The devkits run various flavors of Linux-based operating systems and are configured to emit a MUD URL 927
during a typical DHCP transaction. They also run a Python script that allows the devkits to receive and 928

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 39

process commands by using the MQTT protocol, which can be sent to peripherals connected to the 929
devkits. 930

2.5.2.1.1 Network Configuration 931
The devkits are connected to the network over a wired Ethernet connection. The IP address is assigned 932
dynamically by using DHCP. 933

2.5.2.1.2 Software Configuration 934
For this build, the Raspberry Pi is configured on Raspbian 9, the Samsung ARTIK 520 is configured on 935
Fedora 24, and the Intel UP Squared Grove is configured on Ubuntu 16.04 LTS. The devkits also utilized 936
dhclient as the default DHCP client. This DHCP client is installed natively on many Linux distributions and 937
can be installed using a preferred package manager if not currently present. 938

2.5.2.1.3 Hardware Configuration 939
The hardware used for these devkits included the Raspberry Pi 3 Model B, Samsung ARTIK 520, and Intel 940
UP Squared Grove. 941

2.5.2.2 Setup 942

The following subsection describes setting up the devkits to send a MUD URL during the DHCP 943
transaction and to act as a connected device by leveraging an MQTT broker server (we describe setting 944
up the MQTT broker server in Section 2.8). 945

2.5.2.2.1 DHCP Client Configuration 946
We leveraged dhclient as the default DHCP client for these devices due to the availability of the DHCP 947
client on different Linux platforms and the ease of emitting MUD URLs via DHCP. 948

To set up the dhclient configuration: 949

1. Open a terminal on the device. 950

2. Ensure that any other conflicting DHCP clients are disabled or removed. 951

3. Install the dhclient package (if needed). 952

4. Edit the dhclient.conf file by entering the following command: 953

sudo nano /etc/dhcp/dhclient.conf 954

 955

5. Add the following lines: 956

option mud-url code 161 = text; 957

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 40

send mud-url = "<insert URL for MUD File here>"; 958

 959

6. Save and close the file. 960

7. Reboot the device: 961

Reboot 962

 963

8. Open a terminal. 964

9. Execute the dhclient: 965

sudo dhclient -v 966

 967
 968

2.5.2.2.2 IoT Application for Testing 969
The following Python application was created by the NCCoE to enable the devkits to act as basic IoT 970
devices: 971

#Program: IoTapp. 972

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 41

#Version: 1.0 973
#Purpose: Provide IoT capabilities to devkit. 974
#Protocols: MQTT. 975
#Functionality: Allow remote control of LEDs on connected breadboard. 976
 977
#Libraries 978
import paho.mqtt.client as mqttClient 979
import time 980
import RPi.GPIO as GPIO 981
 982
#Global Variables 983
BrokerAddress = "192.168.1.87" #IP address of Broker(Server), change as needed. Best 984
practice would be a registered domain name that can be queried for appropriate server 985
address. 986
BrokerPort = "1883" #Default port used by most MQTT Brokers. Would be 1883 if 987
using Transport Encryption with TLS. 988
ConnectionStatus = "Disconnected" #Status of connection to Broker. Should be either 989
"Connected" or "Disconnected". 990
LED = 26 991
 992
#Supporting Functions 993
def on_connect(client, userdata, flags, rc): #Function for connection status to 994
Broker. 995
 if rc == 0: 996
 ConnectionStatus = "Connected to Broker!" 997
 print(ConnectionStatus) 998
 else: 999
 ConnectionStatus = "Connection Failed!" 1000
 print(ConnectionStatus) 1001
 1002
def on_message(client, userdata, msg): #Function for parsing message data. 1003
 if "ON" in msg.payload: 1004
 print("ON!") 1005
 GPIO.output(LED, 1) 1006
 1007
 if "OFF" in msg.payload: 1008
 print("OFF!") 1009
 GPIO.output(LED, 0) 1010
 1011
def MQTTapp(): 1012
 client = mqttClient.Client() #New instance. 1013
 client.on_connect = on_connect 1014
 client.on_message = on_message 1015
 client.connect(BrokerAddress, BrokerPort) 1016
 client.loop_start() 1017
 client.subscribe("test") 1018
 try: 1019
 while True: 1020
 time.sleep(1) 1021
 except KeyboardInterrupt: 1022
 print("8") 1023
 client.disconnect() 1024

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 42

 client.loop_stop() 1025
 1026
#Main Function 1027
def main(): 1028
 1029
 GPIO.setmode(GPIO.BCM) 1030
 GPIO.setup(LED, GPIO.OUT) 1031
 1032
 print("Main function has been executed!") 1033
 MQTTapp() 1034
 1035
if __name__ == "__main__": 1036
 main() 1037

2.5.3 IoT Development Kit–u-blox C027-G35 1038

This section details configuration of a u-blox C027-G35, which emits a MUD URL by using DHCP, and a 1039
basic IoT application used to test MUD rules. 1040

2.5.3.1 Configuration Overview 1041

This devkit runs the Arm Mbed-OS and is configured to emit a MUD URL during a typical DHCP 1042
transaction. It also runs a basic IoT application to test MUD rules. 1043

2.5.3.1.1 Network Configuration 1044
The u-blox C027-G35 is connected to the network over a wired Ethernet connection. The IP address is 1045
assigned dynamically by using DHCP. 1046

2.5.3.1.2 Software Configuration 1047
For this build, the u-blox C027-G35 was configured on the Mbed-OS 5.10.4 operating system. 1048

2.5.3.1.3 Hardware Configuration 1049
The hardware used for this devkit is the u-blox C027-G35. 1050

2.5.3.2 Setup 1051

The following subsection describes setting up the u-blox C027-G35 to send a MUD URL in the DHCP 1052
transaction and to act as a connected device by establishing network connections to the update server 1053
and other destinations. 1054

2.5.3.2.1 DHCP Client Configuration 1055
To add MUD functionality to the Mbed-OS DHCP client, the following two files inside Mbed-OS require 1056
modification: 1057

 mbed-os/features/lwipstack/lwip/src/include/lwip/prot/dhcp.h 1058

• NOT mbed-os/features/lwipstack/lwip/src/include/lwip/dhcp.h 1059

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 43

 mbed-os/features/lwipstack/lwip/src/core/ipv4/lwip_dhcp.c 1060

Changes to include/lwip/prot/dhcp.h: 1061

1. Add the following line below the greatest DCHP option number (67) on line 170: 1062

 1063

Changes to core/ipv4/lwip_dhcp.c: 1064

1. Change within container around line 141: 1065

To enum dhcp_option_idx (at line 141) before the first #if, add 1066

 1067

It should now look like the screenshot below: 1068

 1069

2. Change within the function around line 975: 1070

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 44

a. To the list of local variables for static err_t dhcp_discover(struct netif 1071
*netif), add the desired MUD URL (www.example.com used here): 1072

 1073

NOTE: The MUD URL must be less than 255 octets/bytes/characters long. 1074

b. Within if (result == ERR_OK) after 1075

 1076

and before: 1077

 1078

add: 1079

 1080

3. Change within the function around line 1486: 1081

Within the following function: 1082

 1083

Within switch(op) before default, add the following case (around line 1606): 1084

char* mud_url = "https://www.example.com"; /*MUD: MUD URL*/

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 45

 1085

4. Compile by using the following command: 1086

 1087

2.5.3.2.2 IoT Application for Testing 1088
The following application was created by the NCCoE to enable the devkit to test the build as a MUD-1089
capable device: 1090

#include "mbed.h" 1091
#include "EthernetInterface.h" 1092
 1093
//DigitalOut led1(LED1); 1094
PwmOut led2(LED2); 1095
Serial pc(USBTX, USBRX); 1096
 1097
float brightness = 0.0; 1098
 1099
// Network interface 1100
EthernetInterface net; 1101
 1102
// Socket demo 1103
int main() { 1104
 int led1 = true; 1105
 1106
 for (int i = 0; i < 4; i++) { 1107
 1108
 led2 = (led1)? 0.5 : 0.0; 1109
 1110
 led1 = !led1; 1111
 wait(0.5); 1112
 } 1113
 1114
 for (int i = 0; i < 8; i++) { 1115
 1116
 led2 = (led1)? 0.5 : 0.0; 1117
 1118
 led1 = !led1; 1119
 wait(0.25); 1120
 } 1121
 1122
 for (int i = 0; i < 8; i++) { 1123
 1124
 led2 = (led1)? 0.5 : 0.0; 1125
 1126
 led1 = !led1; 1127
 wait(0.125); 1128

mbed compile -m ublox_c027 -t gcc_arm

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 46

 } 1129
 TCPSocket socket; 1130
 char sbuffer[] = "GET / HTTP/1.1\r\nHost: www.updateserver.com\r\n\r\n"; 1131
 char bbuffer[] = "GET / HTTP/1.1\r\nHost: www.unapprovedserver.com\r\n\r\n"; 1132
 int scount, bcount; 1133
 char rbuffer[64]; 1134
 char brbuffer[64]; 1135
 int rcount, brcount; 1136
 1137
 /* By default grab an IP address*/ 1138
 // Bring up the ethernet interface 1139
 pc.printf("Ethernet socket example\r\n"); 1140
 net.connect(); 1141
 // Show the network address 1142
 const char *ip = net.get_ip_address(); 1143
 pc.printf("IP address is: %s\r\n", ip ? ip : "No IP"); 1144
 socket.open(&net); 1145
 /* End of default IP address */ 1146
 1147
 pc.printf("Press U to turn LED1 brightness up, D to turn it down, G to get IP, R to 1148
release IP, H for HTTP request, B for blocked HTTP request\r\n"); 1149
 1150
 while(1) { 1151
 char c = pc.getc(); 1152
 if((c == 'u') && (brightness < 0.5)) { 1153
 brightness += 0.01; 1154
 led2 = brightness; 1155
 } 1156
 if((c == 'd') && (brightness > 0.0)) { 1157
 brightness -= 0.01; 1158
 led2 = brightness; 1159
 } 1160
 if(c == 'g'){ 1161
 // Bring up the ethernet interface 1162
 pc.printf("Sending DHCP Request...\r\n"); 1163
 net.connect(); 1164
 // Show the network address 1165
 const char *ip = net.get_ip_address(); 1166
 pc.printf("IP address is: %s\r\n", ip ? ip : "No IP"); 1167
 } 1168
 if(c == 'r'){ 1169
 socket.close(); 1170
 net.disconnect(); 1171
 pc.printf("IP Address Released\r\n"); 1172
 } 1173
 if(c == 'h'){ 1174
 1175
 pc.printf("Sending HTTP Request...\r\n"); 1176
 // Open a socket on the network interface, and create a TCP connection 1177
 socket.open(&net); 1178
 socket.connect("www.updateserver.com", 80); 1179
 // Send a simple http request 1180
 scount = socket.send(sbuffer, sizeof sbuffer); 1181
 pc.printf("sent %d [%.*s]\r\n", scount, strstr(sbuffer, "\r\n")-sbuffer, sbuffer); 1182
 // Receive a simple http response and print out the response line 1183
 rcount = socket.recv(rbuffer, sizeof rbuffer); 1184

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 47

 pc.printf("recv %d [%.*s]\r\n", rcount, strstr(rbuffer, "\r\n")-rbuffer, rbuffer); 1185
 socket.close(); 1186
 } 1187
 if(c == 'b'){ 1188
 pc.printf("Sending Blocked HTTP Request...\r\n"); 1189
 // Open a socket on the network interface, and create a TCP connection 1190
 socket.open(&net); 1191
 socket.connect("www.unapprovedserver.com", 80); 1192
 // Send a simple http request 1193
 bcount = socket.send(bbuffer, sizeof bbuffer); 1194
 pc.printf("sent %d [%.*s]\r\n", bcount, strstr(bbuffer, "\r\n")-bbuffer, bbuffer); 1195
 1196
 // Receive a simple http response and print out the response line 1197
 brcount = socket.recv(brbuffer, sizeof brbuffer); 1198
 pc.printf("recv %d [%.*s]\r\n", brcount, strstr(brbuffer, "\r\n")-brbuffer, 1199
brbuffer); 1200
 socket.close(); 1201
 } 1202
 } 1203
} 1204

2.5.4 IoT Devices–Non-MUD-Capable 1205

This section details configuration of non-MUD-capable IoT devices attached to the implementation 1206
network. These include several types of devices, such as cameras, mobile phones, lighting, a connected 1207
assistant, a printer, a baby monitor, a wireless access point, and a digital video recorder. These devices 1208
did not emit a MUD URL or have MUD capabilities of any kind. 1209

2.5.4.1 Configuration Overview 1210

These non-MUD-capable IoT devices are unmodified and still retain the default manufacturer 1211
configurations. 1212

2.5.4.1.1 Network Configuration 1213
These IoT devices are configured to obtain an IP address via DHCP. 1214

2.5.4.1.2 Software Configuration 1215
The software on these devices is configured according to standard manufacturer instructions. 1216

2.5.4.1.3 Hardware Configuration 1217
The hardware used in these devices is unmodified from manufacturer specifications. 1218

2.5.4.2 Setup 1219

These devices were set up according to the manufacturer instructions and connected to the Cisco switch 1220
via Ethernet cable or connected wirelessly through the wireless access point. 1221

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 48

2.5.4.2.1 DHCP Client Configuration 1222
These IoT devices used the default DHCP clients provided by the original manufacturer and were not 1223
modified in any way. 1224

2.6 Update Server 1225

This section describes how to implement a server that will act as an update server. It will attempt to 1226
access and be accessed by the IoT device, in this case one of the development kits we built in the lab. 1227

2.6.1 Update Server Overview 1228

The update server is an Apache web server that hosts mock software update files to be served as 1229
software updates to our IoT device devkits. When the server receives an http request, it sends the 1230
corresponding update file. 1231

2.6.2 Configuration Overview 1232

The following subsections document the software, hardware, and network requirements for the update 1233
server. 1234

2.6.2.1 Network Configuration 1235

The IP address was statically assigned. 1236

2.6.2.2 Software Configuration 1237

For this build, the update server was configured on the Ubuntu 18.04 LTS operating system. 1238

2.6.2.3 Hardware Configuration 1239

The update server was hosted in the NCCoE’s virtual environment, functioning as a cloud service. 1240

2.6.3 Setup 1241

The Apache web server was set up by using the official Apache documentation at 1242
https://httpd.apache.org/docs/current/install.html. After completing the process, the SSL/TLS 1243
encryption was set up by using the digital certificate and key obtained from DigiCert. This was set up by 1244
using the official Apache documentation, found at 1245
https://httpd.apache.org/docs/current/ssl/ssl_howto.html. 1246

The following configurations were made to the server to host the update file: 1247

1. Open a terminal. 1248

2. Change directories to the Hypertext Markup Language (HTML) folder: 1249

https://httpd.apache.org/docs/current/install.html
https://httpd.apache.org/docs/current/ssl/ssl_howto.html

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 49

cd /var/www/html/ 1250

3. Create the update file (Note: this is a mock update file): 1251

touch IoTsoftwareV2.tar.gz 1252

2.7 Unapproved Server 1253

This section describes how to implement a server that will act as an unapproved server. It will attempt 1254
to access and to be accessed by an IoT device, in this case one of the MUD-capable devices on the 1255
implementation network. 1256

2.7.1 Unapproved Server Overview 1257

The unapproved server is an internet host that is not explicitly authorized in the MUD file to 1258
communicate with the IoT device. When the IoT device attempts to connect to this server, the router or 1259
switch should not allow this traffic because it is not an approved internet service as defined by the 1260
corresponding MUD file. Likewise, when the server attempts to connect to the IoT device, this traffic 1261
should be denied at the router or switch. 1262

2.7.2 Configuration Overview 1263

The following subsections document the software, hardware, and network configurations for the 1264
unapproved server. 1265

2.7.2.1 Network Configuration 1266

The unapproved server hosts a web server that is accessed via transmission control protocol (TCP) port 1267
80. Any applications that request access to this server need to be able to connect on this port. Use 1268
firewall-cmd, iptables, or any other system utility for manipulating the firewall to open this port. 1269

2.7.2.2 Software Configuration 1270

For this build, the CentOS 7 OS was leveraged with an Apache web server. 1271

2.7.2.3 Hardware Configuration 1272

The unapproved server was hosted in the NCCoE’s virtual environment, functioning as a cloud service. 1273
The IP address was statically assigned. 1274

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 50

2.7.3 Setup 1275

The following subsection describes the setup process for configuring the unapproved server. 1276

2.7.3.1 Apache Web Server 1277

The Apache web server was set up by using the official Apache documentation at 1278
https://httpd.apache.org/docs/current/install.html. SSL/TLS encryption was not used for this server. 1279

2.8 MQTT Broker Server 1280

2.8.1 MQTT Broker Server Overview 1281

For this build, the open-source tool Mosquitto was used as the MQTT broker server. The server 1282
communicates publish and subscribe messages among multiple clients. For our implementation, this 1283
server allows mobile devices set up with the appropriate application to communicate with the MQTT-1284
enabled IoT devices in the build. The messages exchanged by the devices are on and off messages, 1285
which allow the mobile device to control the LED light on the MQTT-enabled IoT device. 1286

2.8.2 Configuration Overview 1287

The following subsections document the software, hardware, and network requirements for the MQTT 1288
broker server. 1289

2.8.2.1 Network Configuration 1290

The MQTT broker server was hosted in the NCCoE’s virtual environment, functioning as a cloud service. 1291
The IP address was statically assigned. 1292

The server is accessed via TCP port 1883. Any clients that require access to this server need to be able to 1293
connect on this port. Use firewall-cmd, iptables, or any other system utility for manipulating the firewall 1294
to open this port. 1295

2.8.2.2 Software Configuration 1296

For this build, the MQTT broker server was configured on an Ubuntu 18.04 LTS operating system. 1297

2.8.2.3 Hardware Configuration 1298

This server was hosted in the NCCoE’s virtual environment, functioning as a cloud service. The IP address 1299
was statically assigned. 1300

https://httpd.apache.org/docs/current/install.html

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 51

2.8.3 Setup 1301

In this section we describe setting up the MQTT broker server to communicate messages to and from 1302
the controlling application and the IoT device. 1303

2.8.3.1 Mosquitto Setup 1304

1. Install the open-source MQTT broker server, Mosquitto, by entering the following command: 1305

sudo apt-get update && sudo apt-get install mosquitto 1306

 1307

Following the installation, this implementation leveraged the default configuration of the Mosquitto 1308
server. The MQTT broker server was set up by using the official Mosquitto documentation at 1309
https://mosquitto.org/man/. 1310

2.9 Forescout–IoT Device Discovery 1311

This section describes how to implement Forescout’s appliance and enterprise manager to provide 1312
device discovery on the network. 1313

2.9.1 Forescout Overview 1314

The Forescout appliance discovers, catalogs, profiles, and classifies the devices that are connected to the 1315
demonstration network. When a device is added to or removed from the network, the Forescout 1316
appliance is updated and actively monitors these devices on the network. The administrator will be able 1317
to manage multiple Forescout appliances from a central point by integrating the appliance with the 1318
enterprise manager. 1319

2.9.2 Configuration Overview 1320

The following subsections document the software, hardware, and network requirements for the 1321
Forescout appliance and enterprise manager. 1322

2.9.2.1 Network Configuration 1323

The virtual Forescout appliance was hosted on VLAN 2 of the Cisco switch. It was set up with just the 1324
monitor interface. The network configuration for the Forescout appliance was completed by using the 1325
official Forescout documentation at https://www.Forescout.com/wp-1326
content/uploads/2018/10/CounterACT_Installation_Guide_8.0.1.pdf (see Chapters 2 and 8). 1327

The virtual enterprise manager was hosted in the virtual environment that is shared across each build. 1328

https://mosquitto.org/man/
https://www.forescout.com/wp-content/uploads/2018/10/CounterACT_Installation_Guide_8.0.1.pdf
https://www.forescout.com/wp-content/uploads/2018/10/CounterACT_Installation_Guide_8.0.1.pdf

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 52

2.9.2.2 Software Configuration 1329

The build leveraged a virtual Forescout appliance VCT-R version 8.0.1 along with a virtual enterprise 1330
manager VCEM-05 version 8.0.1. Both virtual appliances were built on a Linux OS supported by 1331
Forescout. 1332

Forescout provides software for managing the appliances on the network. The Forescout console is 1333
software that allows management of the Forescout appliance/enterprise manager and visualization of 1334
the data gathered by the appliances. 1335

2.9.2.3 Hardware Configuration 1336

The build leveraged a virtual Forescout appliance, which was set up in the lab environment on a 1337
dedicated machine hosting the local virtual machines in Build 1. 1338

The virtual enterprise manager was hosted in the NCCoE’s virtual environment with a static IP 1339
assignment. 1340

2.9.3 Setup 1341

In this section we describe setting up the virtual Forescout appliance and the virtual enterprise manager. 1342

2.9.3.1 Forescout Appliance Setup 1343

The virtual Forescout appliance was set up by using the official Forescout documentation at 1344
https://www.Forescout.com/wp-content/uploads/2018/10/CounterACT_Installation_Guide_8.0.1.pdf 1345
(see Chapters 3 and 8). 1346

2.9.3.2 Enterprise Manager Setup 1347

The enterprise manager was set up by using the official Forescout documentation at 1348
https://www.Forescout.com/wp-content/uploads/2018/10/CounterACT_Installation_Guide_8.0.1.pdf 1349
(see Chapters 4 and 8). 1350

Using the enterprise manager, we configured the following modules: 1351

 Endpoint 1352

 Network 1353

 Authentication 1354

 Core Extension 1355

 Device Profile Library—https://www.Forescout.com/wp-1356
content/uploads/2018/04/CounterACT_Device_Profile_Library.pdf 1357

https://www.forescout.com/wp-content/uploads/2018/10/CounterACT_Installation_Guide_8.0.1.pdf
https://www.forescout.com/wp-content/uploads/2018/10/CounterACT_Installation_Guide_8.0.1.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Device_Profile_Library.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Device_Profile_Library.pdf

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 53

 IoT Posture Assessment Library—https://www.Forescout.com/wp-1358
content/uploads/2018/04/CounterACT_IoT_Posture_Assessment_Library-1.pdf 1359

 Network Interface Card (NIC) Vendor DB—https://www.Forescout.com/wp-1360
content/uploads/2018/04/CounterACT_NIC_Vendor_DB_17.0.12.pdf 1361

 Windows Applications—https://www.Forescout.com/wp-1362
content/uploads/2018/04/CounterACT_Windows_Applications.pdf 1363

 Windows Vulnerability Database (DB)—https://www.Forescout.com/wp-1364
content/uploads/2018/04/CounterACT_Windows_Vulnerability_DB_18.0.2.pdf 1365

 Open Integration Module—https://www.Forescout.com/wp-1366
content/uploads/2018/08/CounterACT_Open_Integration_Module_Overview_1.1.pdf 1367

3 Build 2 Product Installation Guides 1368

This section of the practice guide contains detailed instructions for installing and configuring the 1369
products used to implement Build 2. For additional details on Build 2’s logical and physical architectures, 1370
please refer to NIST SP 1800-15B. 1371

3.1 Yikes! MUD Manager 1372

This section describes the Yikes! MUD manager version v1.1.3, which is a software package deployed on 1373
the Yikes! router. It should not require configuration as it should be fully functioning upon connecting 1374
the Yikes! router to the network. 1375

3.1.1 Yikes! MUD Manager Overview 1376

The Yikes! MUD manager is a software package supported by MasterPeace within the Yikes! physical 1377
router. The version of the Yikes! router used in this implementation supports IoT devices that leverage 1378
DHCP as their default MUD emission method. 1379

3.1.2 Configuration Overview 1380

At this implementation, no additional network, software, or hardware configuration was required to 1381
enable the Yikes! MUD manager capability on the Yikes! router. 1382

3.1.3 Setup 1383

At this implementation, no setup was required to enable the Yikes! MUD manager capability on the 1384
Yikes! router. See the Yikes! Router section for details on the router setup. 1385

https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_IoT_Posture_Assessment_Library-1.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_IoT_Posture_Assessment_Library-1.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_NIC_Vendor_DB_17.0.12.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_NIC_Vendor_DB_17.0.12.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Applications.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Applications.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Vulnerability_DB_18.0.2.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Vulnerability_DB_18.0.2.pdf
https://www.forescout.com/wp-content/uploads/2018/08/CounterACT_Open_Integration_Module_Overview_1.1.pdf
https://www.forescout.com/wp-content/uploads/2018/08/CounterACT_Open_Integration_Module_Overview_1.1.pdf

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 54

3.2 MUD File Server 1386

3.2.1 MUD File Server Overview 1387

For this build, the NCCoE leveraged a MUD file server hosted by MasterPeace. This file server hosts MUD 1388
files along with their corresponding signature files for the MUD-capable IoT devices used in Build 2. The 1389
MUD file server is responsible for serving the MUD file and the corresponding signature file upon 1390
request from the MUD manager. These files were created by the NCCoE and provided to MasterPeace to 1391
host due to the Yikes! cloud component requirement that the MUD file server be internet accessible to 1392
display the contents of the MUD file in the Yikes! user interface (UI). 1393

To build an on-premises MUD file server and to create MUD files for MUD-capable IoT devices, please 1394
follow the instructions in Build 1’s MUD File Server section. 1395

3.3 Yikes! DHCP Server 1396

This section describes the Yikes! DHCP server, which should also be fully functional out of the box and 1397
should not require any modification upon receipt. 1398

3.3.1 Yikes! DHCP Server Overview 1399

The Yikes! DHCP server is MUD capable and, like the Yikes! MUD manager and Yikes! threat-signaling 1400
agent, is a logical component within the Yikes! router. In addition to dynamically assigning IP addresses, 1401
it recognizes the DHCP option (161) and logs DHCP events that include this option to a log file. This log 1402
file is monitored by the Yikes! MUD manager, which is responsible for handling the MUD requests. 1403

3.3.2 Configuration Overview 1404

At this implementation, no additional network, software, or hardware configuration was required to 1405
enable the Yikes! DHCP server capability on the Yikes! router. 1406

3.3.3 Setup 1407

At this implementation, no additional setup was required. 1408

3.4 Yikes! Router 1409

This section describes how to implement and configure the Yikes! router, which requires minimal 1410
configuration from a user standpoint. 1411

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 55

3.4.1 Yikes! Router Overview 1412

The Yikes! router is a customized original equipment manufacturer product, which at implementation 1413
was a preproduction product. It is a self-contained router, Wi-Fi access point, and firewall that 1414
communicates locally with Wi-Fi devices and wired devices. The Yikes! router leveraged in this 1415
implementation was developed on an OpenWRT base router with the Yikes! capabilities added on. The 1416
Yikes! router hosts all the software necessary to enable a MUD infrastructure on premise. It also 1417
communicates with the Yikes! cloud and threat-signaling services to support additional capabilities in 1418
the network. 1419

At this implementation, the Yikes! MUD manager, DHCP server, and GCA threat-signaling components 1420
all reside on the Yikes! router and are configured to function without any additional configuration. 1421

3.4.2 Configuration Overview 1422

3.4.2.1 Network Configuration 1423

Implementation of a Yikes! router requires an internet source such as a Digital Subscriber Line (DSL) or 1424
cable modem. 1425

3.4.2.2 Software Configuration 1426

At this implementation, no additional software configuration was required to set up the Yikes! router. 1427

3.4.2.3 Hardware Configuration 1428

At this implementation, no additional hardware configuration was required to set up the Yikes! router. 1429

3.4.3 Setup 1430

As stated earlier, the version of the Yikes! router used in Build 2 was preproduction, so MasterPeace 1431
may have performed some setup and configuration steps that are not documented here. Those 1432
additional steps, however, are not expected to be required to set up the production version of the 1433
router. The following setup steps were performed: 1434

1. Unbox the Yikes! router and provided accessories. 1435

2. Connect the Yikes! router’s wide area network port to an internet source (e.g., cable modem or 1436
DSL). 1437

3. Plug the power supply into the Yikes! router. 1438

4. Power on the Yikes! router. 1439

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 56

After powering on the router, the network password must be provided so the router can authenticate 1440
itself to the network. In addition, best security practices (not documented here), such as changing the 1441
router’s administrative password, should be followed in accordance with the security policies of the 1442
user. 1443

3.5 DigiCert Certificates 1444

DigiCert’s CertCentral web-based platform allows provisioning and management of publicly trusted 1445
X.509 certificates for a variety of purposes. After establishing an account, clients can log in, request, 1446
renew, and revoke certificates by using only a browser. For Build 2, the Premium Certificate created in 1447
Build 1 was leveraged for signing the MUD files. To request and implement DigiCert certificates, follow 1448
the documentation in Build 1’s DigiCert Certificates section and subsequent sections. 1449

3.6 IoT Devices 1450

3.6.1 IoT Development Kits—Linux Based 1451

3.6.1.1 Configuration Overview 1452

This section provides configuration details for the Linux-based IoT development kits used in the build, 1453
which emit MUD URLs by using DHCP. It also provides information regarding a basic IoT application used 1454
to test the MUD process. 1455

3.6.1.1.1 Network Configuration 1456
The devkits are connected to the network over both a wired Ethernet connection and wirelessly. The IP 1457
address is assigned dynamically by using DHCP. 1458

3.6.1.1.2 Software Configuration 1459
For this build, Raspberry Pi is configured on Raspbian 9, the Samsung ARTIK 520 is configured on Fedora 1460
24, the NXP i.MX 8m is configured on Yocto Linux, and the BeagleBone Black is configured on Debian 9.5. 1461
The devkits also utilized a variety of DHCP clients, including dhcpcd and dhclient (see Build 1’s IoT 1462
Development Kits–Linux Based section for dhclient configurations). This build introduced dhcpcd as a 1463
method for emitting a MUD URL for all devkits in this build, apart from the NXP i.MX 8m, which 1464
leveraged dhclient. Dhcpcd is installed natively on many Linux distributions and can be installed using a 1465
preferred package manager if not currently present. 1466

3.6.1.1.3 Hardware Configuration 1467
The hardware used for these devkits included the Raspberry Pi 3 Model B, Samsung ARTIK 520, NXP i.MX 1468
8m, and BeagleBone Black. 1469

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 57

3.6.1.2 Setup 1470

The following subsection describes setting up the devkits to send a MUD URL during the DHCP 1471
transaction using dhcpcd as the DHCP client on the Raspberry Pi. For dhclient instructions, see Build 1’s 1472
Setup and DHCP Client Configuration sections. 1473

3.6.1.2.1 DHCP Client Configuration 1474
These devkits utilized dhcpcd version 7.2.3. Configuration consisted of adding the following line to the 1475
file located at /etc/dhcpcd.conf: 1476

mudurl https://<example-url> 1477

 1478

3.7 Update Server 1479

Build 2 leveraged the preexisting update server that is described in Build 1’s Update Server section. To 1480
implement a server that will act as an update server, see the documentation in Build 1’s Update Server 1481
section. The update server will attempt to access and be accessed by the IoT device, which, in this case, 1482
is one of the development kits we built in the lab. 1483

3.8 Unapproved Server 1484

Build 2 leverages the preexisting unapproved server that is described in Build 1’s Unapproved Server 1485
section. To implement a server that will act as an unapproved server, see the documentation in Build 1’s 1486
Unapproved Server section. The unapproved server will attempt to access and to be accessed by an IoT 1487
device, which, in this case, is one of the MUD-capable devices on the implementation network. 1488

3.9 Yikes! IoT Device Discovery, Categorization, and Traffic Policy 1489

Enforcement (Yikes! Cloud and Yikes! Mobile Application) 1490

This section describes how to implement and configure Yikes! IoT device discovery, categorization, and 1491
traffic policy enforcement, which is a capability supported by the Yikes! router, Yikes! cloud, and Yikes! 1492
mobile application. 1493

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 58

3.9.1 Yikes! IoT Device Discovery, Categorization, and Traffic Policy Enforcement 1494
Overview 1495

The Yikes! router provides an IoT device discovery service for Build 2. Yikes! discovers, inventories, 1496
profiles, and classifies devices connected to the local network consistent with each device’s type and 1497
allows traffic enforcement policies to be configured by the user through the Yikes! mobile application. 1498

Yikes! isolates every device on the network so that, by default, no device is permitted to communicate 1499
with any other device. Devices added to the network are automatically identified and categorized based 1500
on information such as DHCP header, MAC address, operating system, manufacturer, and model. 1501

Using the Yikes! mobile application, users can define fine-grained device filtering. The enforcement can 1502
be set to enable specific internet access (north/south) and internal network access to specific devices 1503
(east/west) as determined by category-specific rules. 1504

3.9.2 Configuration Overview 1505

3.9.2.1 Network Configuration 1506

No network configurations outside Yikes! router network configurations are required to enable this 1507
capability. 1508

3.9.2.2 Software Configuration 1509

MasterPeace performed some software configuration on the Yikes! router after it was deployed as part 1510
of Build 2. Aside from this, no additional software configuration was required to support device 1511
discovery. When the production version of the Yikes! router is available, it is not expected to require 1512
configuration. The Yikes! mobile application was still in development during deployment. The build used 1513
the web-based Yikes! mobile application from a laptop in the lab environment to display and configure 1514
device information and traffic policies. 1515

3.9.2.3 Hardware Configuration 1516

At this implementation, the Yikes! mobile application was not published in an application store. For this 1517
reason, a desktop was leveraged to load the web page hosting the “mobile application.” 1518

3.9.3 Setup 1519

Once devices have been added to the network on the Yikes! router, they will appear in the Yikes! cloud 1520
inventory, which is accessible via the Yikes! mobile application. At this implementation, the Yikes! 1521
mobile application and the processes associated with the Yikes! cloud service were under development. 1522
It is possible that the design of the UI and the workflow will change for the final implementation of the 1523
mobile application. 1524

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 59

3.9.3.1 Yikes! Router and Account Cloud Registration 1525

At this implementation, the Yikes! router and cloud account registration processes were under 1526
development. As a result, this section will not describe how to associate a Yikes! router with a Yikes! 1527
cloud instance. The steps below show the process for account registration at this implementation. 1528

1. Open a browser and access the Yikes! UI (In the preproduction version of the router, accessing 1529
the UI required inputting a URL provided by MasterPeace): 1530

 1531

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 60

2. Click on the Register button to sign up for an account: 1532

 1533

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 61

3. Populate the requested information for the account: First Name, Last Name, Email, and 1534
Password. Click Sign Up: 1535

 1536
Note: There will be additional steps related to associating the Yikes! router with the Yikes! 1537
account being created. However, at this implementation, this process was still under 1538
development. 1539

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 62

4. Once the account is approved and linked to the Yikes! router, Log in with the credentials created 1540
in step 3: 1541

 1542

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 63

5. The home screen will show the network overview: 1543

 1544

3.9.3.2 Yikes! MUD-Capable IoT Device Discovery 1545

This section details the Yikes! MUD-capable IoT device discovery capability. This feature is accessible 1546
through the Yikes! mobile application and identifies all MUD-capable IoT devices that are connected to 1547
the network. 1548

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 64

1. Open the menu pane in the UI: 1549

 1550

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 65

2. Click the Devices button to open the devices menu: 1551

 1552

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 66

3. Click the MUD tab to switch from the ALL device view to review the MUD-capable IoT devices 1553
connected to the network: 1554

 1555

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 67

4. All MUD-capable devices on the network will have the MUD label as seen below: 1556

 1557

3.9.3.3 Yikes! Alerts 1558

This section details the Yikes! alerting capability. This feature is accessible through the Yikes! mobile 1559
application and notifies users when new devices have been connected to the network. Additionally, this 1560
feature alerts the user when new devices are not recognized as known devices and are placed in the 1561
uncategorized device category by the Yikes! cloud. 1562

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 68

From the Yikes! mobile application, the user can edit the information about the device (e.g., name, 1563
make, and model) and modify the device’s category or can choose to ignore the alert by removing the 1564
notification. 1565

1. Open the menu pane in the UI: 1566

 1567

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 69

2. Click Alerts to open the Alerts menu: 1568

 1569

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 70

3. Select a device to edit the device information and category by clicking Edit Device: 1570

 1571

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 71

4. Modify the Category of the device by clicking the device’s current category: 1572

 1573

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 72

5. Select the desired category, in this case Smart Appliances, and click OK: 1574

 1575

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 73

6. The device Category will update to reflect the new selection. Click Add Device to complete the 1576
process: 1577

 1578

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 74

7. The alerts menu will update and no longer include the device that was just modified and added: 1579

 1580

3.9.3.4 Yikes! Device Categories and Setting Rules 1581

The Yikes! mobile application provides the capability to view predefined device categories and set rules 1582
for local communication between categories of devices on the local network and internet rules for all 1583
devices in a selected category. 1584

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 75

1. Click the menu bar to open the menu pane: 1585

 1586

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 76

2. Click the Device Categories option to view all device categories: 1587

 1588

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 77

3. Select the category of device to view and configure rules: 1589

 1590

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 78

4. Modify local rules by clicking on the category of devices with which the selected category is 1591
permitted to communicate: 1592

 1593

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 79

 1594

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 80

5. Scroll to the bottom of the page to view the current Internet Rules for this category, and change 1595
the permissions by clicking on IoT Specific Sites: 1596

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 81

1597

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 82

 1598

Smart appliances should now be permitted to communicate locally to Smart Appliances, Home 1599
Assistants, Tablets, Cell Phones, and, externally, to IoT Specific Sites. 1600

3.9.3.5 Yikes! Network Rules 1601

1. The Yikes! mobile application allows reviewing the rules that have been implemented on the 1602
network. These rules are divided into two main sections: Local Rules and Internet Rules. Local 1603
rules display the local communications permitted for each category of devices. Internet rules 1604
display the internet communications permitted for each category of devices. This section re-1605
views the rules defined for Smart Appliances in Yikes! Device Categories and Setting Rules UI: 1606

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 83

 1607

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 84

2. Click Network Rules to navigate to the rules menu: 1608

 1609

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 85

3. Click Local Rules to view the permitted local communications for each device category: 1610

 1611

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 86

4. Scroll down to view the local rules for the Smart Appliances category: 1612

 1613

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 87

5. Minimize the rules by clicking the Local Rules button: 1614

 1615

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 88

6. Expand the rules that show internet rules for device categories by clicking Internet Rules: 1616

 1617

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 89

7. Scroll down to view the internet rules for the Smart Appliances category: 1618

 1619

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 90

8. Minimize the rules by clicking the Internet Rules button: 1620

 1621

3.10 GCA Quad9 Threat Signaling in Yikes! Router 1622

This section describes the threat-signaling service provided by GCA in the Yikes! router. This capability 1623
should not require configuration because the Quad9 Active Threat Response (Q9Thrt) open-source 1624
software should be fully functional when the Yikes! router to connects to the network. Please see the 1625
Q9Thrt GitHub page for details on this software: https://github.com/osmud/q9thrt#q9thrt. 1626

https://github.com/osmud/q9thrt#q9thrt

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 91

3.10.1 GCA Quad9 Threat Signaling in Yikes! Router Overview 1627

The GCA Q9Thrt leverages DNS traffic by using Quad9 DNS services and threat intelligence from 1628
ThreatSTOP. As detailed in NIST SP 1800-15B, Q9Thrt is integrated into the Yikes! router and relies on 1629
the availability of three third-party services in the cloud: Quad9 DNS service, Quad9 threat API, and 1630
ThreatSTOP threat MUD file server. The Yikes! router is integrated with GCA Q9Thrt capabilities 1631
implemented, configured, and enabled out of the box. 1632

3.10.2 Configuration Overview 1633

At this implementation, no additional network, software, or hardware configuration was required to 1634
enable GCA Q9Thrt on the Yikes! router. 1635

3.10.3 Setup 1636

At this implementation, no additional setup was required to enable GCA Q9Thrt on the Yikes! router. 1637
See the Yikes! Router section for details on the router setup. 1638

To take advantage of threat signaling, the Yikes! router uses the Quad9 DNS services for domain name 1639
resolution. GCA Quad threat signaling depends upon the Quad9 DNS services to be up and running. The 1640
Quad9 threat API must also be available to provide the Yikes! router with information regarding specific 1641
threats. In addition, for any given threat that is found, the MUD file server provided by the threat 1642
intelligence service that has flagged that threat as potentially dangerous must also be available. These 1643
are third-party services that GCA Q9Thrt relies upon to be set up, configured, and available. 1644

It is possible to implement the Q9Thrt feature onto a non-Yikes! router. To integrate the Q9Thrt feature 1645
onto an existing router, see the open-source software on GitHub: https://github.com/osmud/q9thrt. 1646

This software was designed for and has been integrated successfully using the OpenWRT platform but 1647
has the potential to be integrated into various networking environments. Instructions on how to deploy 1648
Q9thrt onto an existing router can be found on https://github.com/osmud/q9thrt#q9thrt. 1649

4 Build 3 Product Installation Guides 1650

This section of the practice guide contains detailed instructions for installing, configuring, and 1651
integrating the products used to implement Build 3. For additional details on Build 3’s logical and 1652
physical architectures, please refer to NIST SP 1800-15B. 1653

https://github.com/osmud/q9thrt
https://github.com/osmud/q9thrt#q9thrt

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 92

4.1 Product Installation 1654

4.1.1 DigiCert Certificates 1655

DigiCert’s CertCentral web-based platform allows provisioning and management of publicly trusted 1656
X.509 certificates for a variety of purposes. After establishing an account, clients can log in, request, 1657
renew, and revoke certificates by using only a browser. For Build 3, the Premium Certificate created in 1658
Build 1 was leveraged for signing the MUD files. Additionally, this implementation leveraged a standard 1659
SSL certificate to secure the cloud servers. You will need to request standard SSL certificates for each of 1660
the servers in your implementation. For this build we requested standard SSL certificates for two 1661
servers—the MUD file server and the Micronets service provider cloud server. To request and 1662
implement DigiCert certificates, follow the documentation in Build 1’s DigiCert Certificates section and 1663
subsequent sections. 1664

Once you have received the requested certificates, you can store these on the respective servers in your 1665
desired location. For this demonstration, we simply stored them in the workspace directory on the 1666
appropriate servers, but it is likely these would be stored in the /usr/lib or /etc/lib directories. 1667

4.1.2 MUD Manager 1668

This section describes the CableLabs MUD manager, which, for this implementation, is a cloud-provided 1669
service. This implementation leveraged the nccoe-build-3 branch of CableLabs MUD manager Git 1670
release. This service can be hosted by the implementer or another party. This documentation describes 1671
setting up your own MUD manager. 1672

4.1.2.1 MUD Manager Overview 1673

The CableLabs MUD manager is used by the Micronets Manager as a utility service to retrieve MUD files 1674
from a passed URL, parse the MUD file, and produce device communication restriction declarations that 1675
can be passed to the associated Micronets Gateway Service. 1676

This Micronets MUD manager is hosted in the service provider cloud and for this implementation is on 1677
the same server as the other Micronets services. The MUD manager is responsible for retrieving MUD 1678
files and their associated signature files and executing verification as outlined in the MUD specification. 1679
It generates the ACLs for the device based on the MUD file and provides this information to the 1680
Micronets Manager. 1681

4.1.2.2 Configuration Overview 1682

The following subsections document the software and network configurations for the MUD manager. 1683
Please note that the MUD manager, Micronets Manager, Websocket Proxy, MUD registry, and MSO 1684
portal are all implemented on the same server, nccoe-server1.micronets.net. 1685

https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/install/mud-manager.md
https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/install/mud-manager.md
https://github.com/cablelabs/micronets-manager/blob/master/README.md
https://github.com/cablelabs/micronets-gw/blob/master/README.md

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 93

4.1.2.2.1 Network Configuration 1686
The nccoe-server1.micronets.net server was hosted outside the lab environment on a Linode cloud-1687
hosted Linux server. Its IP address was statically assigned. 1688

4.1.2.2.2 Software Configuration 1689
For this build, the server ran on an Ubuntu 18.04 LTS operating system. The MUD manager runs in its 1690
own docker container and is configured to use SSL/TLS encryption. 1691

The following software is required to install, configure, and operate the MUD manager: 1692

 an Ubuntu 18.04 LTS server reachable by the server hosting the Micronets Manager instances 1693
and any Micronets gateways 1694

 docker (v18.06 or higher) 1695

 curl 1696

 NGINX 1697

4.1.2.2.3 Hardware Configuration 1698
The following hardware is required to install, configure, and operate the MUD manager: 1699

 4 gigabyte (GB) of RAM 1700

 50 GB of free disk space 1701

4.1.2.3 Setup 1702

The subsequent sections describe installing, configuring, and confirming general operation for the MUD 1703
manager. 1704

4.1.2.3.1 Install and Set Up Dependencies 1705
1. Make directory for downloading micronets-related scripts and packages: 1706

mkdir Projects/micronets/ 1707

2. Install docker, curl, and NGINX by entering the following command: 1708

sudo apt install docker curl nginx 1709

3. Create an NGINX config file for this server (Note: If you are following the architecture for this 1710
implementation, all Micronets cloud components will be hosted on this server, and this will be 1711
the same config file that will be modified to add routes to the different Micronets services): 1712

sudo vim /etc/nginx/sites-available/<ServerURL> 1713

sudo vim /etc/nginx/sites-available/nccoe-server1.micronets.net 1714

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 94

4. Add the following configuration block to the file and add the path to the certificate and key file 1715
received from your DigiCert standard SSL. (Note: Additional locations will be added to this con-1716
figuration block as you continue to set up the different Micronets services.) 1717

server { 1718
 listen 443 ssl; 1719

 listen [::]:443 ssl; 1720

root /var/www/html; 1721

index index.html index.htm index.nginx-debian.html; 1722

server_name nccoe-server1.micronets.net; 1723

 location / { 1724

 try_files $uri $uri/ =404; 1725

 } 1726

ssl_certificate /home/micronets-dev/Projects/micronets/cert/nccoe-1727
server1_micronets_net.crt; 1728

ssl_certificate_key /home/micronets-dev/Projects/micronets/cert/nccoe-1729
server1_micronets_net.key; 1730

} 1731

5. Enable the file by creating a link from it to the sites-enabled directory, which NGINX reads from 1732
during start-up: 1733

sudo ln -s /etc/nginx/sites-available/nccoe-server1.micronets.net 1734
/etc/nginx/sites-enabled/nccoe-server1.micronets.net 1735

6. Next, test to make sure that there are no syntax errors in the NGINX files: 1736

sudo nginx -t 1737

 1738

You should see output similar to the following: 1739

 1740

7. If there are no problems, restart NGINX to enable your changes: 1741

sudo systemctl restart nginx 1742

4.1.2.3.2 Installing MUD Manager 1743

1. Change directory to the Projects/micronets/ folder: 1744

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 95

cd Projects/micronets/ 1745

2. Download the management script by executing the following command: 1746

curl -O https://raw.githubusercontent.com/cablelabs/micronets-mud-tools/nccoe-1747
build-3/bin/micronets-mud-manager 1748

3. Install and execute the management script: 1749

sudo install -v -o root -m 755 -D -t /etc/micronets/micronets-mud-manager.d/ 1750
micronets-mud-manager 1751

You should see output similar to the following: 1752

 1753

4. Open the management script to configure it for your implementation by entering the following 1754
command: 1755

sudo vim /etc/micronets/micronets-mud-manager.d/micronets-mud-manager 1756

5. Once the file is opened, modify the default variables in the management script to point to the 1757
server hosting our Micronets manager by changing the DEF_CONTROLLER_ADDRESS variable: 1758

DEF_CONTROLLER_ADDRESS=nccoe-server1.micronets.net 1759

 1760

 1761

https://raw.githubusercontent.com/cablelabs/micronets-mud-tools/nccoe-build-3/bin/micronets-mud-manager
https://raw.githubusercontent.com/cablelabs/micronets-mud-tools/nccoe-build-3/bin/micronets-mud-manager

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 96

6. Download the docker image by entering the following command: 1762

/etc/micronets/micronets-mud-manager.d/micronets-mud-manager docker-pull 1763

You should see output similar to the following: 1764

 1765

7. Next, set up the MUD cache directory by using the management script and entering the follow-1766
ing command: 1767

sudo /etc/micronets/micronets-mud-manager.d/micronets-mud-manager setup-cache-1768
dir 1769

8. Last, start the MUD manager by entering the following command to run the docker container: 1770

/etc/micronets/micronets-mud-manager.d/micronets-mud-manager docker-run 1771

You should see output similar to the following: 1772

 1773

9. Verify that the MUD manager is running by using the following command and reviewing the 1774
logs: 1775

/etc/micronets/micronets-mud-manager.d/micronets-mud-manager docker-logs 1776

You should see output similar to the following: 1777

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 97

 1778

10. Set up a proxy pass to the MUD manager by adding the following entry to the 1779
NGINX server block: 1780

a. Open the NGINX sites-available file for the server: 1781

 sudo vim /etc/nginx/sites-available/nccoe-server1.micronets.net 1782

b. Add the following location to the server block: 1783

location /micronets/mud-manager/ { 1784

 proxy_pass http://localhost:8888/; 1785

} 1786

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 98

 1787

11. Reload the NGINX server by executing the following command: 1788

 sudo nginx -s reload 1789

4.1.2.3.3 Operation 1790
In this section, we test general operation of the MUD manager. 1791

1. Test the MUD manager by retrieving a MUD file and using the following command (replace the 1792
MUD manager URL with the URL you created in Section 4.1.2.3.1): 1793

curl -q -X POST -H "Content-Type: application/json" \ 1794

 https://nccoe-server1.micronets.net/micronets/mud-manager/getMudFile \ 1795

 -d '{"url": "https://alpineseniorcare.com/micronets-mud/ciscopi.json"}' 1796

 1797

You should see the MUD file requested printed in the terminal: 1798

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 99

 1799

2. Check the MUD file cache directory to confirm that the MUD file requested is stored in the 1800
cache: 1801

ls -1 /var/cache/micronets-mud/ 1802

You should see the MUD file you just requested stored in the cache directory: 1803

 1804

3. Now that the MUD manager has successfully retrieved its first MUD file, you can clear the cache 1805
by entering the following command: 1806

 /etc/micronets/micronets-mud-manager.d/micronets-mud-manager clear-cache-dir 1807

You should see the following output once the command above has been executed: 1808

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 100

 1809

4. To output a list of additional docker commands supported by the management script, you can 1810
execute the following command: 1811

/etc/micronets/micronets-mud-manager.d/micronets-mud-manager – 1812

 1813

You should see output similar to the following: 1814

 1815

4.1.3 MUD File Server 1816

This section describes the CableLabs MUD file server, which is a cloud-hosted service. The Build 3 1817
implementation is designed a bit differently from the other three builds insofar as it requires a MUD 1818

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 101

registry to be incorporated in the solution as described in Volume B. We describe the MUD registry in 1819
this section of the documentation. 1820

4.1.3.1 MUD File Server Overview 1821

In the absence of a commercial MUD file server for use in this project, the NCCoE leveraged a Linode 1822
cloud-hosted Linux server to create the MUD file server that is accessible via the internet. This file server 1823
stores the MUD files along with their corresponding signature files for the IoT devices used in the 1824
project. Upon receiving a GET request for the MUD files and signatures, it serves the request to the 1825
MUD manager by using https. 1826

4.1.3.2 Configuration Overview 1827

The following subsections document the software and network configurations for the MUD file server. 1828

4.1.3.2.1 Network Configuration 1829
This server was hosted outside the lab environment on a Linode cloud-hosted Linux server. Its IP address 1830
was statically assigned. 1831

4.1.3.2.2 Software Configuration 1832
For this build, the server ran on an Ubuntu 18.04 LTS operating system. The MUD files and signatures 1833
were hosted by an NGINX web server and configured to use SSL/TLS encryption. 1834

4.1.3.2.3 Hardware Configuration 1835
The following hardware is required to install, configure, and operate the MUD file server: 1836

• 4 GB of RAM 1837

• 50 GB of free disk space 1838

4.1.3.3 Setup 1839

4.1.3.3.1 NGINX Web Server 1840
1. Update your local package index by entering the following command: 1841

sudo apt update 1842

2. Install NGINX by entering the following command: 1843

sudo apt install nginx 1844

3. Create the directory where the MUD files will be stored on the MUD file server as follows: 1845

sudo mkdir -p /var/www/nccoe-server2.micronets.net/html/micronets-mud/ 1846

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 102

4. Create an NGINX config file for this server (Note: If you are following the architecture for this 1847
implementation, all Micronets cloud components will be hosted on this server, and this will be 1848
the same config file that will be modified to add routes to the different Micronets services): 1849

sudo vim /etc/nginx/sites-available/<ServerURL> 1850

 1851
Below is an example of this command: 1852
 1853
sudo vim /etc/nginx/sites-available/nccoe-server2.micronets.net 1854

5. Add the following configuration block to the file (Note: Additional locations will be added to this 1855
configuration block as you continue to set up the different Micronets services): 1856

server { 1857

 listen 443 ssl; 1858

 listen [::]:443 ssl; 1859

 root /var/www/nccoe-server2.micronets.net/html; 1860

 index index.html index.htm index.nginx-debian.html; 1861

 server_name nccoe-serve2.micronets.net; 1862

 location / { 1863

 # First attempt to serve request as file, then 1864

 # as directory, then fall back to displaying a 404. 1865

 try_files $uri $uri/ =404; 1866

 } 1867

 if ($scheme != "https") { 1868

 return 301 https://$host$request_uri; 1869

 } 1870

ssl_certificate /home/micronets-dev/Projects/micronets/cert/nccoe-1871
server2_micronets_net.crt; 1872

ssl_certificate_key /home/micronets-dev/Projects/micronets/cert/nccoe-1873
server2_micronets_net.key; 1874

 1875

include /etc/nginx/micronets-subscriber-forwards/*.conf; 1876

} 1877

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 103

6. Enable the file by creating a link from it to the sites-enabled directory, which NGINX reads from 1878
during startup: 1879

sudo ln -s /etc/nginx/sites-available/nccoe-server2.micronets.net \ 1880
/etc/nginx/sites-enabled/nccoe-server2.micronets.net 1881

7. Next, test to make sure that there are no syntax errors in any of your NGINX files: 1882

sudo nginx -t 1883

 1884

You should see output similar to the following: 1885

 1886

8. If there are no problems, restart NGINX to enable your changes: 1887

sudo systemctl restart nginx 1888

 1889

4.1.3.3.2 MUD File Creation and Signing 1890
To create MUD files for MUD-capable IoT devices, please follow the instructions in Build 1’s MUD File 1891
Server. Once MUD files and signature files are created, they can be stored in the web server directory 1892
created on the MUD file server in the previous section. 1893

4.1.4 Micronets Gateway 1894

This section describes the CableLabs Micronets Gateway, which, for this implementation, is an on-1895
premise component. This implementation leveraged the nccoe-build-3 tagged version of CableLabs 1896
Micronets Gateway Git release. This documentation describes setting up your own Micronets gateway. 1897

4.1.4.1 Micronets Gateway Overview 1898

The Micronets Gateway establishes a connection to the Micronets Manager through the Websocket 1899
Proxy and receives traffic flow rules and other configuration information that it applies and enforces. 1900
Additionally, the Micronets Gateway supports wired and wireless connections, MUD-defined ACLs, and 1901
DPP onboarding. 1902

4.1.4.2 Configuration Overview 1903

The following subsections document the software and network configurations for the Micronets 1904
Gateway. 1905

https://github.com/cablelabs/micronets-gw/releases/tag/1.0.55

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 104

4.1.4.2.1 Network Configuration 1906
Implementation of a Micronets gateway requires an internet source such as a digital subscriber line 1907
(DSL) or cable modem. 1908

4.1.4.2.2 Software Configuration 1909

The Micronets Gateway runs an Ubuntu 16.04 LTS server, which can support all the software dependen-1910
cies and packages that will be installed during setup. 1911

4.1.4.2.3 Hardware Configuration 1912
For this implementation, we leveraged a Shuttle XPC slim DH170 with the following specs: 1913

• x86_64 processor (Intel or AMD) 1914

• at least two Ethernet ports 1915

• wireless adapter with a QUALCOMM Atheros AR9271 chipset 1916

• 2 GB or higher of RAM 1917

4.1.4.3 Setup 1918

4.1.4.3.1 Install Dependencies 1919
1. If Micronets is already installed and running, you should stop the services first by executing the 1920

following commands: 1921

sudo systemctl stop micronets-gw.service 1922

 1923

sudo systemctl stop micronets-hostapd.service 1924

 1925

2. Update your local package index by entering the following command: 1926

sudo apt-get update 1927

 1928

You should see the following output from this command: 1929

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 105

 1930

3. Install the python-pip, virtualenv, dnsmasq, python-six, and libnl-route-3-200 packages by exe-1931
cuting the following command: 1932

sudo apt-get -y install python-pip virtualenv dnsmasq python-six libnl-route-3-1933
200 1934

If the packages are not already installed, you should see the following output from this 1935
command: 1936

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 106

 1937

4. Install openvswitch version 2.9.2 and its dependencies from the CableLabs micronets-gw github 1938
repository by executing the following for loop: 1939

for package in libopenvswitch_2.9.2-1_amd64.deb \ 1940

 openvswitch-common_2.9.2-1_amd64.deb \ 1941

 openvswitch-switch_2.9.2-1_amd64.deb ; 1942

do curl -L -O https://github.com/cablelabs/micronets-gw/releases/down-1943
load/1.0.55/${package}; 1944

sudo dpkg -i ${package}; 1945

done 1946

You should see the following output from this command: 1947

 1948

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 107

 1949

 1950

5. Install Python version 3.6 and its dependencies from the CableLabs micronets-gw github reposi-1951
tory by executing the following for loop: 1952

for package in libpython3.6-minimal_3.6.5-5.16.04.york1_amd64.deb \ 1953

 libpython3.6-stdlib_3.6.5-5.16.04.york1_amd64.deb \ 1954

 python3.6-minimal_3.6.5-5.16.04.york1_amd64.deb \ 1955

 python3.6_3.6.5-5.16.04.york1_amd64.deb ; 1956

do curl -L -O https://github.com/cablelabs/micronets-gw/releases/down-1957
load/1.0.55/${package}; 1958

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 108

 1959

You should see the following output from this command: 1960

 1961

4.1.4.3.2 Install Micronets Packages 1962
1. Enter the following command to download the Micronets hostapd package: 1963

curl -L -O https://github.com/cablelabs/micronets-gw/releases/down-1964
load/1.0.55/micronets-hostapd-1.0.21.deb 1965

You should see output similar to the following: 1966

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 109

 1967

2. Enter the following command to de-package the Micronets hostapd package: 1968

sudo dpkg -i micronets-hostapd-1.0.21.deb 1969

You should see output similar to the following: 1970

 1971

3. Enter the following command to download the Micronets Gateway package: 1972

curl -L -O https://github.com/cablelabs/micronets-gw/releases/down-1973
load/1.0.55/micronets-gw-1.0.55.deb 1974

You should see output similar to the following: 1975

https://github.com/cablelabs/micronets-gw/releases/download/1.0.55/micronets-gw-1.0.55.deb
https://github.com/cablelabs/micronets-gw/releases/download/1.0.55/micronets-gw-1.0.55.deb

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 110

 1976

4. Enter the following command to install the Micronets hostapd package: 1977

sudo dpkg -i micronets-gw-1.0.55.deb 1978

After a bit of a delay, you should see output similar to the following: 1979

 1980

5. Enable autostart for the Micronets hostapd service by entering the following command: 1981

sudo systemctl enable micronets-hostapd.service 1982

 1983

6. Enable autostart for the Micronets Gateway Service by entering the following command: 1984

sudo systemctl enable micronets-gw.service 1985

 1986

7. Start the Micronets hostapd service by entering the following command: 1987

sudo systemctl start micronets-hostapd.service 1988

 1989

8. Start the Micronets Gateway Service by entering the following command: 1990

 sudo systemctl start micronets-gw.service 1991

 1992

9. Verify that the gateway service started successfully by running the following command: 1993

sudo systemctl status micronets-gw.service 1994

 1995

10. Verify that the Micronets hostapd service started successfully by running the following command: 1996

sudo systemctl status micronets-hostapd.service 1997

 1998

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 111

CableLabs documentation notes that installing the micronets-gw package should produce the following 1999
results: 2000

 installation of the Micronets Gateway Service in the /opt/micronets-gw directory 2001

 installation of the ifup/down and dnsmasq extension scripts for configuration of openvswitch 2002
and the micronets-gw service via /etc/network/interfaces 2003

 installation of a sample/etc/network/interfaces file in /opt/micronets-gw/doc/interfaces.sample 2004

 installation and start of the micronets-gw-service systemd service 2005

4.1.5 IoT Devices 2006

This section provides configuration details for the Linux-based IoT development kits used in the build, 2007
which can be onboarded via DPP. It also provides information regarding a basic IoT application used to 2008
test the MUD process. 2009

4.1.5.1 IoT Devices Overview 2010

Build 3, like the other builds in this project, leverages the Raspberry Pi devkit with capabilities developed 2011
to make these devices both MUD- and DPP-capable. The Raspberry Pi runs the Raspbian 9 OS and is pro-2012
visioned with one bootstrapping public/private key pair during device setup. The Micronets Proto-Pi 2013
software developed by CableLabs in combination with the added hardware outlined in the configuration 2014
section adds DPP capability to these devices. There are two onboarding mechanisms called modes sup-2015
ported by the Micronets Proto-Pi software: DPP mode and clinic mode. The clinic mode provides an 2016
onboarding mechanism via automated installation of Wi-Fi security certificates, and the DPP mode pro-2017
vides QR code–based device onboarding. For this implementation, we only describe setting up and lev-2018
eraging the Micronets Proto-Pi software in DPP mode. If you would like to leverage the clinic mode of 2019
this software, follow the documentation provided by CableLabs: https://github.com/cablelabs/mi-2020
cronets-pi3/blob/nccoe-build-3/README.md#Installation. 2021

4.1.5.2 Configuration Overview 2022

The following subsections document the software and network configurations for the Micronets Proto-2023
Pi device. 2024

4.1.5.2.1 Network Configuration 2025
The following network configurations are required to install, configure, and operate the Micronets 2026
Proto-Pi device: 2027

 wired network connection to a separate access point that provides both initial internet access to 2028
self-register the device and remote management access to the device during setup 2029

https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#Installation
https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#Installation

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 112

4.1.5.2.2 Software Configuration 2030
The following software is required to install, configure, and operate the Micronets Proto-Pi device: 2031

 tool for flashing images to Secure Digital (SD) card (This implementation leveraged 2032
balenaEtcher: https://www.balena.io/etcher/.) 2033

 latest Raspbian image from: 2034

• CableLabs at the following link (This image has Secure Shell (SSH) and Visual (vi) 2035
preinstalled): https://www.dropbox.com/s/37ygauo02ltxirf/raspbian-buster-ssh-2036
updates.zip?dl=0 2037

• Or you can download the latest Buster distribution and install packages yourself from the 2038
following link: https://www.raspberrypi.org/downloads/raspbian/ 2039

4.1.5.2.3 Hardware Configuration 2040
The following hardware is required to install, configure, and operate the Micronets Proto-Pi device: 2041

 Raspberry Pi (version 3B+) 2042

 SD card 2043

 Alfa adapter 2044

 Ethernet cable 2045

4.1.5.3 Setup 2046

4.1.5.3.1 Install Dependencies 2047
1. Connect the SD card to your computer. 2048

2. Open balenaEtcher (or whatever tool you have downloaded for flashing SD cards). 2049

3. Click Select image, and select the Raspbian image you downloaded: 2050

https://www.balena.io/etcher/
https://www.dropbox.com/s/37ygauo02ltxirf/raspbian-buster-ssh-updates.zip?dl=0
https://www.dropbox.com/s/37ygauo02ltxirf/raspbian-buster-ssh-updates.zip?dl=0
https://www.raspberrypi.org/downloads/raspbian/

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 113

 2051

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 114

4. Click Select target, and select the SD card you connected to the computer (the software may 2052
automatically recognize the target): 2053

You should see something similar to the following: 2054

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 115

5. Click Flash! to start the flashing process: 2055

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 116

You may be prompted to enter your password, as seen below: 2056

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 117

When the flashing has completed, you should see output similar to the following: 2057

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 118

4.1.5.3.2 Install Micronets Proto-Pi 2058
1. Insert the SD card to the Raspberry Pi, and connect power using a micro–Universal Serial Bus 2059

(USB) cable. 2060

2. Connect to the Raspberry Pi from a remote machine by using SSH: 2061

Note: You will need to figure out the Ethernet IP address of the Raspberry Pi, which can be done 2062
by looking at the DHCP assignments on the gateway to which you connected the Raspberry Pi. 2063

a. Enter the following command once you have identified the device’s IP address: 2064

ssh pi@[ipaddress] 2065

b. You will be prompted to continue connecting as this is the first time connecting to the 2066
device: 2067

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 119

c. Enter the password for the Raspberry Pi: 2068

Note: The password is “micronets” if you are leveraging the CableLabs Raspberry Pi 2069
image: 2070

d. You will now have access to a terminal on the Raspberry Pi: 2071

3. Ensure that you are in the home directory by entering the following command: 2072

cd ~ 2073

4. Download the Micronets Proto-Pi software from GitHub by entering the following command: 2074

git clone https://git@github.com/cablelabs/micronets-pi3.git 2075

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 120

You should see output similar to the following: 2076

 2077

5. Change into the micronets-pi3 directory by entering the following command: 2078

cd micronets-pi3/ 2079

6. Check out the nccoe-build-3 branch by entering the following branch: 2080

git checkout nccoe-build-3 2081

 2082

You should see output similar to the following: 2083

 2084

7. Change into the deploy directory by entering the following command: 2085

cd deploy/ 2086

8. Install the Micronets Proto-Pi software by entering the following command: 2087

./install 2088

When prompted to accept disk space required, input Y as seen below: 2089

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 121

 2090

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 122

2091

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 123

2092

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 124

 2093

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 125

4.1.5.3.3 Operation 2094
Four buttons are used for general operation in the Micronets Proto-Pi application. These buttons are on 2095
the right side of the application and will be described in the upcoming sections. 2096

Accessing Raspberry Pi Using Virtual Network Computing (VNC)Viewer: 2097

a. Access the Raspberry Pi using the VNC Viewer, enter the IP address of the Raspberry Pi,2098
and click Connect:2099

You will be prompted to accept and store the signature for this device as it is the first time 2100
connecting to it. Click OK: 2101

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 126

Once accepted, proceed to log in with the username and password, as seen below: 2102

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 127

b. You should see the Micronets Proto-Pi application on the screen as seen below: 2103

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 128

initiate the onboard op-2104
2105

The onboard button described in the following steps allows the user to
eration:

a. Click the green button to initiate the onboard process: 2106

2.

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 129

2107

A QR code will appear as seen below. The mobile application will be used to scan this QR 2108
code for onboarding: 2109

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 130

2110

The cycle button described in the following steps turns the Wi-Fi off/on to reconnect to the con-2111
figured service set identifier (SSID). 2112

a. Click the orange cycle button: 2113

3.

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 131

2114

You should see output similar to the following: 2115

2116

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 132

The settings button described in the following steps will open the settings menu, which has four 2117
different operations/buttons: 2118

a. Click the gear button:2119

2120

The following menu will appear: 2121

4.

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 133

2122

b. Click the Mode button to change the onboarding mode from DPP to clinic, and vice2123
versa:2124

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 134

2125

The following screen displays: 2126

2127

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 135

c. Click the Mode button again to return to DPP mode: 2128

2129

You will see the following change to your screen: 2130

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 136

2131

d. Click the Reset button to clear Wi-Fi credentials (Note: If the device is in clinic mode, it2132
will restore the credentials for the clinic Wi-Fi):2133

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 137

2134

You should see output similar to the following: 2135

2136

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 138

e. Click the Reboot button to reboot the Pi: 2137

2138

You should see output similar to the following: 2139

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 139

2140

f. Click the Done button to exit the settings screen:2141

2142

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 140

You should see output similar to the following: 2143

2144

The power button described in the following steps appears on the main screen of the Micronets 2145
Proto-Pi application and is used to restart the application as well as shut down the Pi entirely: 2146

a. Tap the power button to restart the application:2147

5.

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 141

 2148

You should see output similar to the following: 2149

 2150

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 142

Next, the following screen should appear: 2151

 2152

Finally, the main screen appears as seen below: 2153

 2154

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 143

b. Hold the power button to shut down the Pi: 2155

 2156

 2157

You should see output similar to the following: 2158

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 144

 2159

 2160

4.1.6 Update Server 2161

Build 3 leverages the preexisting update server that is described in Build 1’s Update Server section. To 2162
implement a server that will act as an update server, see the documentation in Build 1’s Update Server 2163
section. The update server will attempt to access and be accessed by the IoT device, which, in this case, 2164
is one of the development kits we built in the lab. 2165

4.1.7 Unapproved Server 2166

Build 3 leverages the preexisting unapproved server that is described in Build 1’s Unapproved Server 2167
section. To implement a server that will act as an unapproved server, see the documentation in Build 1’s 2168
Unapproved Server section. The unapproved server will attempt to access and be accessed by an IoT 2169
device, which, in this case, is one of the MUD-capable devices on the implementation network. 2170

4.1.8 CableLabs MUD Registry 2171

This section describes the CableLabs MUD registry, which, for this implementation, is a cloud-provided 2172
service. This implementation leveraged the nccoe-build-3 branch of CableLabs MUD registry Git release. 2173
This service can be hosted by the implementer or another party. This documentation describes setting 2174
up your own MUD registry. 2175

https://github.com/cablelabs/micronets-mud-registry/blob/nccoe-build-3/README.md#Installation

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 145

4.1.8.1 CableLabs MUD Registry Overview 2176

The Micronets MUD registry provides the capability to look up the MUD URL that is associated with a 2177
particular device. This registration and MUD URL association can be done manually or by the device us-2178
ing self-registration. 2179

4.1.8.2 Configuration Overview 2180

The following subsections document the software and network configurations for the MUD registry. 2181
Please note that the MUD manager, Micronets Manager, Websocket Proxy, MUD registry, and MSO 2182
portal are all implemented on the same server, nccoe-server1.micronets.net. Many of these 2183
configurations have already been covered in previous sections of this document but are repeated here 2184
for consistency. 2185

4.1.8.2.1 Network Configuration 2186
This server was hosted outside the lab environment on a Linode cloud-hosted Linux server. Its IP address 2187
was statically assigned. 2188

4.1.8.2.2 Software Configuration 2189
For this build, the server ran on an Ubuntu 18.04 LTS operating system. The MUD registry runs in its own 2190
docker container and is configured to use SSL/TLS encryption. 2191

The following software is required to install, configure, and operate the MUD registry: 2192

 an Ubuntu 18.04 LTS server reachable by the server hosting the Micronets Manager instances 2193
and any Micronets gateways 2194

 docker (v18.06 or higher) 2195

 curl 2196

 NGINX 2197

4.1.8.2.3 Hardware Configuration 2198
The following hardware is required to install, configure, and operate the MUD registry: 2199

• 4 GB of RAM 2200

• 50 GB of free disk space 2201

4.1.8.3 Setup 2202

4.1.8.3.1 Install and Configure MUD Registry 2203
 Log in to docker by using the following command: 2204

docker login 2205

You should see output similar to the following: 2206

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 146

 2207

 Retrieve the nccoe-build-3 tagged image by entering the following command: 2208

docker pull community.cablelabs.com:4567/micronets-docker/micronets-mud-regis-2209
try:nccoe-build-3 2210

 Execute the following command to run the image that was just retrieved: 2211

The command will follow the syntax below. Replace <MUDFILESERVER_URL> with your MUD 2212
file server URL: 2213

docker run -d -p 127.0.0.1:3082:3082 --env mud_base_uri=https://<MUDFILESERVER_URL> -v 2214
/etc/micronets/micronets-mud-registry.d/:/etc/micronets/config --name=micronets-mud-regis-2215
try community.cablelabs.com:4567/micronets-docker/micronets-mud-registry:nccoe-build-3 2216

 2217

docker run -d -p 127.0.0.1:3082:3082 --env mud_base_uri=https://nccoe-2218
server2.micronets.net/micronets-mud -v /etc/micronets/micronets-mud-regis-2219
try.d/:/etc/micronets/config --name=micronets-mud-registry community.cable-2220
labs.com:4567/micronets-docker/micronets-mud-registry:nccoe-build-3 2221

 2222

 Configure your own vendor code for your implementation by completing the following steps: 2223

 Create and modify the mud-registry.conf file by executing the following command. 2224
(Note: The configuration file must be named “mud-registry.conf” and must reside in a 2225
host folder that is passed to the docker instance in the docker run command executed in 2226
the previous step.) 2227

sudo vim /etc/micronets/micronets-mud-registry.d/mud-registry.conf 2228

 2229

 Replace <VENDOR-CODE> with your choice of vendor name, <MUDREGISTRY_URL> 2230
with the MUD registry URL, and <MUDFILESERVER_URL> with the MUD file server URL: 2231

{ 2232

 "vendors" : { 2233

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 147

 "<VENDOR-CODE> ": "https:// <MUDREGISTRY_URL> /registry/devices", 2234

 "ABCD": "https://abcd-domain.com:3082/vendors" 2235

 }, 2236

 "mud_base_uri": "https:// <MUDFILESERVER_URL> /micronets-mud", 2237

 "device_db_file": "/etc/micronets/config/device-registration.nedb" 2238

} 2239

For this implementation, we added the following: 2240

{ 2241

 "vendors" : { 2242

 "TEST": "https://nccoe-server1.micronets.net/registry/devices", 2243

 "ABCD": "https://abcd-domain.com:3082/vendors" 2244

 }, 2245

 "mud_base_uri": "https://nccoe-server2.micronets.net/micronets-mud", 2246

 "device_db_file": "/etc/micronets/config/device-registration.nedb" 2247

} 2248

 2249

 2250

 2251

 Modify the sites-available file for the NGINX server to route appropriate traffic to the 2252
docker container by executing the following commands: 2253

i. Open the sites-available file for the NGINX server by entering the following 2254
command: 2255

sudo vim /etc/nginx/sites-available/nccoe-server1.micronets.net 2256

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 148

ii. Map the location for the /registry/devices so it is routed to vendors/ in the docker 2257
instance running on port 3082 and for the /mud/ to be passed to the global regis-2258
try by adding the following to the server block: 2259

location /registry/devices { 2260

 proxy_pass http://localhost:3082/vendors/; 2261

} 2262

location /mud/{ 2263

 proxy_pass http://localhost:3082/registry/; 2264

} 2265

 2266

4.1.9 CableLabs Micronets Manager for SDN Control 2267

This section describes the CableLabs Micronets Manager, which, for this implementation, is a cloud-2268
provided service. This implementation leveraged the nccoe-build-3 branch of CableLabs Micronets 2269
Manager Git release. This service can be hosted by the implementer or another party. This 2270
documentation describes setting up your own Micronets Manager. 2271

http://localhost:3082/vendors/
http://localhost:3082/registry/
https://github.com/cablelabs/micronets-mud-registry/blob/nccoe-build-3/README.md#Installation

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 149

4.1.9.1 CableLabs Micronets Manager Overview 2272

The Micronets Manager provides micro-services to the implementation. It receives onboarding requests, 2273
bootstrapping information, and more for a particular subscriber and is a core component for handing off 2274
requests among different components in the architecture. 2275

4.1.9.2 Configuration Overview 2276

The following subsections document the software and network configurations for the Micronets 2277
Manager. Please note that these instructions have the MUD manager, Micronets Manager, Websocket 2278
Proxy, MUD registry, and MSO portal all deployed onto the same server, nccoe-server1.micronets.net. 2279
Many of these configurations are already covered in previous sections of this document but are 2280
repeated here for consistency. 2281

4.1.9.2.1 Network Configuration 2282
This server was hosted outside the lab environment on a Linode cloud-hosted Linux server. Its IP address 2283
was statically assigned. 2284

4.1.9.2.2 Software Configuration 2285
For this build, the server ran on an Ubuntu 18.04 LTS operating system. The Micronets Manager runs in 2286
its own docker container and is configured to use SSL/TLS encryption. 2287

The following software is required to install, configure, and operate the Micronets Manager: 2288

 an Ubuntu 18.04 LTS server reachable by any Micronets gateways 2289

 docker (v18.06 or higher) 2290

 docker-compose (v1.23.1 or higher) 2291

 OpenSSL (1.0.2g or higher) 2292

 curl 2293

 NGINX (1.14.0 or higher) 2294

4.1.9.2.3 Hardware Configuration 2295
The following hardware is required to install, configure, and operate the Micronets Manager: 2296

• 4 GB of RAM 2297

• 50 GB of free disk space 2298

4.1.9.3 Setup 2299

4.1.9.3.1 Install Dependencies 2300
1. Install docker, docker-compose, openssl, curl, and NGINX by entering the following command: 2301

sudo apt-get install docker docker-compose openssl curl nginx 2302

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 150

4.1.9.3.2 Install and Configure the Micronets Manager 2303
1. Ensure the version of docker-compose is correct and upgrade if needed: 2304

a. Check the current version by entering the following command: 2305

docker-compose –version 2306

You should see the version output as seen below: 2307

 2308

b. If the version is earlier than v1.23.1, run the following command to install a new version 2309
in /usr/local/bin directory: 2310

i. Download the docker-compose utility: 2311

curl -s -L -O https://github.com/docker/compose/releases/down-2312
load/1.24.1/docker-compose-Linux-`uname -m` 2313

ii. Install the docker-compose utility to the appropriate directory: 2314

sudo install -v -o root -m 755 docker-compose-Linux-`uname -m` 2315
/usr/local/bin/docker-compose 2316

You should see output similar to the following: 2317

 2318

2. Download the Micronets Manager management script, and install it by entering the following 2319
commands: 2320

a. Download the Micronets Manager management script: 2321

curl -s -O https://raw.githubusercontent.com/cablelabs/micronets-man-2322
ager/nccoe-build-3/scripts/mm-container 2323

b. Download the docker-compose utility: 2324

curl -s -O https://raw.githubusercontent.com/cablelabs/micronets-man-2325
ager/nccoe-build-3/scripts/docker-compose.yml 2326

https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/mm-container
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/mm-container
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/docker-compose.yml
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/docker-compose.yml

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 151

c. Install the management script to the appropriate location: 2327

sudo install -v -o root -m 755 -D -t /etc/micronets/micronets-manager.d 2328
mm-container 2329

You should see output similar to the following: 2330

 2331

d. Install the docker-compose utility to the appropriate location: 2332

sudo install -v -o root -m 644 -D -t /etc/micronets/micronets-manager.d 2333
docker-compose.yml 2334

You should see output similar to the following: 2335

 2336

3. Copy the Micronets Manager server cert/key and the Websocket Proxy root CA cert created in 2337
earlier steps for use by the Micronets Manager docker container(s): 2338

a. Install the certificates and keys by entering the following command: 2339

sudo install -v -o root -m 600 -D -t /etc/micronets/micronets-man-2340
ager.d/lib micronets-manager.{cert,key}.pem micronets-ws-root.cert.pem 2341

You should see output similar to the following: 2342

 2343

b. Create a placeholder micronets-ws-proxy.pkeycert.pem file. This file is not used, but the 2344
Micronets Manager currently checks for it: 2345

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 152

sudo touch /etc/micronets/micronets-manager.d/lib/micronets-ws-2346
proxy.pkeycert.pem 2347

4. Copy the shared secret value generated during the MSO portal installation: 2348

sudo install -v -o root -g docker -m 660 -D -t /etc/micronets/micronets-2349
manager.d/lib mso-auth-secret 2350

You should see output similar to the following: 2351

 2352

5. Execute the following command to download the Micronets Manager docker image (Note: If 2353
you cannot connect to the docker service, use sudo usermod -aG docker to add the user account 2354
to the docker group): 2355

/etc/micronets/micronets-manager.d/mm-container pull 2356

 You should see output similar to the following: 2357

 2358

6. Complete the following steps to configure NGINX for the Micronets Manager: 2359

 The Micronets Manager management script creates NGINX forward entries that provide 2360
a unique URI for each Micronets Manager docker image. To create the infrastructure for 2361
these entries, run: 2362

sudo /etc/micronets/micronets-manager.d/mm-container setup-web-proxy 2363

You should see output similar to the following: 2364

 2365

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 153

 2366

7. This sets up the folder to dynamically create forwarding entries for Micronets Manager in-2367
stances as they are created/removed. But the site files in /etc/nginx/sites-available/ need the 2368
following added to the server blocks to enable forwarding subscriber operations to the correct 2369
docker container. 2370

a. Open the NGINX sites-available file created in: 2371

sudo vim /etc/nginx/sites-available/nccoe-server1.micronets.net 2372

b. Add the following entry to the file: 2373

include /etc/nginx/micronets-subscriber-forwards/*.conf; 2374

For example: 2375

server { 2376

 server_name nccoe-server1.micronets.net; 2377

 {…] 2378

 include /etc/nginx/micronets-subscriber-forwards/*.conf; 2379

} 2380

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 154

 2381

8. Complete the following steps to configure the Micronets Manager to communicate with other 2382
Micronets services on the server: 2383

a. Open the docker-compose.yml file by entering the following command: 2384

sudo vim /etc/micronets/micronets-manager.d/docker-compose.yml 2385

b. Modify the following environmental variables in the docker-compose.yml file. Replace 2386
<ServerURL> with your server URL: 2387

 MM_API_PUBLIC_BASE_URL: https://<ServerURL>/sub/${MM_SUBSCRIBER_ID}/api 2388

 MM_APP_PUBLIC_BASE_URL: https:// <ServerURL>/sub/${MM_SUBSCRIBER_ID}/app 2389

 MM_IDENTITY_SERVER_BASE_URL: https://<ServerURL>:8888/ 2390

 MM_MSO_PORTAL_BASE_URL: https:// <ServerURL>/micronets/mso-portal 2391

 MM_MUD_MANAGER_BASE_URL: https:// <ServerURL>/micronets/mud-manager 2392

 MM_MUD_REGISTRY_BASE_URL: https:// <ServerURL>/micronets/mud/v1 2393

 MM_GATEWAY_WEBSOCKET_BASE_URL: wss://<ServerURL>:5050/micronets/v1/ws-2394
proxy/gw 2395

 2396

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 155

 2397

4.1.10 Micronets Websocket Proxy 2398

This section describes the CableLabs Micronets Websocket Proxy, which, for this implementation, is a 2399
cloud-provided service. This implementation leverages the nccoe-build-3 branch of CableLabs Micronets 2400
Websocket Proxy Git release. This service can be hosted by the implementer or another party. This 2401
documentation describes setting up your own Micronets Manager. 2402

4.1.10.1 Micronets Websocket Proxy Overview 2403

The Micronets Websocket Proxy is a service for establishing a Websocket connection between a sub-2404
scriberʼs gateway and Micronets Manager. This connection is leveraged to issue representational state 2405
transfer (REST) commands to the gateway and to receive event notifications from the gateway. 2406

https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/install/ws-proxy.md

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 156

4.1.10.2 Configuration Overview 2407

The following subsections document the software and network configurations for the Websocket Proxy. 2408
Please note that the MUD manager, Micronets Manager, Websocket Proxy, MUD registry, and MSO 2409
portal are all implemented on the same server, nccoe-server1.micronets.net. Many of these 2410
configurations are already covered in previous sections of this document but are repeated here for 2411
consistency. 2412

4.1.10.2.1 Network Configuration 2413
This server was hosted outside the lab environment on a Linode cloud-hosted Linux server. Its IP address 2414
was statically assigned. 2415

4.1.10.2.2 Software Configuration 2416
For this build, the server ran on an Ubuntu 18.04 LTS operating system. The Websocket Proxy runs in its 2417
own docker container and is configured to use SSL/TLS encryption. 2418

The following software is required to install, configure, and operate the Websocket Proxy: 2419

 an Ubuntu 18.04 LTS server reachable by the Micronets Manager and any Micronets gateways 2420

 docker (v18.06 or higher) 2421

 docker-compose (v1.23.1 or higher) 2422

 curl 2423

 Python 3.6+ 2424

 Python virtualenv package 2425

4.1.10.2.3 Hardware Configuration 2426
The following hardware is required to install, configure, and operate the Websocket Proxy: 2427

• 4 GB of RAM 2428

• 50 GB of free disk space 2429

4.1.10.3 Setup 2430

 Change to the working directory by entering the following command: 2431

cd Projects/micronets/ 2432

If you have not already created this directory, execute the following command: 2433

mkdir Projects/micronets/ 2434

Next, change directories by entering the following command: 2435

cd Projects/micronets/ 2436

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 157

 Download and install the cert generation scripts by executing the following commands: 2437

 Download the script to generate the root certificates: 2438

curl -s -O https://raw.githubusercontent.com/cablelabs/micronets-ws-2439
proxy/nccoe-build-3/bin/gen-root-cert 2440

 Download the script to generate leaf certificates: 2441

curl -s -O https://raw.githubusercontent.com/cablelabs/micronets-ws-2442
proxy/nccoe-build-3/bin/gen-leaf-cert 2443

 Install both scripts by executing the following command: 2444

sudo install -v -o root -m 755 -D -t /etc/micronets/micronets-ws-proxy.d/ 2445
gen-*-cert 2446

You should see output similar to the following: 2447

 2448

 Create the root certificate for the Websocket Proxy: 2449

/etc/micronets/micronets-ws-proxy.d/gen-root-cert --cert-basename micronets-ws-2450
root \ 2451

 --subject-org-name "Micronets Websocket Root Cert" \ 2452

 --expiration-in-days 3650 2453

You should see output similar to the following: 2454

https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-build-3/bin/gen-root-cert
https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-build-3/bin/gen-root-cert
https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-build-3/bin/gen-leaf-cert
https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-build-3/bin/gen-leaf-cert

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 158

 2455

 Create the Websocket Proxyʼs server certificate and private key by entering the following 2456
command (Note: This certificate and key host the Websocket Proxy server): 2457

/etc/micronets/micronets-ws-proxy.d/gen-leaf-cert --cert-basename micronets-ws-2458
proxy \ 2459

 --subject-org-name "Micronets Websocket Proxy Cert" \ 2460

 --expiration-in-days 3650 \ 2461

 --ca-certfile micronets-ws-root.cert.pem \ 2462

 --ca-keyfile micronets-ws-root.key.pem 2463

You should see output similar to the following: 2464

 2465

 Combine the private key and certificate into one file by entering the following command: 2466

cat micronets-ws-proxy.cert.pem micronets-ws-proxy.key.pem \ 2467

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 159

 > micronets-ws-proxy.pkeycert.pem 2468

 Generate the client certificate and key to be used by the Micronets Manager to connect to the 2469
Websocket Proxy (Note: These files will enable the Micronets Manager to connect to the proxy): 2470

 /etc/micronets/micronets-ws-proxy.d/gen-leaf-cert --cert-basename micronets-2471
manager \ 2472

 --subject-org-name "Micronets Manager Websocket Client Cert" \ 2473

 --expiration-in-days 3650 \ 2474

 --ca-certfile micronets-ws-root.cert.pem \ 2475

 --ca-keyfile micronets-ws-root.key.pem 2476

You should see output similar to the following: 2477

 2478

 Combine the private key and certificate into one file by entering the following command: 2479

 cat micronets-manager.cert.pem micronets-manager.key.pem \ 2480

 > micronets-manager.pkeycert.pem 2481

 Generate the certificate and key to be used by the Micronets Gateway to connect to the Web-2482
socket Proxy (Note: These files will enable the Micronets Gateway to connect to the proxy): 2483

 /etc/micronets/micronets-ws-proxy.d/gen-leaf-cert --cert-basename micronets-gw-2484
service \ 2485

 --subject-org-name "Micronets Gateway Service Websocket Client Cert" \ 2486

 --expiration-in-days 3650 \ 2487

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 160

 --ca-certfile micronets-ws-root.cert.pem \ 2488

 --ca-keyfile micronets-ws-root.key.pem 2489

You should see output similar to the following: 2490

 2491

 Combine the private key and certificate into one file by entering the following command: 2492

 cat micronets-gw-service.cert.pem micronets-gw-service.key.pem \ 2493

 > micronets-gw-service.pkeycert.pem 2494

 Download and install the management script by entering the following commands: 2495

 Download the micronets-ws-proxy script: 2496

curl -s -O https://raw.githubusercontent.com/cablelabs/micronets-ws-2497
proxy/nccoe-build-3/bin/micronets-ws-proxy 2498

 Install the script to the appropriate directory: 2499

sudo install -v -o root -m 755 -D -t /etc/micronets/micronets-ws-proxy.d/ 2500
micronets-ws-proxy 2501

You should see output similar to the following: 2502

https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-build-3/bin/micronets-ws-proxy
https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-build-3/bin/micronets-ws-proxy

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 161

 2503

 Copy the Websocket Proxy server cert and key for use by the Websocket Proxy docker con-2504
tainer: 2505

sudo install -v -o root -m 600 -D -t /etc/micronets/micronets-ws-proxy.d/lib \ 2506

 micronets-ws-proxy.pkeycert.pem micronets-ws-root.cert.pem 2507

You should see output similar to the following: 2508

 2509

 Download the Micronets Websocket Proxy docker image (Note: If you cannot connect to the 2510
docker service, use sudo usermod -aG docker to add the user account to the docker group): 2511

/etc/micronets/micronets-ws-proxy.d/micronets-ws-proxy docker-pull 2512

You should see output similar to the following: 2513

 2514

 Start the Websocket Proxy: 2515

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 162

/etc/micronets/micronets-ws-proxy.d/micronets-ws-proxy docker-run 2516

You should see output similar to the following: 2517

 2518

 Verify that the Websocket Proxy is running: 2519

/etc/micronets/micronets-ws-proxy.d/micronets-ws-proxy docker-logs 2520

You should see output similar to the following: 2521

 2522

 Verify the Websocket Proxy credentials by executing the following steps: 2523

 Download the Websocket test client script: 2524

curl -O https://raw.githubusercontent.com/cablelabs/micronets-ws-2525
proxy/nccoe-build-3/bin/websocket-test-client.py 2526

 Download the requirements text file: 2527

curl -O https://raw.githubusercontent.com/cablelabs/micronets-ws-2528
proxy/nccoe-build-3/requirements.txt 2529

https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-build-3/bin/websocket-test-client.py
https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-build-3/bin/websocket-test-client.py
https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-build-3/requirements.txt
https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-build-3/requirements.txt

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 163

 Clear out the nonroot installation of virtualenv, and set the Python interpreter to use 2530
Python 3.6 for the script installation: 2531

virtualenv --clear -p $(which python3.6) $PWD/virtualenv 2532

You should see output similar to the following: 2533

 2534

 Install virtualenv and pass the requirements text file: 2535

./virtualenv/bin/pip install -r requirements.txt 2536

You should see output similar to the following: 2537

 2538

 Run the Websocket test client script: 2539

./virtualenv/bin/python websocket-test-client.py \ 2540

 --client-cert micronets-manager.pkeycert.pem \ 2541

 --ca-cert micronets-ws-root.cert.pem \ 2542

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 164

 wss://localhost:5050/micronets/v1/ws-proxy/test/mm 2543

You should see output similar to the following: 2544

 2545

 Verify communication from the test client to the Websocket Proxy by checking the logs: 2546

/etc/micronets/micronets-ws-proxy.d/micronets-ws-proxy docker-logs 2547

You should see output similar to the following: 2548

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 165

 2549

 Save the micronets-manager.pkeycert.pem, micronets-gw-service.pkeycert.pem, and micronets-2550
ws-root.cert.pem files for configuring the Micronets Manager and Micronets Gateway compo-2551
nents. 2552

4.1.11 Micronets iPhone Application for Device Onboarding 2553

This section describes the CableLabs Micronets iPhone application, which is a mobile application used 2554
for onboarding DPP-capable devices. This implementation leverages the latest CableLabs Micronets 2555
iPhone application Git release. This documentation describes setting up your own Micronets iPhone 2556
application. 2557

https://github.com/cablelabs/micronets-mobile/blob/nccoe-build-3/README.md#Installation

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 166

4.1.11.1 Micronets iPhone Application Overview 2558

The Micronets iPhone application is responsible for sending onboarding requests and related elements 2559
to the MSO portal when the user initiates the onboarding process on the Micronets Proto-Pi device and 2560
scans the QR code. If building with an Android phone, follow the documentation provided here: 2561
https://github.com/cablelabs/micronets-mobile/blob/nccoe-build-3/README.md#android 2562

4.1.11.2 Configuration Overview 2563

The following subsections document the software and network configurations for the Micronets iPhone 2564
application. 2565

4.1.11.2.1 Network Configuration 2566
The mobile phone on which the Micronets application is being installed should have internet access via 2567
either the cellular network or Wi-Fi. 2568

4.1.11.2.2 Software Configuration 2569

The following software is required to install, configure, and operate the Micronets iPhone application: 2570

 macOS (minimum version 10.13; High Sierra) 2571

 Apple iOS Developer license 2572

 Node (minimum version 8) 2573

 Cordova (version 8.0.0; problems with version 9) 2574

 Xcode (minimum version 9.2) 2575

 ImageMagick 2576

 Brew 2577

4.1.11.2.3 Hardware Configuration 2578

The following hardware is required to install, configure, and operate the Micronets iPhone application: 2579

 Apple computing system (laptop or desktop) 2580

 Apple iPhone (any model compatible with iOS 10.3 and above) 2581

4.1.11.3 Setup 2582

4.1.11.3.1 Install Dependencies 2583
1. Install Node by entering the following command in the terminal: 2584

brew install node 2585

https://github.com/cablelabs/micronets-mobile/blob/nccoe-build-3/README.md#android

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 167

2. Install ImageMagick by entering the following command in the terminal: 2586

brew install imagemagick 2587

3. Install Cordova version 8.0.0 by entering the following command: 2588

sudo npm install -g cordova@8.0.0 2589

4. Install ios-deploy, which Cordova uses to cable-load the application, by entering the following 2590
command: 2591

sudo npm install -g --unsafe-perm=true ios-deploy 2592

Note: The unsafe-perm flag is required on macOS versions El Capitan and higher. 2593

If you run into an EACCES: permission denied error, attempt the following fixes: 2594

sudo chown -R $USER:$GROUP ~/.npm 2595
 2596
sudo chown -R $USER:$GROUP ~/.config 2597

5. Open Xcode, and add Xcode to your command-line tools: 2598

Preferences > Location > Command Line Tools 2599

Select your Xcode version as seen in screenshot below: 2600

mailto:cordova@8.0.0

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 168

 2601

4.1.11.3.2 Build Micronets iPhone Application 2602
1. Check out the repo that contains the Micronets mobile application build by entering the follow-2603

ing command: 2604

git clone https://www.github.com/cablelabs/micronets-mobile.git 2605

 2606

2. Enter the Micronets mobile directory by entering the following command: 2607

cd micronets-mobile 2608

3. Add the target platform by entering the following command: 2609

cordova platform add ios 2610

https://www.github.com/cablelabs/micronets-mobile.git

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 169

 2611

4. Generate iOS icon set by entering the following command: 2612

npx app-icon generate 2613

You should see the following output: 2614

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 170

 2615

5. Plug your iPhone into your computer, unlock your phone, and open to home screen. (You will 2616
need to allow developer use of the phone. You will be prompted.) 2617

6. Run the following command to build the mobile application: 2618

cordova run ios --device --buildFlag='-UseModernBuildSystem=0' 2619

You should see output similar to the following: 2620

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 171

 2621

Note: This initial attempt to build is expected to fail. It is necessary to open the project in Xcode 2622
and change some settings. 2623

7. Open the project file platforms/ios/Micronets.xcodeproj in Xcode. 2624

8. Click the Micronets icon in the navigator pane on the left. The properties pane should now be 2625
visible on the right: 2626

 2627

9. Select Micronets under TARGETS: 2628

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 172

 2629

10. Select the Signing & Capabilities tab in the heading: 2630

 2631

11. Ensure Automatically manage signing is checked: 2632

You will see the following notification. Select Enable Automatic: 2633

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 173

 2634

The Automatically manage signing setting should now be selected as seen below: 2635

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 174

12. Ensure that your team is selected under the Team drop-down: 2636

Note: If you encounter the following error to register the bundle identifier, proceed to step a:

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 175

a. Change the Bundle Identifier to your own unique identifier: 2637

 2638

b. Navigate to the config.xml file by selecting as shown below: 2639

 2640

c. Modify the widget id from com.cablelabs.micronets.mobile to the build identifier cre-2641
ated in step a as seen below: 2642

 2643

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 176

 2644

13. Select the General tab in the heading: 2645

 2646

14. Under Deployment Info, make the following modifications: 2647

a. Select the deployment Target (suggested 10.3)

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 177

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 178

b. Select Device type iPhone and iPad, Device Orientation Portrait and Upside Down, 2648
Status Bar style Hide status bar: 2649

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 179

 2650

15. Select the Info tab, and make the following modifications: 2651

 2652

a. On last entry in Custom iOS Target Properties, hover over the down arrow. 2653

 2654

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 180

b. A plus sign appears. Click it to create a new property. 2655

 2656

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 181

c. In the combo box drop-down, start typing View controller, and choose the auto-fill 2657
suggestion View controller-based status bar appearance:2658

 2659

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 182

d. Click enter to add this entry. Ensure this entry is set to NO. 2660

 2661

16. Return to the terminal, and run the following command (ensure the iPhone is unlocked first): 2662

 cordova run ios --device --buildFlag='-UseModernBuildSystem=0' 2663

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 183

Note: You may see an UnhandledPromiseRejectionWarning as seen below, but the application 2664
should still have been loaded onto your iPhone:2665

 2666

4.1.12 MSO Portal Bootstrapping Interface to the Onboarding Manager 2667

This section describes the CableLabs Micronets MSO portal, which, for this implementation, is a cloud-2668
provided service. This implementation leverages the nccoe-build-3 branch of CableLabs Micronets MSO 2669
portal Git release. This service can be hosted by the implementer or another party. This documentation 2670
describes setting up your own MSO portal. 2671

4.1.12.1 MSO Portal Overview 2672

The MSO portal is the interface between the Micronets iPhone application and the Micronets Manager. 2673
It is responsible for passing onboarding requests and respective onboarding information to the Mi-2674
cronets Manager to complete the request. 2675

4.1.12.2 Configuration Overview 2676

The following subsections document the software and network configurations for the MSO portal. 2677
Please note that the MUD manager, Micronets Manager, Websocket Proxy, MUD registry, and MSO 2678

https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/install/mso-portal.md

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 184

portal are all implemented on the same server, nccoe-server1.micronets.net. Many of these 2679
configurations are already covered in previous sections of this document but are repeated here for 2680
consistency. 2681

4.1.12.2.1 Network Configuration 2682
This server was hosted outside the lab environment on a Linode cloud-hosted Linux server. Its IP address 2683
was statically assigned. 2684

4.1.12.2.2 Software Configuration 2685
The following software is required to install, configure, and operate the MSO portal: 2686

• docker (v18.06 or higher) 2687

• docker-compose (v1.23.1 or higher) 2688

• OpenSSL (1.0.2g or higher) 2689

• NGINX and requisite certificates if https is to be supported 2690

4.1.12.2.3 Hardware Configuration 2691
The following hardware is required to install, configure, and operate the MSO portal: 2692

• 4 GB of RAM 2693

• 50 GB of free disk space 2694

4.1.12.3 Setup 2695

4.1.12.3.1 Install Dependencies 2696
1. Install docker, docker-compose, openssl, and NGINX by entering the following command: 2697

sudo apt-get install docker docker-compose openssl nginx 2698

4.1.12.3.2 Install and Configure MSO Portal 2699
1. Install a newer version of docker-compose, if necessary. (Ubuntu 18.04 comes with an older ver-2700

sion.) 2701

a. Check the current version by entering the following command: 2702

docker-compose --version 2703

The result should be similar to the following: 2704

 2705

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 185

b. If the version is earlier than v1.23.1, run the following commands to install a new 2706
version in /usr/local/bin: 2707

i. Download the docker compose utility: 2708
curl -L -O 2709
https://github.com/docker/compose/releases/download/1.24.1/docker-2710
compose-Linux-`uname -m’ 2711

ii. Install the docker compose utility into the appropriate directory: 2712
sudo install -v -o root -m 755 docker-compose-Linux-`uname -m` 2713
/usr/local/bin/docker-compose 2714

The result should be similar to the following: 2715

 2716

2. Download and install the MSO portal management script by entering the following commands: 2717

 Download the MSO portal management script by executing the following command: 2718

curl -O https://raw.githubusercontent.com/cablelabs/micronets-mso-2719
portal/nccoe-build-3/scripts/mso-portal 2720

 Download the docker-compose.yml file by executing the following command: 2721

curl -O https://raw.githubusercontent.com/cablelabs/micronets-mso-2722
portal/nccoe-build-3/scripts/docker-compose.yml 2723

 Install the MSO portal management script to the appropriate directory by executing the 2724
following command: 2725

sudo install -v -o root -m 755 -D -t /etc/micronets/mso-portal.d mso-2726
portal 2727

The result should be similar to the following: 2728

https://raw.githubusercontent.com/cablelabs/micronets-mso-portal/nccoe-build-3/scripts/mso-portal
https://raw.githubusercontent.com/cablelabs/micronets-mso-portal/nccoe-build-3/scripts/mso-portal
https://raw.githubusercontent.com/cablelabs/micronets-mso-portal/nccoe-build-3/scripts/docker-compose.yml
https://raw.githubusercontent.com/cablelabs/micronets-mso-portal/nccoe-build-3/scripts/docker-compose.yml

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 186

 2729

 Install the docker-compose.yml management script to the appropriate directory by exe-2730
cuting the following command: 2731

sudo install -v -o root -m 644 -D -t /etc/micronets/mso-portal.d docker-2732
compose.yml 2733

The result should be similar to the following: 2734

 2735

Note: The MSO portal management script contains default values that can be modified directly 2736
in your copy of the management script or overridden via command-line parameters. 2737
Run /etc/micronets/mso-portal.d --help to see the options. 2738

3. Download the MSO portal docker image by executing the following command (Note: If you can-2739
not connect to the docker service, you can use sudo usermod -aG docker <username> to add 2740
the user account to the docker group): 2741

/etc/micronets/mso-portal.d/mso-portal docker-pull 2742

The result should be similar to the following: 2743

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 187

 2744

4. Generate a shared secret for enabling communication between the Micronets Manager in-2745
stances and the MSO portal: 2746

sudo /etc/micronets/mso-portal.d/mso-portal create-mso-secret 2747

The result should be similar to the following: 2748

 2749

Note: This value will need to be copied to the Micronets Manager host server to allow Micronets 2750
Manager instances to access the MSO portal APIs. 2751

5. Configure MSO portal URLs: 2752

a. Open the mso-portal file by entering the following command: 2753

sudo vim /etc/micronets/mso-portal.d/mso-portal 2754

b. Modify the parameters of the MSO portal management script to reflect the public end 2755
points of the MSO portal service. For example: 2756

i. The DEF_MSO_API_BASE_URL path variable can be set to: 2757

DEF_MSO_API_BASE_URL="https://nccoe-2758
server1.micronets.net/micronets/mso-portal/" 2759

ii. The DEF_WS_PROXY_BASE_URL path variable can be set to: 2760

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 188

DEF_WS_PROXY_BASE_URL="wss:// nccoe-2761
server1.micronets.net:5050/micronets/v1/ws-proxy/gw" 2762

 2763

6. Start the MSO portal docker image by executing the following command: 2764

sudo /etc/micronets/mso-portal.d/mso-portal docker-run 2765

The result should be similar to the following: 2766

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 189

 2767

7. Verify that the MSO portal started successfully by executing the following command: 2768

/etc/micronets/mso-portal.d/mso-portal docker-logs 2769

You should see output like the following at the end of the log: 2770

Feathers application started on "http://0.0.0.0:3210" 2771

Feathers webSocketBaseUrl "wss://<ServerURL>:5050/micronets/v1/ws-proxy/gw" 2772

Feathers publicApiBaseUrl "https://< ServerURL>/micronets/mso-portal/" 2773

 2774

8. To securely expose the MSO API, configure your NGINX server block to allow the https proxy to 2775
redirect to localhost port 3210: 2776

 Open the NGINX sites-available file for the server: 2777

 sudo vim /etc/nginx/sites-available/nccoe-server1.micronets.net 2778

 Add the following location to the server block: 2779

server { 2780

 […] 2781

 location /micronets/mso-portal/ { 2782

 proxy_pass http://127.0.0.1:3210/; 2783

 } 2784

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 190

[…] 2785

} 2786

 2787

4.2 Product Integration and Operation 2788

This section details integration and operation of the Micronets components that were previously in-2789
stalled in the product installation section. Please ensure that the components from that section are in-2790
stalled as described before proceeding to the following sections. 2791

4.2.1 Adding an MSO Subscriber 2792

This section describes adding an MSO portal subscriber. This subscriber account will allow a valid 2793
connection and association among the Micronets mobile application, Micronets Gateway, and 2794
Micronets services. 2795

4.2.1.1 Prerequisites 2796

To successfully complete this section, complete the product installation section. 2797

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 191

4.2.1.2 Instructions 2798

 Add a subscriber and associated user account and password to the MSO portal by entering the 2799
following command (Note: Be sure to use the server URL that reflects the location of your MSO 2800
portal): 2801

curl -s -X POST https://nccoe-server1.micronets.net/micronets/mso-2802
portal/portal/v1/subscriber \ 2803

 -H "Content-Type: application/json" \ 2804

 -d '{ 2805

 "id" : "subscriber-001", 2806

 "ssid" : "micronets-gw", 2807

 "name" : "Subscriber 001", 2808

 "gatewayId":"micronets-gw", 2809

 "username":"micronets", 2810

 "password":"micronets" 2811

 }' \ 2812

| json_pp 2813

 2814

You should see output similar to the following: 2815

 2816

 Start the Micronets Manager for the subscriber by executing the following command: 2817

sudo /etc/micronets/micronets-manager.d/mm-container start subscriber-001 2818

 You should see output similar to the following: 2819

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 192

 2820

 Check the logs to confirm that the Micronets Manager for the new subscriber started success-2821
fully by executing the following command: 2822

/etc/micronets/micronets-manager.d/mm-container logs subscriber-001 2823

 You should see output similar to the following: 2824

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 193

 2825

 Verify that the Micronets Manager for the subscriber has registered with the MSO portal by exe-2826
cuting the following command: 2827

curl -s https://my-server.org/micronets/mso-2828
portal/portal/v1/subscriber/subscriber-001 | json_pp 2829

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 194

You should see output similar to the following:2830
 2831

 2832

4.2.2 Associating the Micronets Gateway with a Subscriber 2833

This section describes associating an MSO portal subscriber with the Micronets Gateway. For additional 2834
instructions not detailed in this documentation, please follow the link to the CableLabs documentation: 2835
https://github.com/cablelabs/micronets-gw/releases/tag/1.0.62-u18.04 (for Micronets Gateway config-2836
uration) and https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/gateway-2837
4subscriber.md (for operations documentation). 2838

4.2.2.1 Prerequisites 2839

To successfully complete this section, complete the product installation section and complete Section 2840
4.2.1. Ensure that all steps have been successfully completed before proceeding to the instructions. 2841

4.2.2.2 Instructions 2842

 Create the /etc/network/interfaces file on the Micronets Gateway: 2843

 Open a terminal on the Micronets Gateway. If this is the first installation of the Mi-2844
cronets Gateway, copy the sample interfaces file to your /etc/network/interfaces file by 2845
entering the following command: 2846
sudo cp /opt/micronets-gw/doc/interfaces.sample /etc/network/interfaces 2847
 2848

Modify the /etc/network/interfaces file: 2849

Retrieve the desired interface names on the gateway by running the following 2850
command in a terminal on the gateway: 2851

ifconfig 2852

Configure your wireless and wired interface by renaming the corresponding portion 2853
of the file to reference the respective interface name as seen in the config below: 2854

2855

A wired interface managed by the Micronets gateway 2856

https://github.com/cablelabs/micronets-gw/releases/tag/1.0.62-u18.04
https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/gateway-4subscriber.md
https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/gateway-4subscriber.md

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 195

2857

allow-brmn001 enp1s0 2858

iface enp1s0 manual 2859

 ovs_type OVSPort 2860

 ovs_bridge brmn001 2861

 ovs_port_req 4 2862

 ovs_port_initial_state blocked 2863

2864

A wireless interface managed by the Micronets gateway 2865

2866

allow-brmn001 wlp2s0 2867

iface wlp2s0inet manual 2868

 ovs_type OVSPort 2869

 ovs_bridge brmn001 2870

 ovs_port_req 3 2871

 ovs_port_initial_state blocked 2872

Confirm that the bridge entry contains an ovs_ports line referring to the micronet 2873
interfaces (enp1s0 and wlp2s0) as seen in the config below: 2874

auto brmn001 2875

allow-ovs brmn001 2876

iface brmn001 inet manual 2877

 ovs_type OVSBridge 2878

 ... 2879

 # the ovs_ports should list all wired and wireless interfaces under 2880
Micronets management 2881

 ovs_ports diagout1 enp1s0 wlp2s0 2882

 ... 2883

Confirm that the entry in the interfaces file for the wired interface is set up correctly 2884
for the network to supply the uplink (the uplink interface is enp1s0) and get its 2885
address via DHCP so the configuration is similar to the following: 2886

2887

The uplink port 2888

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 196

2889

auto eth enp1s0 2890

iface eth0inet dhcp 2891

Confirm that the bridge entry contains an ovs_bridge_uplink_port line referring to 2892
the uplink interface as seen in the config below: 2893

auto brmn001 2894

allow-ovs brmn001 2895

iface brmn001 inet manual 2896

 ovs_type OVSBridge 2897

 ... 2898

 # This is the port that's connected to the Internet 2899

 ovs_bridge_uplink_port enp1s0 2900

 ... 2901

Reboot the gateway to apply the changes to the /etc/network/interfaces file by exe-2902
cuting the following command: 2903

sudo reboot 2904

 Create a gateway configuration file for the Micronets Gateway to register for the subscriber: 2905

 Copy and save the MAC addresses and corresponding interface names output by execut-2906
ing the following command: 2907

ifconfig 2908

 Navigate to the /etc/network/interfaces file on the gateway, and copy the subnets con-2909
figurations, which will be used for the gateway configuration file in the following steps: 2910

sudo vim /etc/network/interfaces 2911

Copy and save the subnet and ranges associated with the interfaces identified in the 2912
previous step from this file (Note: These are at the bottom of the file): 2913

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 197

 2914

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 198

 2915

 Create the gateway config file by entering the following command: 2916

sudo vim gateway-config-001.json 2917

 Modify the following configuration to include your gateway’s MAC address and subnets 2918
as seen below and copy them into the gateway-config-001.json file: 2919

Be sure to modify the ipv4SubnetRanges definition to match the bridge subnet range—2920
e.g., the file above defines five different subnets ranging from 10.135.1.1/24– 2921
10.135.5.1/24, so we set octetC to have a minimum of 1 and a maximum of 5 and oc-2922
tetD to have a minimum of 2 and a maximum of 254 as seen in the config below: 2923

{ 2924

 "version": "1.0", 2925

 "gatewayId": "micronets-gw", 2926

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 199

 "gatewayModel": "proto-gateway", 2927

 "gatewayVersion": {"major":1, "minor":0, "micro":0}, 2928

 "configRevision": 1, 2929

 "vlanRanges": [2930

 {"min":1000, "max":4095} 2931

], 2932

 "micronetInterfaces": [2933

 { 2934

 "medium": "wifi", 2935

 "name": "wlp2s0", 2936

 "macAddress": "20:16:d8:2b:4b:41", 2937

 "ssid": "micronets-gw", 2938

 "dpp": { 2939

 "supportedAkms": ["psk"] 2940

 }, 2941

 "ipv4SubnetRanges": [2942

 { 2943

 "id": "range001", 2944

 "subnetRange": {"octetA": 10, 2945

 "octetB": 135, 2946

 "octetC": {"min":1, "max":5} 2947

 }, 2948

 "subnetGateway": {"octetD": 1}, 2949

 "deviceRange": {"octetD": {"min":2, "max":254}} 2950

 } 2951

] 2952

 }, 2953

 { 2954

 "medium": "ethernet", 2955

 "name": "enp1s0", 2956

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 200

 "macAddress": "80:ee:73:dc:64:1d", 2957

 "ipv4Subnets": [2958

 { 2959

 "id": "range001", 2960

 "subnetRange": {"octetA": 10, 2961

 "octetB": 135, 2962

 "octetC": 250 2963

 }, 2964

 "subnetGateway": {"octetD": 1}, 2965

 "deviceRange": {"octetD": {"min":2, "max":254}} 2966

 } 2967

] 2968

 } 2969

] 2970

} 2971

Register a gateway configuration for a subscriber with the subscriber’s Micronets Manager instance 2972
by entering the following command (with the subscriber being subscriber-001 in this case): 2973

curl -s -X POST https://nccoe-server1.micronets.net/sub/subscriber-2974
001/api/mm/v1/micronets/odl \ 2975

-H "Content-Type: application/json" -d @./gateway-config-001.json | json_pp 2976

You should see output similar to the following: 2977

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 201

 2978

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 202

 2979

Confirm that the gateway ID is updated in the MSO portal by executing the following command: 2980

curl -s https://nccoe-server1.micronets.net/micronets/mso-2981
portal/portal/v1/subscriber/subscriber-001 | json_pp 2982

You should see output similar to the following: 2983
 2984

 2985
Configure the Micronets Gateway with the Websocket Proxy keys provisioned for the gateway: 2986

Copy the client cert and key as well as the Websocket root certificate, created in the product 2987
installation section, from the cloud server into the gateway by executing the following 2988
commands from the gateway: 2989

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 203

i. Copy the micronets-gw-service.pkeycert.pem to the gateway: 2990

scp micronets-dev@nccoe-server1.micronets.net:Projects/mi-2991
cronets/micronets-gw-service.pkeycert.pem . 2992

You should see the following output: 2993

 2994

ii. Copy the micronets-ws-root.cert.pem to the gateway: 2995

scp micronets-dev@nccoe-server1.micronets.net:Projects/mi-2996
cronets/micronets-ws-root.cert.pem . 2997

You should see the following output: 2998

 2999

b. Copy them into the gateway service library to be loaded when the gateway is restarted: 3000

sudo cp -v micronets-gw-service.pkeycert.pem micronets-ws-root.cert.pem 3001
/opt/micronets-gw/lib/ 3002

Change the Websocket lookup URL to use the MSO portal service on your server by completing the 3003
following commands: 3004

a. Open the Micronets Gateway config file by executing the following command: 3005

sudo vim /opt/micronets-gw/config.py 3006

b. Modify the WEBSOCKET_LOOKUP_URL and GATEWAY_ID to match the MSO portal 3007
Websocket lookup end point created in the product installation section and the Mi-3008
cronets Gateway ID: 3009

WEBSOCKET_LOOKUP_URL = 'https://nccoe-3010
server1.micronets.net/micronets/mso-3011
portal/portal/v1/socket?gatewayId={gateway_id}' 3012

GATEWAY_ID = 'micronets-gw' 3013

mailto:micronets-dev@nccoe-server1.micronets.net
mailto:micronets-dev@nccoe-server1.micronets.net

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 204

 3014

Restart the Micronets Gateway Service by executing the following command: 3015

sudo systemctl restart micronets-gw.service 3016

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 205

Check the Micronets Gateway Service log (/opt/micronets-gw/micronets-gw.log) to verify that the 3017
gatewayʼs Websocket registration status was successful: 3018

cat /opt/micronets-gw/micronets-gw.log 3019

You should see output similar to the following: 3020

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 206

 3021

 3022

Confirm the establishment of the gateway-manager control connection by examining the Web-3023
socket Proxy connection reports in the Websocket Proxy log: 3024

/etc/micronets/micronets-ws-proxy docker-logs | less 3025

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 207

Look for the following in the log (with the MEETUP ID matching the subscriber name in ques-3026
tion): 3027

 3028

This indicates that the Micronets Gateway Service and the Micronets Manager for the sub-3029
scriber connected and can exchange provisioning commands and event indications. 3030

4.2.3 Integrating Micronets Proto-Pi Device 3031

This section describes associating an MSO portal subscriber with the Micronets Gateway. For additional 3032
instructions not detailed in this documentation, please follow the link to the CableLabs documentation: 3033
https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#Operation. 3034

4.2.3.1 Prerequisites 3035

To successfully complete this section, be sure to have completed the product installation section 3036
associated with the Micronets Proto-Pi device. Ensure all steps have been successfully completed before 3037
proceeding to the instructions. 3038

4.2.3.2 Instructions 3039

1. Connect to the Raspberry Pi via SSH by entering the following command: 3040

ssh pi@192.168.30.191 3041

You will be prompted to enter the device password the password will remain the same. 3042

2. Change to the keys directory by entering the following command: 3043

cd micronets-pi3/keys/ 3044

https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#Operation

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 208

3. Output the content of the proto-pi.dpp.pub file to copy the public key for this device (Note: You 3045
will need to store this device key for registering the device with the MUD registry if doing so 3046
manually): 3047

cat proto-pi.dpp.pub 3048

Highlight and copy the key that was output by the previous command:

4. Modify the config.json file to include the key that was copied in the previous step, and modify 3049
the parameters of the file to match your setup: 3050

sudo vim ~/micronets-pi3/config/config.json 3051

The original file before editing should be similar to the following screenshot: 3052

 3053

If doing manual device registration edit the file to reflect the correct DeviceModelUID (should 3054
be the same name as the MUD file associated with this device), dppMUDUrl, msoPortalUrl, reg-3055
istrationServer, vendorCode as seen below: 3056

{ 3057
 "channel": 1, 3058
 "channelClass": 81, 3059

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 209

 "comcast": false, 3060
 "demo": true, 3061
 "deviceModelUID": "nist-model-fe_northsouth.json", 3062
 "deviceProfile": "device-0", 3063
 "disableMUD": false, 3064
 "dppMUDUrl": "https://nccoe-server1.microents.net/mud/v1/mud-3065
url/TEST/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgACxjMF8Ucp6d3gRBImv78eGEMwB5igS2Kt5b3066
nXI7VeBrc=", 3067
 "dppName": "myDevice", 3068
 "dppProxy": { 3069
 "msoPortalUrl": "https://nccoe-server1.micronets.net/micronets/mso-por-3070
tal/", 3071
 "password": "grandma", 3072
 "username": "grandma" 3073
 }, 3074
 "messageTimeoutSeconds": 45, 3075
 "mode": "dpp", 3076
 "onboardAnimationSeconds": 5, 3077
 "qrcodeCountdown": 30, 3078
 "registrationServer": "https://nccoe-server1.micronets.net/registry/de-3079
vices", 3080
 "splashAnimationSeconds": 10, 3081
 "vendorCode": "TEST" 3082
} 3083
 3084

If enabling self-registry, follow the steps described in the following documentation: 3085
https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#dpp-mode-mud-3086
registry . 3087

5. Reboot the device for the new config file to take effect: 3088

sudo reboot 3089

4.2.4 Updating MUD Registry 3090

This section describes the HTTP API operations for interacting with the MUD registry. The instructions 3091
detail how to register a MUD-capable device and its MUD URL with a vendor. For additional API opera-3092
tions not documented here, follow the link to the CableLabs MUD registry operation documentation: 3093
https://github.com/cablelabs/micronets-mud-registry/blob/nccoe-build-3/README.md#Operation. 3094

4.2.4.1 Prerequisites 3095

To successfully complete this section, be sure to have completed the product installation section. 3096

4.2.4.2 Instructions 3097

 Retrieve the device registry URL for a vendor by entering the following curl command: 3098

https://nccoe-server1.microents.net/mud/v1/mud-url/TEST/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgACxjMF8Ucp6d3gRBImv78eGEMwB5igS2Kt5bnXI7VeBrc=
https://nccoe-server1.microents.net/mud/v1/mud-url/TEST/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgACxjMF8Ucp6d3gRBImv78eGEMwB5igS2Kt5bnXI7VeBrc=
https://nccoe-server1.microents.net/mud/v1/mud-url/TEST/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgACxjMF8Ucp6d3gRBImv78eGEMwB5igS2Kt5bnXI7VeBrc=
https://nccoe-server1.micronets.net/micronets/mso-portal/
https://nccoe-server1.micronets.net/micronets/mso-portal/
https://nccoe-server1.micronets.net/registry/devices
https://nccoe-server1.micronets.net/registry/devices
https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#dpp-mode-mud-registry
https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#dpp-mode-mud-registry
https://github.com/cablelabs/micronets-mud-registry/blob/nccoe-build-3/README.md#Operation

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 210

/mud/v1/device-registry/:vendor-code 3099

curl -L https://nccoe-server1.micronets.net/mud/v1/device-registry/TEST 3100

You should see output similar to the following: 3101

 3102

2. Register a device with a vendor's registry. This requires the device model UID and the public key, 3103
which can be modified and retrieved through the Micronets Proto-Pi: 3104

/registry/devices/register-device/:device-model-UID64/:public-key 3105

curl -X POST https://nccoe-server1.micronets.net/registry/devices/register-3106
device/nist-model-3107
fe_northsouth.json/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfM3108
rQ2mcCazdJNfNdgTkZM= 3109

You should see output similar to the following: 3110

Retrieve the MUD registry URL for a vendor: 3111

/mud/v1/mud-registry/:vendor-code 3112

curl https://nccoe-server1.micronets.net/mud/v1/mud-registry/TEST 3113

You should see output similar to the following: 3114

 3115

Lookup a MUD URL from the vendor MUD registry: 3116

https://nccoe-server1.micronets.net/mud/v1/device-registry/TEST
https://nccoe-server1.micronets.net/registry/devices/register-device/nist-model-fe_northsouth.json/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfMrQ2mcCazdJNfNdgTkZM=
https://nccoe-server1.micronets.net/registry/devices/register-device/nist-model-fe_northsouth.json/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfMrQ2mcCazdJNfNdgTkZM=
https://nccoe-server1.micronets.net/registry/devices/register-device/nist-model-fe_northsouth.json/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfMrQ2mcCazdJNfNdgTkZM=
https://nccoe-server1.micronets.net/registry/devices/register-device/nist-model-fe_northsouth.json/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfMrQ2mcCazdJNfNdgTkZM=
https://nccoe-server1.micronets.net/mud/v1/mud-registry/TEST

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 211

/registry/devices/mud-registry/:public-key 3117

curl https://nccoe-server1.micronets.net/registry/devices/mud-registry/ 3118
MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfMrQ2mcCazdJNfNdgTkZM3119
= 3120

You should see output similar to the following: 3121

 3122

Delete a device from the MUD registry (Note: If you do this step, the device will no longer be associ-3123
ated with a MUD file. Therefore, you should execute this command only if you do not intend to 3124
onboard the device with MUD capabilities): 3125

/registry/devices/remove-device/:public-key 3126

curl -L -X POST https://nccoe-server1.micronets.net/registry/devices/remove-de-3127
vice/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfMrQ2mcCazdJNfNd3128
gTkZM= 3129

You should see output similar to the following: 3130

 3131

4.2.5 Integrating the Micronets iPhone App with MSO Portal 3132

This section describes integrating the Micronets iPhone application with the MSO portal. For additional 3133
instructions not detailed in this documentation, please follow the link to the CableLabs documentation: 3134
https://github.com/cablelabs/micronets-mobile/blob/nccoe-build-3/README.md#Operation. 3135

4.2.5.1 Prerequisites 3136

A valid network connection on the iPhone is required as well as the completion of the product 3137
installation section related to the Micronets iPhone application. 3138

4.2.5.2 Instructions 3139

 Open the Micronets mobile application: 3140

https://nccoe-server1.micronets.net/registry/devices/remove-device/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfMrQ2mcCazdJNfNdgTkZM=
https://nccoe-server1.micronets.net/registry/devices/remove-device/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfMrQ2mcCazdJNfNdgTkZM=
https://nccoe-server1.micronets.net/registry/devices/remove-device/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfMrQ2mcCazdJNfNdgTkZM=
https://github.com/cablelabs/micronets-mobile/blob/nccoe-build-3/README.md#Operation

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 212

 3141

2. From the splash screen click the gear button in the upper right corner to open the settings page: 3142

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 213

 3143

Modify the following fields in the general settings: 3144

Mode - DPP or Clinic: We select DPP, if you are selecting the Clinic mode please follow the 3145
documentation for details related to the Clinic mode 3146

Debug - Leave this off as CableLabs will be deprecating this in the future 3147

Enable MUD – If enabled, it will try to fetch the MUD file for the scanned device and pre-3148
populate the Submit form prior to onboarding. 3149

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 214

 3150

Modify the servers for the Micronets application: 3151

DPP – MSO portal server URL for submitting onboard requests 3152

IdOra – Server for user authentication (Note: this is only required if utilizing the Clinic Mode) 3153

MUD – MUD registry server for looking up MUD files using the vendor code and public key 3154
in the QRCode. (Note: this only needs to be changed if you are deploying your own 3155
MUD registry) 3156

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 215

 3157

Back on the Micronets mobile application, enter your subscriber credentials and click SIGN IN: 3158

 3159

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 216

Click the READY TO SCAN button to open the camera for onboarding: 3160

 3161

If prompted, allow the Micronets application camera access, by clicking OK: 3162

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 217

 3163

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 218

4.2.6 Onboarding Micronets Proto-Pi to a micronet 3164

This section describes how to onboard a configured Micronets Proto-Pi device to a micronet using the 3165
Micronet iPhone app. For additional instructions not detailed in this documentation, please follow the 3166
link to the CableLabs documentation:https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3167
3/README.md#Operation. 3168

4.2.6.1 Prerequisites 3169

To successfully complete this section the following is required: 3170

 a Raspberry Pi with the Micronets Proto-Pi software installed and configured 3171

 an iOS or Android phone with the Micronets application installed and configured 3172

 a Micronets subscriber account configured in Section 4.2.1 3173

 a gateway device associated with the Micronets subscriber configured in Section 4.2.2 3174

4.2.6.2 Instructions 3175

 If leveraging the self-registration feature for MUD onboarding, ensure that an ethernet cable is 3176
connected to the Raspberry Pi running the Micronets Proto-Pi software. 3177

 Power on the Pi device. If leveraging the self-registration feature, the device will automatically 3178
be registered on first run. 3179

 On the mobile device, open the Micronets mobile application and log in with your subscriber 3180
credentials. 3181

https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#Operation
https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#Operation

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 219

 3182

 On the Mobile device, tap the Ready to Scan button: 3183

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 220

 3184

 On the Pi, click the Onboard icon: 3185

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 221

 3186

You should see a QR code appear on the screen: 3187

 3188

 Scan the QRCode with the Micronet mobile application: 3189

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 222

 3190

 On the next screen that appears on the Micronets mobile application, input the following 3191
information in a timely fashion (Note: these steps must be completed while the device is still in 3192
onboard mode). 3193

a. If a MUD file was found, the device CLASS and NAME will be prepopulated, modify as 3194
needed. In the case that a MUD file was not found populate the CLASS and NAME 3195
manually. 3196

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 223

b. Set the MODE to STA (Note: The Mode should always be STA as of the time of this 3197
implementation). 3198

c. Tap the ONBOARD button to send the onboarding request to the MSO portal: 3199

 3200

 On the Pi you will see the device has been onboarded to the Micronets Gateway and has 3201
received an IP address: 3202

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 224

 3203

4.2.7 Interacting with Micronets Manager 3204

The Micronets Manager, which is hosted in the cloud, has API endpoints exposed in order to allow 3205
implementers to manage the Micronets Gateway through the Micronets Manager service. This section 3206
describes how to set up postman and execute different functions. 3207

4.2.7.1 Prerequisites 3208

In order to successfully complete this section of the documentation, be sure to have completed the 3209
product installation section above and downloaded the postman application onto a laptop that has 3210
internet access: https://www.postman.com/downloads/. 3211

4.2.7.2 Instructions 3212

 Once Postman is installed and set up on the laptop, proceed to the following site to download 3213
the Micronets Manager Linode postman collections: 3214

Follow the links: 3215
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3216
3/scripts/Micronets_Manager_API.postman_collection.json 3217

https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3218
3/scripts/Micronets_Manager_API.postman_globals.json 3219

https://www.postman.com/downloads/
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/Micronets_Manager_API.postman_collection.json
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/Micronets_Manager_API.postman_collection.json
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/Micronets_Manager_API.postman_collection.json
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/Micronets_Manager_API.postman_globals.json
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/Micronets_Manager_API.postman_globals.json

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 225

 Open the postman application and sign in. 3220

 Click the import button to import the collections downloaded in step 1: 3221

 3222

 Next, click upload files: 3223

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 226

 3224

 Select the postman and global environmental variables collections downloaded in step 1: 3225

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 227

 3226

 Confirm your import and click Import: 3227

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 228

 3228

 You will need to set the Globals for the micronets-manager-linode-ip, subscriberId and 3229
mso-portal-linode-ip: 3230

 Click the gear button in the top right-hand corner of application to Manage 3231
Environments: 3232

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 229

 3233

 3234

 Click Globals: 3235

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 230

 3236

 Modify the current values for the micronets-manager-linode-ip, subscriberId and 3237
mso-portal-linode-ip variables as follows and click Save: 3238

micronets-manager-linode-ip: nccoe-server1.micronets.net 3239

 subscriberId: subscriber-001 3240

 mso-portal-linode-ip: nccoe-server1.micronets.net 3241

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 231

 3242

 3243

 Exit out of the menu: 3244

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 232

 3245

 3246

Next, open the postman collection and review and modify the URLs for the calls to ensure the API 3247
endpoint paths match your implementation: 3248

 Modify the GET MM Gateway Config command to reflect the following. Executing this 3249
command will pull the current Gateway config from the Micronets Manager: 3250

http://{{micronets-manager-linode-ip}}/mm/v1/micronets/odl 3251

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 233

3252
 3253

b. Modify the GET MM Registry command to reflect the following. Executing this 3254
command will pull the current registry from the Micronets Manager: 3255

https://{{micronets-manager-linode-ip}}/mm/v1/micronets/registry 3256

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 234

 Modify the GET Micronets command to reflect the following. Executing this command will 3257
pull a list of the current micronets on the Gateway from the Micronets Manager: 3258

https://{{micronets-manager-linode-ip}}/sub/{{subscrib-3259
erId}}/api/mm/v1/subscriber/{{subscriberId}} 3260

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 235

d. Modify the GET Gateway Subnets command to reflect the following. Executing this 3261

command will pull a list of the current subnets on the Gateway from the Micronets 3262
Manager: 3263

https://{{micronets-manager-linode-ip}}/sub/{{subscrib-3264
erId}}/api/mm/v1/dhcp/subnets 3265

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 236

e. Modify the GET Gateway Devices in a subnet command to reflect the following. Execut-3266

ing this command will pull a list of the current devices in a subnet on the Gateway from 3267
the Micronets Manager: 3268

https://{{micronets-manager-linode-ip}}/sub/{{subscrib-3269
erId}}/api/mm/v1/dhcp/subnets/subnetId/devices 3270

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 237

f. Modify the GET MM Users command to reflect the following. Executing this command 3271

will pull a list of the users associated with the subscriber ID from the Micronets 3272
Manager: 3273

https://{{micronets-manager-linode-ip}}/sub/{{subscrib-3274
erId}}/api/mm/v1/micronets/users 3275

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 238

g. Modify the DELETE All Micronets command to reflect the following. Executing this 3276

command will delete all of the current micronets on the Gateway via the Micronets 3277
Manager: 3278

https://{{micronets-manager-linode-ip}}/sub/{{subscrib-3279
erId}}/api/mm/v1/subscriber/{{subscriberId}}/micronets 3280

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 239

 3281

h. Modify the DELETE Single Micronets command to reflect the following. Executing this 3282
command will delete a specific micronet on the Gateway via the Micronets Manager. 3283
This command is to be modified before executing to specify the <micronetID>, which 3284
can be retrieved by executing the GET Micronets command: 3285

https://{{micronets-manager-linode-ip}}/sub/{{subscriberId}}/api/mm/v1/sub-3286
scriber/{{subscriberId}}/micronets/<micronetID> 3287

Below is an example of this command: 3288

https://{{micronets-manager-linode-ip}}/sub/{{subscrib-3289
erId}}/api/mm/v1/subscriber/{{subscriberId}}/micronets/2453819029 3290

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 240

i. Modify the DELETE Device from Micronet command to reflect the following. Executing 3291

this command will delete a specific device from a particular micronet on the Gateway 3292
via the Micronets Manager. This command is to be modified before executing to specify 3293
the <micronetID> and <deviceID>, which can be retrieved by executing the GET 3294
Micronets command: 3295

https://{{micronets-manager-linode-ip}}/sub/{{subscriberId}}/api/mm/v1/sub-3296
scriber/{{subscriberId}}/micronets/<micronetID> /devices/<deviceID> 3297

Below is an example of this command: 3298
 3299
https://{{micronets-manager-linode-ip}}/sub/{{subscrib-3300
erId}}/api/mm/v1/subscriber/{{subscriberId}}/micronets/2136369149/de-3301
vices/da34c7219c2c97f0e2c2838e66c725d137f3c097 3302

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 241

j. Modify the DELETE Gateway Subnets command to reflect the following. Executing this 3303

command will delete all subnets on the Gateway via the Micronets Manager: 3304

https://{{micronets-manager-linode-ip}}/sub/{{subscrib-3305
erId}}/api/mm/v1/dhcp/subnets 3306

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 242

 3307

DRAFT

 NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 243

4.2.8 Removing Micronets Proto-Pi from a Micronet 3308

Removing a Micronets Proto-Pi from a micronet will remove the network credentials from the 3309
device. For additional instructions not detailed in this documentation, please follow the link to the 3310
CableLabs documentation: https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/opera-3311
tion/pi-offboarding.md. 3312

4.2.8.1 Prerequisites 3313

To successfully complete this section, the following are required: 3314

 a Raspberry Pi with the Micronets Proto-Pi software installed and configured 3315

 a device that is currently onboarded to the Micronets Gateway 3316

4.2.8.2 Instructions: 3317

 Power on the Micronets Proto-Pi device. 3318

 Tap Settings: 3319

 3320

 Tap Reset: 3321

https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/pi-offboarding.md
https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/pi-offboarding.md

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 244

 3322

You should see output similar to the following: 3323

 3324

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 245

4.2.9 Removing an MSO Subscriber 3325

Removing a subscriber involves removing the subscriber from the MSO portal database, removing the 3326
subscriber's micronets, and removing the subscriberʼs Micronets Manager. For additional instructions 3327
not detailed in this documentation, please follow the link to the CableLabs documentation: 3328
https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/pi-offboarding.md. 3329

4.2.9.1 Prerequisites 3330

To successfully complete this section be sure to have completed both the product installation section 3331
and . Ensure all steps have been successfully completed before proceeding to the instructions. 3332

4.2.9.2 Instructions 3333

 Remove the subscriber from the MSO portal using: 3334

curl -s -X DELETE https://nccoe-server1.micronets.net/micronets/mso-3335
portal/portal/v1/subscriber/subscriber-001 | json_pp 3336

 Verify that the subscriber is removed from the MSO portal by executing the following 3337
commands: 3338

 Check if the subscriber ID is present in the subscriber list: 3339

curl -s https://nccoe-server1.micronets.net/micronets/mso-3340
portal/portal/v1/subscriber/subscriber-001 3341

You should see output similar to the following: 3342

 3343

 Next, check if the user is present in the list of users in the MSO portal: 3344

curl -s https://nccoe-server1.micronets.net/micronets/mso-3345
portal/portal/v1/users | json_pp 3346

You should see output similar to the following: 3347

https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/pi-offboarding.md
https://nccoe-server1.micronets.net/micronets/mso-portal/portal/v1/subscriber/subscriber-001
https://nccoe-server1.micronets.net/micronets/mso-portal/portal/v1/subscriber/subscriber-001
https://nccoe-server1.micronets.net/micronets/mso-portal/portal/v1/subscriber/subscriber-001
https://nccoe-server1.micronets.net/micronets/mso-portal/portal/v1/subscriber/subscriber-001
https://nccoe-server1.micronets.net/micronets/mso-portal/portal/v1/users
https://nccoe-server1.micronets.net/micronets/mso-portal/portal/v1/users

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 246

 3348

 Finally, check to see if there is a socket present for the subscriber ID: 3349

curl -s https://nccoe-server1.micronets.net/micronets/mso-3350
portal/portal/v1/socket/subscriber-001 | json_pp 3351

You should see output similar to the following: 3352

 3353

Note: There could be scenarios where the commands above do not show empty lists. If that is 3354
the case, the subscriber has not been deleted properly. You can delete the subscriber entries in 3355
the MSO portal subtables by executing the following commands: 3356

 Delete the subscriber ID from the user list manually: 3357

curl -s -X DELETE https://nccoe-server1.micronets.net/micronets/mso-3358
portal/portal/v1/users/subscriber-001 | json_pp 3359

 Delete the subscriber ID from the socket list manually: 3360

curl -s -X DELETE https://nccoe-server1.micronets.net/micronets/mso-por-3361
tal/portal/v1/socket/subscriber-001 3362

 Remove all the micronets for the subscriber using: 3363

curl -s -X DELETE https://nccoe-server1.micronets.net/sub/subscriber-3364
001/api/mm/v1/subscriber/subscriber-001/micronets 3365

You should see output similar to the following: 3366

https://nccoe-server1.micronets.net/micronets/mso-portal/portal/v1/socket/subscriber-001
https://nccoe-server1.micronets.net/micronets/mso-portal/portal/v1/socket/subscriber-001
https://nccoe-server1.micronets.net/micronets/mso-portal/portal/v1/users/subscriber-001
https://nccoe-server1.micronets.net/micronets/mso-portal/portal/v1/users/subscriber-001
https://nccoe-server1.micronets.net/micronets/mso-portal/portal/v1/socket/subscriber-001
https://nccoe-server1.micronets.net/micronets/mso-portal/portal/v1/socket/subscriber-001
https://nccoe-server1.micronets.net/sub/subscriber-001/api/mm/v1/subscriber/subscriber-001/micronets
https://nccoe-server1.micronets.net/sub/subscriber-001/api/mm/v1/subscriber/subscriber-001/micronets

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 247

 3367

This will remove the micronets on the connected Micronets Gateway. If the gateway is not con-3368
nected to its peer Micronets Manager, the micronets can be deleted directly on the gateway us-3369
ing: 3370

curl -s -X DELETE http://localhost:5000/micronets/v1/gateway/micronets 3371

 You can verify that the micronets have been deleted by running: 3372

curl -s https://nccoe-server1.micronets.net/sub/subscriber-3373
001/api/mm/v1/subscriber/subscriber-001/micronets 3374

This should return an empty micronets list. 3375

 Remove the Micronets Manager docker container for a subscriber by running: 3376

/etc/micronets/micronets-manager.d/mm-container delete subscriber-001 3377

You will be prompted to remove the config file: 3378

 3379
Lastly, you will be prompted to provide sudo privileges: 3380

http://localhost:5000/micronets/v1/gateway/micronets
https://nccoe-server1.micronets.net/sub/subscriber-001/api/mm/v1/subscriber/subscriber-001/micronets
https://nccoe-server1.micronets.net/sub/subscriber-001/api/mm/v1/subscriber/subscriber-001/micronets

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 248

 3381

 Confirm the Micronets Manager for the subscriber is removed by executing the following 3382
command: 3383

curl -s https://nccoe-server1.micronets.net/sub/subscriber-3384
001/api/mm/v1/subscriber/subscriber-001 3385

5 Build 4 Product Installation Guides 3386

This section of the practice guide contains detailed instructions for installing and configuring the 3387
products used to implement Build 4. For additional details on Build 4’s logical and physical architectures, 3388
please refer to NIST SP 1800-15B. 3389

5.1 NIST SDN Controller/MUD Manager 3390

5.1.1 NIST SDN Controller/MUD Manager Overview 3391

This is a limited implementation that is intended to introduce a MUD manager build on top of an SDN 3392
controller. Build 4 implements all the abstractions in the MUD specification. At testing, this build uses 3393
strictly IPv4, and DHCP is the only standardized mechanism that it supports to associate MUD URLs with 3394
devices. 3395

Build 4 uses a MUD manager built on the OpenDaylight SDN controller. This build works with IoT devices 3396
that emit their MUD URLs through DHCP. The MUD manager works by snooping the traffic passing 3397
through the controller to detect the emission of a MUD URL. The MUD URL extracted by the MUD 3398
manager is then used to retrieve the MUD file and corresponding signature file associated with the MUD 3399
URL. The signature file is used to verify the legitimacy of the MUD file. The MUD manager then 3400
translates the access control entries in the MUD file into flow rules that are pushed to the switch. 3401

https://nccoe-server1.micronets.net/sub/subscriber-001/api/mm/v1/subscriber/subscriber-001
https://nccoe-server1.micronets.net/sub/subscriber-001/api/mm/v1/subscriber/subscriber-001

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 249

5.1.2 Configuration Overview 3402

The following subsections document the software, hardware, and network configurations for the Build 4 3403
SDN controller/MUD manager. 3404

5.1.2.1 Hardware Configuration 3405

This build requires installing the SDN controller/MUD manager on a server with at least two gigabytes of 3406
random access memory. This server must connect to at least one SDN-capable switch or router on the 3407
network, which is the MUD policy enforcement point. The MUD manager works with any OpenFlow 1.3-3408
enabled SDN switch. For this implementation, a Northbound Networks Zodiac WX wireless SDN access 3409
point was used as the SDN switch. 3410

5.1.2.2 Network Configuration 3411

The SDN controller/MUD manager instance was installed and configured on a dedicated machine 3412
leveraged for hosting virtual machines in the Build 4 lab environment. The SDN controller/MUD 3413
manager listens on port 6653 for Open vSwitch (OVS) inbound connections, which are initiated by the 3414
OVS instance running on the Northbound Networks access point. 3415

5.1.2.3 Software Configuration 3416

For this build, the SDN controller/MUD manager was installed on an Ubuntu 18.04.01 64-bit server. 3417

The SDN controller/MUD manager requires the following installations and components: 3418

 Java SE Development Kit 8 3419

 Apache Maven 3.5 or higher 3420

5.1.3 Preinstallation 3421

Build 4’s GitHub page provides documentation that was followed to complete this section: 3422
https://github.com/usnistgov/nist-mud. 3423

 Install JDK 1.8: https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-3424
2133151.html. 3425

 Install Maven 3.5 or higher: https://maven.apache.org/download.cgi. 3426

5.1.4 Setup 3427

1. Execute the following command to clone the Git project: 3428

git clone https://github.com/usnistgov/nist-mud.git 3429

https://github.com/usnistgov/nist-mud
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/download.cgi

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 250

 3430

2. Copy the contents of nist-mud/maven/settings.xml to ~/.m2 by executing the commands 3431
below: 3432

cd nist-mud/maven/ 3433

mkdir ~/.m2 3434

cp settings.xml ~/.m2 3435

 3436

3. In the nist-mud directory, run the commands below: 3437

cd 3438

cd nist-mud/ 3439

mvn -e clean install -nsu -Dcheckstyle.skip -DskipTests -3440
Dmaven.javadoc.skip=true 3441

 3442

4. Open port 6653 on the controller stack for TCP access so the switches can connect by executing 3443
the command below: 3444

sudo ufw allow 6653/tcp 3445

 3446

5. OpenDaylight uses port 8181 for the REST API. That port should be opened if access to the REST 3447
API is desired from outside the controller machine. Open port 8181 by executing the command 3448
below: 3449

sudo ufw allow 8181 3450

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 251

 3451

6. Change to the bin directory by executing the command below: 3452

~/nist-mud/sdnmud-aggregator/karaf/target/assembly/bin 3453

7. Run the command below: 3454

./karaf clean 3455

 3456

8. At the Karaf prompt, install MUD capabilities using: 3457

feature:install features-sdnmud 3458

 3459

9. Check if the feature is running by using the command feature:list | grep sdnmud in Karaf. 3460

 3461

10. On the SDN controller/MUD manager host, run a script to configure the SDN controller and add 3462
bindings for the controller abstractions defined in the test MUD files. This script pushes configu-3463
ration information for the MUD manager application (sdnmud-config.json) as well as network 3464
configuration information for the managed local area network (LAN) (controllerclass-map-3465
ping.json). The latter file specifies bindings for the controller classes that are used in the MUD 3466

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 252

file as well as subnet information for classification of local addresses. These are scoped to a sin-3467
gle policy enforcement point, which is identified by a switch-id. By default, the switch ID is open-3468
flow:MAC-address where MAC-address is the MAC address of the switch interface that con-3469
nects to the SDN controller (in decimal). This must be unique per switch. Note too, that we iden-3470
tify whether a switch is wireless. 3471

 3472

Example Python script (configure.py): 3473

import requests 3474
import json 3475
import argparse 3476
import os 3477
 3478
if __name__=="__main__": 3479
 if os.environ.get("CONTROLLER_ADDR") is None: 3480
 print "Please set environment variable CONTROLLER_ADDR to the address of the 3481
opendaylight controller" 3482
 3483
 controller_addr = os.environ.get("CONTROLLER_ADDR") 3484
 3485
 headers= {"Content-Type":"application/json"} 3486
 for (configfile,suffix) in { 3487
 ("sdnmud-config.json", "sdnmud:sdnmud-config"), 3488
 ("controllerclass-mapping.json","nist-mud-controllerclass-3489
mapping:controllerclass-mapping") }: 3490
 data = json.load(open(configfile)) 3491
 print "configfile", configfile 3492
 print "suffix ", suffix 3493
 url = "http://" + controller_addr + ":8181/restconf/config/" + suffix 3494
 print "url ", url 3495
 r = requests.put(url, data=json.dumps(data), headers=headers , auth=('admin', 3496
'admin')) 3497
 print "response ", r 3498

Example controller class mapping (controllerclass-mapping.json): 3499

{ 3500
"controllerclass-mapping" : { 3501
 "switch-id" : "openflow:123917682138002", 3502
 "controller" : [3503
 { 3504
 "uri" : "urn:ietf:params:mud:dns", 3505
 "address-list" : ["10.0.41.1"] 3506

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 253

 }, 3507
 { 3508
 "uri" : "urn:ietf:params:mud:dhcp", 3509
 "address-list" : ["10.0.41.1"] 3510
 }, 3511
 { 3512
 "uri" : "https://controller.nist.local", 3513
 "address-list" : ["10.0.41.225"] 3514
 }, 3515
 { 3516
 "uri" : "https://sensor.nist.local/nistmud1", 3517
 "address-list" : ["10.0.41.225"] 3518
 } 3519
], 3520
 "local-networks": ["10.0.41.0/24"], 3521
 "wireless" : true 3522
 } 3523
} 3524

Example SDN MUD configuration (sdnmud-config.json): 3525

{ 3526
 "sdnmud-config" : { 3527
 "ca-certs": "lib/security/cacerts", 3528
 "key-pass" : "changeit", 3529
 "trust-self-signed-cert" : true, 3530
 "mfg-id-rule-cache-timeout": 120, 3531
 "relaxed-acl" : false 3532
 } 3533
} 3534

5.2 MUD File Server 3535

5.2.1 MUD File Sever Overview 3536

The MUD file server is responsible for serving the MUD file and the corresponding signature file upon 3537
request from the MUD manager. For testing purposes, the MUD file server is run on 127.0.0.1 on the 3538
same machine as the MUD manager. This allows us to examine the logs to check if the MUD file has 3539
been retrieved. For testing purposes, host name verification for the TLS connection to the MUD file 3540
server is disabled in the configuration of the MUD manager. 3541

5.2.2 Configuration Overview 3542

The following subsections document the software, hardware, and network configurations for the MUD 3543
file server. 3544

5.2.2.1 Hardware Configuration 3545

The MUD file server was hosted on the same machine as the SDN controller. 3546

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 254

5.2.2.2 Network Configuration 3547

The MUD file server was hosted on the same machine as the SDN controller. To direct the MUD 3548
manager to retrieve the MUD files from the MUD file server, the host name of the two manufacturers 3549
that are present in the MUD URLs used for testing are both mapped to 127.0.0.1 in the /etc/hosts file 3550
of the Java Virtual Machine in which the MUD manager is running. This static configuration is read by 3551
the MUD manager when it starts. The name resolution information in the /etc/hosts file directs the 3552
MUD manager to retrieve the test MUD files from the MUD file server. 3553

5.2.2.3 Software Configuration 3554

In this build, serving MUD files requires Python 2.7 and the Python requests package. These may be 3555
installed using apt and pip. After creation of the MUD files by using mudmaker.org, the MUD files were 3556
signed, and the certificates used for signing were imported into the trust store of the Java Virtual 3557
Machine in which the MUD manager is running. 3558

5.2.3 Setup 3559

5.2.3.1 MUD File Creation 3560

This build also leveraged the MUD Maker online tool found at www.mudmaker.org. For detailed 3561
instructions on creating a MUD file using this online tool, please refer to Build 1’s MUD File Creation 3562
section. 3563

5.2.3.2 MUD File Signing 3564

1. Sign and import the desired MUD files. An example script (sign-and-import1.sh) can be found 3565
below. 3566

 3567

The shell script that was used in this build is shown below. This script generates a signature based on the 3568
private key of a DigiCert-issued certificate and imports the certificate into the trust store of the Java 3569
Virtual Machine. This is done for both MUD files. 3570

CACERT=DigiCertCA.crt 3571
MANUFACTURER_CRT=nccoe_mud_file_signing.crt 3572
MANUFACTURER_KEY=mudsign.key.pem 3573
MANUFACTURER_ALIAS=sensor.nist.local 3574
MANUFACTURER_SIGNATURE=mudfile-sensor.p7s 3575
MUDFILE=mudfile-sensor.json 3576
 3577
openssl cms -sign -signer $MANUFACTURER_CRT -inkey $MANUFACTURER_KEY -in $MUDFILE -3578
binary -noattr -outform DER -certfile $CACERT -out $MANUFACTURER_SIGNATURE 3579
openssl cms -verify -binary -in $MANUFACTURER_SIGNATURE -signer $MANUFACTURER_CRT -3580
inform DER -content $MUDFILE 3581

http://www.mudmaker.org/

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 255

MANUFACTURER_ALIAS=otherman.nist.local 3582
MUDFILE=mudfile-otherman.json 3583
MANUFACTURER_SIGNATURE=mudfile-otherman.p7s 3584
openssl cms -sign -signer $MANUFACTURER_CRT -inkey $MANUFACTURER_KEY -in $MUDFILE -3585
binary -noattr -outform DER -certfile $CACERT -out $MANUFACTURER_SIGNATURE 3586
openssl cms -verify -binary -in $MANUFACTURER_SIGNATURE -signer $MANUFACTURER_CRT -3587
inform DER -content $MUDFILE 3588
 3589
sudo -E $JAVA_HOME/bin/keytool -delete -alias digicert -keystore 3590
$JAVA_HOME/jre/lib/security/cacerts -storepass changeit 3591
sudo -E $JAVA_HOME/bin/keytool -importcert -file $CACERT -alias digicert -keystore 3592
$JAVA_HOME/jre/lib/security/cacerts -storepass changeit 3593

5.2.3.3 MUD File Serving 3594

Run a script that serves desired MUD files and signatures. An example Python script (mudfile-3595
server.py) can be found below. 3596

1. Save a copy of the mudfile-server.py Python script onto the NIST SDN controller/MUD manager 3597
configured in Section 5.1: 3598

import BaseHTTPServer, SimpleHTTPServer 3599
import ssl 3600
import urlparse 3601
Dummy manufacturer server for testing 3602
 3603
class MyHTTPRequestHandler(SimpleHTTPServer.SimpleHTTPRequestHandler): 3604
 3605
 def do_GET(self): 3606
 print ("DoGET " + self.path) 3607
 self.send_response(200) 3608
 if self.path == "/nistmud1" : 3609
 with open("mudfile-sensor.json", mode="r") as f: 3610
 data = f.read() 3611
 print("Read " + str(len(data)) + " chars ") 3612
 self.send_header("Content-Length", len(data)) 3613
 self.end_headers() 3614
 self.wfile.write(data) 3615
 elif self.path == "/nistmud2" : 3616
 with open("mudfile-otherman.json", mode="r") as f: 3617
 data = f.read() 3618
 print("Read " + str(len(data)) + " chars ") 3619
 self.send_header("Content-Length", len(data)) 3620
 self.end_headers() 3621
 self.wfile.write(data) 3622
 elif self.path == "/nistmud1/mudfile-sensor.p7s": 3623
 with open("mudfile-sensor.p7s",mode="r") as f: 3624
 data = f.read() 3625
 print("Read " + str(len(data)) + " chars ") 3626
 self.send_header("Content-Length", len(data)) 3627
 self.end_headers() 3628
 self.wfile.write(data) 3629
 elif self.path == "/nistmud2/mudfile-otherman.p7s": 3630
 with open("mudfile-otherman.p7s",mode="r") as f: 3631
 data = f.read() 3632

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 256

 print("Read " + str(len(data)) + " chars ") 3633
 self.send_header("Content-Length", len(data)) 3634
 self.end_headers() 3635
 self.wfile.write(data) 3636
 else: 3637
 print("UNKNOWN URL!!") 3638
 self.wfile.write(b'Hello, world!') 3639
 3640
httpd = BaseHTTPServer.HTTPServer(('0.0.0.0', 443), MyHTTPRequestHandler) 3641
httpd.socket = ssl.wrap_socket (httpd.socket, keyfile='./mudsigner.key', 3642
certfile='./mudsigner.crt', server_side=True) 3643
httpd.serve_forever() 3644
 3645

2. From the same directory as the previous step, execute the command below to start the MUD 3646
file server: 3647

sudo -E python mudfile-server.py 3648

 3649

5.3 Northbound Networks Zodiac WX Access Point 3650

5.3.1 Northbound Networks Zodiac WX Access Point Overview 3651

The Zodiac WX, in addition to being a wireless access point, includes the following logical components: 3652
an SDN switch, a NAT router, a DHCP server, and a DNS server. The Zodiac WX is powered by OpenWRT 3653
and Open vSwitch. Open vSwitch directly integrates into the wireless configuration. The Zodiac WX 3654
works with any standard OpenFlow-compatible controllers and requires no modifications because it 3655
appears to the controller as a standard OpenFlow switch. 3656

5.3.2 Configuration Overview 3657

The following subsections document the network, software, and hardware configurations for the SDN-3658
capable Northbound Networks Zodiac WX. 3659

5.3.2.1 Network Configuration 3660

The access point is configured to have a static public address on the public side of the NAT. For purposes 3661
of testing, we use 203.0.113.x addresses on the public network. The public side of the NAT is given the 3662
address of 203.0.113.1. The DHCP server is set up to allocate addresses to wireless devices on the LAN. 3663
The SDN controller/MUD manager is connected to the public side of the NAT. The Open vSwitch 3664
configuration for the access point is given the address of the SDN controller, which is shown in the setup 3665
below. 3666

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 257

5.3.2.2 Software Configuration 3667

At this implementation, no additional software configuration was required. 3668

5.3.2.3 Hardware Configuration 3669

At this implementation, no additional hardware configuration was required. 3670

5.3.3 Setup 3671

On the Zodiac WX, DNSmasq supports both DHCP and DNS. For testing purposes, it will be necessary to 3672
access several web servers (two update servers called www.nist.local and an unapproved server called 3673
www.antd.local). The following commands enable the Zodiac WX to resolve the web server host names 3674
to their IP addresses. 3675

1. Set up the access point to resolve the addresses for the web server host names by opening the 3676
file /etc/dnsmasq.conf on the access point. 3677

2. Add the following line to the dnsmasq.conf file: 3678

addn-hosts=/etc/hosts.nist.local 3679

 3680

3. The file /etc/hosts.nist.local has the host name to address mapping. The mapping used for 3681
our tests is shown below (Note that the host www.nist.local maps to two addresses on the 3682
public side). 3683

 3684

4. On the Zodiac WX configuration web page in the System->Startup tab, indicate where (IP 3685
address and port) the Open vSwitch Daemon connects to the controller. 3686

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 258

 3687

5.4 DigiCert Certificates 3688

DigiCert’s CertCentral web-based platform allows provisioning and management of publicly trusted 3689
X.509 certificates for a variety of purposes. After establishing an account, clients can log in, request, 3690
renew, and revoke certificates by using only a browser. For Build 4, the Premium Certificate created in 3691
Build 1 was leveraged for signing the MUD files. To request and implement DigiCert certificates, follow 3692
the documentation in Build 1’s DigiCert Certificates section and subsequent sections. 3693

5.5 IoT Devices 3694

5.5.1 IoT Devices Overview 3695

This section provides configuration details for the Linux-based Raspberry Pis used in the build, which 3696
emit MUD URLs by using DHCP. 3697

5.5.2 Configuration Overview 3698

The devices used in this build were multiple Raspberry Pi development kits that were configured to act 3699
as IoT devices. The devices run Raspbian 9, a Linux-based operating system, and are configured to emit a 3700
MUD URL during a typical DHCP transaction. These devices were used to test interactions related to 3701
MUD capabilities. 3702

5.5.2.1 Network Configuration 3703

The kits are connected to the network over a wireless connection. Their IP addresses are assigned 3704
dynamically by the DHCP server on the Zodiac WX access point. 3705

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 259

5.5.2.2 Software Configuration 3706

The Raspberry Pis are configured on Raspbian. They also utilized dhclient as their default DHCP clients to 3707
manually initiate a DHCP interaction. This DHCP client is installed natively on many Linux distributions 3708
and can be installed using a preferred package manager if not currently present. Dhclient uses a 3709
configuration file: /etc/dhclient.conf. This needs to be modified to include the MUD URL that the 3710
device will emit in its DHCP requests. (The modification details are provided in the setup information 3711
below.) 3712

5.5.2.3 Hardware Configuration 3713

Multiple Raspberry Pi 3 Model B devices were used. 3714

5.5.3 Setup 3715

Each Raspberry Pi used in this build was intended to represent a different class of device (manufacturer, 3716
other manufacturer, local networks, controller classes). The type of device was determined by the MUD 3717
URL being emitted by the device. If no MUD URL is emitted, the device is an unclassified local network 3718
device. 3719

1. On each Pi, changes were made to /etc/network/interfaces to add a line that allows the Pi 3720
to authenticate to the access point. The following line is added to the network interface as 3721
shown below: 3722

 wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf.northbound 3723

 3724

 The file (/etc/wpa_supplicant/wpa_supplicant.conf.northbound) is shown below: 3725

 3726

2. A dhclient configuration file can be altered (by adding information) to allow for emission of a 3727
MUD URL in the DHCP transaction. Modify the dhclient.conf file with the command: 3728

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 260

vi /etc/dhcp/dhclient.conf 3729

3. A send MUD URL line must be added as well as a mud-url in the request line. In this build, 3730
multiple MUD URLs were transmitted, depending on the type of the device. Example alterations 3731
made to dhclient configuration files can be seen below: 3732

send mud-url = "https://sensor.nist.local/nistmud1"; 3733

send mud-url = "https://otherman.nist.local/nistmud2"; 3734

 3735

4. To control the time at which the MUD URL is emitted, we manually reacquire the DHCP address 3736
rather than have the device acquire the MUD URL on boot. Emit the MUD URL and attain an IP 3737
address by sending the altered dhclient configuration file manually with the following 3738
commands: 3739

sudo rm /var/lib/dhcp/dhclient.leases 3740

sudo ifconfig wlan0 0.0.0.0 3741

sudo dhclient -v wlan0 -cf /etc/dhcp/dhclient.conf.toaster 3742

 3743

5.6 Update Server 3744

5.6.1 Update Server Overview 3745

This section provides configuration details for the Linux-based IoT development kit used in the build, 3746
which acts as an update server. This update server will attempt to access and be accessed by the IoT 3747
device, which, in this case, is one of the development kits built in the lab. The update server is a web 3748

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 261

server that hosts mock software update files to be served as software updates to our IoT device devkits. 3749
When the server receives an http request, it sends the corresponding update file. 3750

5.6.2 Configuration Overview 3751

The devkit runs Raspbian 9, a Linux-based operating system, and is configured to act as an update 3752
server. This host was used to test approved internet interactions related to MUD capabilities. 3753

5.6.2.1 Network Configuration 3754

The web server host has a static public IP address configuration and is connected to the access point on 3755
the wired interface. It is given an address on the 203.0.113 network. 3756

5.6.2.2 Software Configuration 3757

The Raspberry Pi is configured on Raspbian. The devkit also utilized a simple Python script to run an http 3758
server to test MUD capabilities. 3759

5.6.2.3 Hardware Configuration 3760

The hardware used for this devkit includes a Raspberry Pi 3 Model B. 3761

5.6.3 Setup 3762

The primary configuration needed for the web server device is done with the DNS mapping on the 3763
Zodiac WX access point to be discussed in the section related to setup of the Northbound Networks 3764
Zodiac WX Access Point. The Raspberry Pi is required to run a simple http server. 3765

1. Copy the example Python script below onto the Raspberry Pi: 3766

Example Python script (httpserver.py): 3767

import SimpleHTTPServer 3768
import SocketServer 3769
import argparse 3770
if __name__ == "__main__": 3771
 parser = argparse.ArgumentParser() 3772
 parser.add_argument("-H", help="Host address", default="0.0.0.0") 3773
 parser.add_argument("-P", help="Port ", default="80") 3774
 args = parser.parse_args() 3775
 hostAddr = args.H 3776
 PORT = int(args.P) 3777
 Handler = SimpleHTTPServer.SimpleHTTPRequestHandler 3778
 httpd = SocketServer.TCPServer((hostAddr, PORT), Handler) 3779
 print "serving at port", PORT 3780
 httpd.serve_forever() 3781

2. From the same directory as the script copied in the previous step, execute the command below 3782
to start the http server: 3783

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 262

sudo python httpserver.py -P 443 3784

 3785

5.7 Unapproved Server 3786

5.7.1 Unapproved Server Overview 3787

This section provides configuration details for the Linux-based IoT development kit used in the build, 3788
which acts as an unapproved internet host. This host will attempt to access and to be accessed by an IoT 3789
device, which, in this case, is one of the MUD-capable devices on the network. 3790

The unapproved server is an internet host that is not explicitly authorized in the MUD file to 3791
communicate with the IoT device. When the IoT device attempts to connect to this server, the switch 3792
should not allow this traffic because it is not an approved internet service per the corresponding MUD 3793
file. Likewise, when the server attempts to connect to the IoT device, this traffic should be denied at the 3794
switch. 3795

5.7.2 Configuration Overview 3796

The devkit runs Raspbian 9, a Linux-based operating system, and is configured to act as an unapproved 3797
internet host. This host was used to test unapproved internet interactions related to MUD capabilities. 3798

5.7.2.1 Network Configuration 3799

The web host has a static public IP address configuration and is connected to the access point on the 3800
wired interface. It is given an address on the 203.0.113 network. 3801

5.7.2.2 Software Configuration 3802

The Raspberry Pi is configured on Raspbian. The devkit also utilized a simple Python script to run an http 3803
server to test MUD capabilities. 3804

5.7.2.3 Hardware Configuration 3805

The hardware used for this devkit includes a Raspberry Pi 3 Model B. 3806

5.7.3 Setup 3807

The primary configuration needed for the web server device is accomplished by the DNS mapping on the 3808
Zodiac WX access point to be discussed in the section related to setup of the Northbound Networks 3809
Zodiac WX Access Point. The Raspberry Pi is required to run a simple http server. 3810

1. Copy the example Python script below onto the Raspberry Pi: 3811

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 263

Example Python script (httpserver.py): 3812

import SimpleHTTPServer 3813
import SocketServer 3814
import argparse 3815
if __name__ == "__main__": 3816
 parser = argparse.ArgumentParser() 3817
 parser.add_argument("-H", help="Host address", default="0.0.0.0") 3818
 parser.add_argument("-P", help="Port ", default="80") 3819
 args = parser.parse_args() 3820
 hostAddr = args.H 3821
 PORT = int(args.P) 3822
 Handler = SimpleHTTPServer.SimpleHTTPRequestHandler 3823
 httpd = SocketServer.TCPServer((hostAddr, PORT), Handler) 3824
 print "serving at port", PORT 3825
 httpd.serve_forever() 3826

2. From the same directory as the script copied in the previous step, execute the command below 3827
to start the http server: 3828
sudo python httpserver.py -P 443 3829

 3830

DRAFT

 NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 264

Appendix A List of Acronyms 3831

AAA Authentication, Authorization, and Accounting

ACL Access Control List

API Application Programming Interface

CMS Cryptographic Message Syntax

COA Change of Authorization

CRADA Cooperative Research and Development Agreement

DB Database

DDoS Distributed Denial of Service

Devkit Development Kit

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

GCA Global Cyber Alliance

http Hypertext Transfer Protocol

https Hypertext Transfer Protocol Secure

IOS Cisco’s Internetwork Operating System

IoT Internet of Things

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

IT Information Technology

ITL NIST’s Information Technology Laboratory

JSON JavaScript Object Notation

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LED Light-Emitting Diode

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 265

LLDP Link Layer Discovery Protocol (Institute of Electrical and Electronics Engineers
802.1AB)

MAB MAC Authentication Bypass

MAC Media Access Control

MQTT Message Queuing Telemetry Transport

MUD Manufacturer Usage Description

NAS Network Access Server

NAT Network Address Translation

NCCoE National Cybersecurity Center of Excellence

NIST National Institute of Standards and Technology

OS Operating System

PoE Power over Ethernet

RADIUS Remote Authentication Dial-In User Service

REST Representational State Transfer

RFC Request for Comments

SDN Software-Defined Networking

SP Special Publication

SSH Secure Shell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UI User Interface

URL Uniform Resource Locator

Vi Visual

VLAN Virtual Local Area Network

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 266

VNC Virtual Network Computing

WAN Wide Area Network

DRAFT

 NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 267

Appendix B Glossary 3832

Audit Independent review and examination of records and activities to assess the
adequacy of system controls to ensure compliance with established policies
and operational procedures (National Institute of Standards and Technology
[NIST] Special Publication [SP] 800-12 Rev. 1)

Best Practice A procedure that has been shown by research and experience to produce
optimal results and that is established or proposed as a standard suitable for
widespread adoption (Merriam-Webster)

Botnet The word “botnet” is formed from the words “robot” and “network.”
Cybercriminals use special Trojan viruses to breach the security of several
usersʼ computers, take control of each computer, and organise all of the
infected machines into a network of “bots” that the criminal can remotely
manage. (https://usa.kaspersky.com/resource-center/threats/botnet-attacks)

Control A measure that is modifying risk (Note: Controls include any process, policy,
device, practice, or other actions that modify risk.) (NIST Interagency or
Internal Report 8053)

Denial of Service The prevention of authorized access to a system resource or the delaying of
system operations and functions (NIST SP 800-82 Rev. 2)

Distributed Denial
of Service (DDoS)

A denial of service technique that uses numerous hosts to perform the attack
(NIST Interagency or Internal Report 7711)

Managed Devices Personal computers, laptops, mobile devices, virtual machines, and
infrastructure components require management agents, allowing information
technology staff to discover, maintain, and control these devices. Those with
broken or missing agents cannot be seen or managed by agent-based security
products.

Manufacturer
Usage Description
(MUD)

A component-based architecture specified in Request for Comments (RFC)
8250 that is designed to provide a means for end devices to signal to the
network what sort of access and network functionality they require to properly
function

Mapping Depiction of how data from one information source maps to data from another
information source

https://usa.kaspersky.com/resource-center/threats/botnet-attacks

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 268

Mitigate To make less severe or painful or to cause to become less harsh or hostile
(Merriam-Webster)

MUD-Capable An IoT device that is capable of emitting a MUD uniform resource locator (URL)
in compliance with the MUD specification

Network Address
Translation (NAT)

A function by which internet protocol (IP) addresses within a packet are
replaced with different IP addresses. This function is most commonly
performed by either routers or firewalls. It enables private IP networks
that use unregistered IP addresses to connect to the internet. NAT operates on
a router, usually connecting two networks together, and translates the private
(not globally unique) addresses in the internal network into legal addresses
before packets are forwarded to another network.

Non-MUD-Capable An IoT device that is not capable of emitting a MUD URL in compliance with
the MUD specification (RFC 8250)

Policy Statements, rules, or assertions that specify the correct or expected behavior
of an entity. For example, an authorization policy might specify the correct
access control rules for a software component. (NIST SP 800-95 and NIST
Interagency or Internal Report 7621 Rev. 1)

Policy Enforcement
Point

A network device on which policy decisions are carried out or enforced

Risk The net negative impact of the exercise of a vulnerability, considering both the
probability and the impact of occurrence. Risk management is the process of
identifying risk, assessing risk, and taking steps to reduce risk to an acceptable
level. (NIST SP 800-30)

Router A computer that is a gateway between two networks at open systems
interconnection layer 3 and that relays and directs data packets through that
internetwork. The most common form of router operates on IP packets. (NIST
SP 800-82 Rev. 2)

Security Control A safeguard or countermeasure prescribed for an information system or an
organization, which is designed to protect the confidentiality, integrity, and
availability of its information and to meet a set of defined security
requirements (NIST SP 800-53 Rev. 4)

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 269

Server A computer or device on a network that manages network resources.
Examples are file servers (to store files), print servers (to manage one or more
printers), network servers (to manage network traffic), and database servers
(to process database queries). (NIST SP 800-47)

Shall A requirement that must be met unless a justification of why it cannot be met
is given and accepted (NIST Interagency or Internal Report 5153)

Should This term is used to indicate an important recommendation. Ignoring the
recommendation could result in undesirable results. (NIST SP 800-108)

Threat Any circumstance or event with the potential to adversely impact
organizational operations (including mission, functions, image, or reputation),
organizational assets, or individuals through an information system via
unauthorized access, destruction, disclosure, modification of information,
and/or denial of service. Also, the potential for a threat source to successfully
exploit a particular information system vulnerability (Federal Information
Processing Standards 200)

Threat Signaling Real-time signaling of DDoS-related telemetry and threat-handling requests
and data between elements concerned with DDoS attack detection,
classification, traceback, and mitigation
(https://joinup.ec.europa.eu/collection/rolling-plan-ict-
standardisation/cybersecurity-network-and-information-security)

Traffic Filter An entry in an access control list that is installed on the router or switch to
enforce access controls on the network

Uniform Resource
Locator (URL)

A reference to a web resource that specifies its location on a computer
network and a mechanism for retrieving it. A typical URL could have the form
http://www.example.com/index.html, which indicates a protocol (hypertext
transfer protocol [http]), a host name (www.example.com), and a file name
(index.html). Also sometimes referred to as a web address

Update New, improved, or fixed software, which replaces older versions of the same
software. For example, updating an OS brings it up-to-date with the latest
drivers, system utilities, and security software. Updates are often provided by
the software publisher free of charge.
(https://www.computerhope.com/jargon/u/update.htm)

Update Server A server that provides patches and other software updates to Internet of
Things devices

https://joinup.ec.europa.eu/collection/rolling-plan-ict-standardisation/cybersecurity-network-and-information-security
https://joinup.ec.europa.eu/collection/rolling-plan-ict-standardisation/cybersecurity-network-and-information-security
https://www.computerhope.com/jargon/u/update.htm

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 270

Virtual Local Area
Network (VLAN)

A broadcast domain that is partitioned and isolated within a network at the
data link layer. A single physical local area network (LAN) can be logically
partitioned into multiple, independent VLANs; a group of devices on one or
more physical LANs can be configured to communicate within the same VLAN
as if they were attached to the same physical LAN.

Vulnerability Weakness in an information system, system security procedures, internal
controls, or implementation that could be exploited or triggered by a threat
source (NIST SP 800-37 Rev. 2)

DRAFT

 NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 271

Appendix C Bibliography 3833

Request for Comments (RFC) 8520. (2019, Mar.) “Manufacturer Usage Description Specification” 3834
[Online]. Available: https://tools.ietf.org/html/rfc8520. 3835

Cisco’s developer MUD Manager GitHub page [Website]. Available: 3836
https://github.com/CiscoDevNet/MUD-Manager/tree/1.0#dependancies. 3837

Apache HTTP Server Project documentation, Version 2.4. Compiling and Installing Apache [Website]. 3838
Available: https://httpd.apache.org/docs/current/install.html. 3839

Apache HTTP Server Project documentation, Version 2.4. Apache SSL/TLS Encryption [Website]. 3840
Available: https://httpd.apache.org/docs/current/ssl/ssl_howto.html. 3841

Welcome to MUD File maker! [Website]. Available: https://www.mudmaker.org/. 3842

DigiCert. Advanced CertCentral Getting Started Guide, Version 9.2 [Website]. Available: 3843
https://www.digicert.com/certcentral-support/digicert-getting-started-guide.pdf. 3844

DigiCert. SSL Certificate Support [Website]. Available: https://www.digicert.com/security-certificate-3845
support/. 3846

DigiCert. Order your SSL/TLS certificates [Website]. Available: https://docs.digicert.com/manage-3847
certificates/order-your-ssltls-certificates/. 3848

DigiCert. CertCentral Client Certificate Guide, Version 1.9 [Website]. Available: 3849
https://www.digicert.com/certcentral-support/client-certificate-guide.pdf. 3850

Forescout. ForeScout CounterAct® Installation Guide, Version 8.0.1 [Website]. Available: 3851
https://www.Forescout.com/wp-content/uploads/2018/10/CounterACT_Installation_Guide_8.0.1.pdf. 3852

Forescout. (2018, Feb.) ForeScout CounterAct Device Profile Library Configuration Guide [Website]. 3853
Available: https://www.Forescout.com/wp-3854
content/uploads/2018/04/CounterACT_Device_Profile_Library.pdf. 3855

Forescout. (2018, Feb.) ForeScout CounterAct IoT Posture Assessment Library Configuration Guide 3856
[Website]. Available: https://www.Forescout.com/wp-3857
content/uploads/2018/04/CounterACT_IoT_Posture_Assessment_Library-1.pdf. 3858

Forescout. ForeScout CounterAct Open Integration Module Overview Guide, Version 1.1 [Website]. 3859
Available: https://www.Forescout.com/wp-3860
content/uploads/2018/08/CounterACT_Open_Integration_Module_Overview_1.1.pdf. 3861

Forescout. (2018, Feb.) ForeScout CounterAct Windows Applications Configuration Guide [Website]. 3862
Available: https://www.Forescout.com/wp-3863
content/uploads/2018/04/CounterACT_Windows_Applications.pdf. 3864

https://tools.ietf.org/html/rfc8520
https://github.com/CiscoDevNet/MUD-Manager/tree/1.0#dependancies
https://httpd.apache.org/docs/current/install.html
https://httpd.apache.org/docs/current/ssl/ssl_howto.html
https://www.mudmaker.org/
https://www.digicert.com/certcentral-support/digicert-getting-started-guide.pdf
https://www.digicert.com/security-certificate-support/
https://www.digicert.com/security-certificate-support/
https://docs.digicert.com/manage-certificates/order-your-ssltls-certificates/
https://docs.digicert.com/manage-certificates/order-your-ssltls-certificates/
https://www.digicert.com/certcentral-support/client-certificate-guide.pdf
https://www.forescout.com/wp-content/uploads/2018/10/CounterACT_Installation_Guide_8.0.1.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Device_Profile_Library.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Device_Profile_Library.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_IoT_Posture_Assessment_Library-1.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_IoT_Posture_Assessment_Library-1.pdf
https://www.forescout.com/wp-content/uploads/2018/08/CounterACT_Open_Integration_Module_Overview_1.1.pdf
https://www.forescout.com/wp-content/uploads/2018/08/CounterACT_Open_Integration_Module_Overview_1.1.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Applications.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Applications.pdf

DRAFT

NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 272

Forescout. (2018, Feb.) ForeScout CounterAct Windows Vulnerability DB Configuration Guide [Website]. 3865
Available: https://www.Forescout.com/wp-3866
content/uploads/2018/04/CounterACT_Windows_Vulnerability_DB_18.0.2.pdf. 3867

Forescout. HPS NIC Vendor DB Configuration Guide, Version 1.2.4 [Website]. Available: 3868
https://www.Forescout.com/wp-content/uploads/2018/04/HPS_NIC_Vendor_DB_1.2.4.pdf. 3869

https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Vulnerability_DB_18.0.2.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Vulnerability_DB_18.0.2.pdf
https://www.forescout.com/wp-content/uploads/2018/04/HPS_NIC_Vendor_DB_1.2.4.pdf

	1 Introduction
	1.1 How to Use this Guide
	1.2 Build Overview
	1.2.1 Usage Scenarios
	1.2.2 Reference Architecture Overview
	1.2.2.1 Support for MUD
	1.2.2.2 Support for Updates
	1.2.2.3 Support for Threat Signaling
	1.2.2.4 Build-Specific Features

	1.2.3 Physical Architecture Overview

	1.3 Typographic Conventions

	2 Build 1 Product Installation Guides
	2.1 Cisco MUD Manager
	2.1.1 Cisco MUD Manager Overview
	2.1.2 Cisco MUD Manager Configurations
	2.1.2.1 Hardware Configuration
	2.1.2.2 Network Configuration
	2.1.2.3 Software Configuration

	2.1.3 Setup
	2.1.3.1 Preinstallation
	2.1.3.2 MUD Manager Installation
	2.1.3.3 MUD Manager Configuration
	2.1.3.4 FreeRADIUS Installation
	2.1.3.5 FreeRADIUS Configuration
	2.1.3.6 Start MUD Manager and FreeRADIUS Server

	2.2 MUD File Server
	2.2.1 MUD File Server Overview
	2.2.2 Configuration Overview
	2.2.2.1 Network Configuration
	2.2.2.2 Software Configuration
	2.2.2.3 Hardware Configuration

	2.2.3 Setup
	2.2.3.1 Apache Web Server
	2.2.3.2 MUD File Creation and Signing
	2.2.3.2.1 MUD File Creation
	2.2.3.2.2 MUD File Signature Creation and Verification

	2.3 Cisco Switch–Catalyst 3850-S
	2.3.1 Cisco 3850-S Catalyst Switch Overview
	2.3.2 Configuration Overview
	2.3.2.1 Network Configuration
	2.3.2.2 Software Configuration
	2.3.2.3 Hardware Configuration

	2.3.3 Setup

	2.4 DigiCert Certificates
	2.4.1 DigiCert CertCentral® Overview
	2.4.2 Configuration Overview
	2.4.3 Setup
	2.4.3.1 TLS Certificate
	2.4.3.2 Premium Certificate

	2.5 IoT Devices
	2.5.1 Molex PoE Gateway and Light Engine
	2.5.1.1 Configuration Overview
	2.5.1.1.1 Network Configuration
	2.5.1.1.2 Software Configuration
	2.5.1.1.3 Hardware Configuration

	2.5.1.2 Setup
	2.5.1.2.1 DHCP Client Configuration

	2.5.2 IoT Development Kits–Linux Based
	2.5.2.1 Configuration Overview
	2.5.2.1.1 Network Configuration
	2.5.2.1.2 Software Configuration
	2.5.2.1.3 Hardware Configuration

	2.5.2.2 Setup
	2.5.2.2.1 DHCP Client Configuration
	2.5.2.2.2 IoT Application for Testing

	2.5.3 IoT Development Kit–u-blox C027-G35
	2.5.3.1 Configuration Overview
	2.5.3.1.1 Network Configuration
	2.5.3.1.2 Software Configuration
	2.5.3.1.3 Hardware Configuration

	2.5.3.2 Setup
	2.5.3.2.1 DHCP Client Configuration
	2.5.3.2.2 IoT Application for Testing

	2.5.4 IoT Devices–Non-MUD-Capable
	2.5.4.1 Configuration Overview
	2.5.4.1.1 Network Configuration
	2.5.4.1.2 Software Configuration
	2.5.4.1.3 Hardware Configuration

	2.5.4.2 Setup
	2.5.4.2.1 DHCP Client Configuration

	2.6 Update Server
	2.6.1 Update Server Overview
	2.6.2 Configuration Overview
	2.6.2.1 Network Configuration
	2.6.2.2 Software Configuration
	2.6.2.3 Hardware Configuration

	2.6.3 Setup

	2.7 Unapproved Server
	2.7.1 Unapproved Server Overview
	2.7.2 Configuration Overview
	2.7.2.1 Network Configuration
	2.7.2.2 Software Configuration
	2.7.2.3 Hardware Configuration

	2.7.3 Setup
	2.7.3.1 Apache Web Server

	2.8 MQTT Broker Server
	2.8.1 MQTT Broker Server Overview
	2.8.2 Configuration Overview
	2.8.2.1 Network Configuration
	2.8.2.2 Software Configuration
	2.8.2.3 Hardware Configuration

	2.8.3 Setup
	2.8.3.1 Mosquitto Setup

	2.9 Forescout–IoT Device Discovery
	2.9.1 Forescout Overview
	2.9.2 Configuration Overview
	2.9.2.1 Network Configuration
	2.9.2.2 Software Configuration
	2.9.2.3 Hardware Configuration

	2.9.3 Setup
	2.9.3.1 Forescout Appliance Setup
	2.9.3.2 Enterprise Manager Setup

	3 Build 2 Product Installation Guides
	3.1 Yikes! MUD Manager
	3.1.1 Yikes! MUD Manager Overview
	3.1.2 Configuration Overview
	3.1.3 Setup

	3.2 MUD File Server
	3.2.1 MUD File Server Overview

	3.3 Yikes! DHCP Server
	3.3.1 Yikes! DHCP Server Overview
	3.3.2 Configuration Overview
	3.3.3 Setup

	3.4 Yikes! Router
	3.4.1 Yikes! Router Overview
	3.4.2 Configuration Overview
	3.4.2.1 Network Configuration
	3.4.2.2 Software Configuration
	3.4.2.3 Hardware Configuration

	3.4.3 Setup

	3.5 DigiCert Certificates
	3.6 IoT Devices
	3.6.1 IoT Development Kits—Linux Based
	3.6.1.1 Configuration Overview
	3.6.1.1.1 Network Configuration
	3.6.1.1.2 Software Configuration
	3.6.1.1.3 Hardware Configuration

	3.6.1.2 Setup
	3.6.1.2.1 DHCP Client Configuration

	3.7 Update Server
	3.8 Unapproved Server
	3.9 Yikes! IoT Device Discovery, Categorization, and Traffic Policy Enforcement (Yikes! Cloud and Yikes! Mobile Application)
	3.9.1 Yikes! IoT Device Discovery, Categorization, and Traffic Policy Enforcement Overview
	3.9.2 Configuration Overview
	3.9.2.1 Network Configuration
	3.9.2.2 Software Configuration
	3.9.2.3 Hardware Configuration

	3.9.3 Setup
	3.9.3.1 Yikes! Router and Account Cloud Registration
	3.9.3.2 Yikes! MUD-Capable IoT Device Discovery
	3.9.3.3 Yikes! Alerts
	3.9.3.4 Yikes! Device Categories and Setting Rules
	3.9.3.5 Yikes! Network Rules

	3.10 GCA Quad9 Threat Signaling in Yikes! Router
	3.10.1 GCA Quad9 Threat Signaling in Yikes! Router Overview
	3.10.2 Configuration Overview
	3.10.3 Setup

	4 Build 3 Product Installation Guides
	4.1 Product Installation
	4.1.1 DigiCert Certificates
	4.1.2 MUD Manager
	4.1.2.1 MUD Manager Overview
	4.1.2.2 Configuration Overview
	4.1.2.2.1 Network Configuration
	4.1.2.2.2 Software Configuration
	4.1.2.2.3 Hardware Configuration

	4.1.2.3 Setup
	4.1.2.3.1 Install and Set Up Dependencies
	4.1.2.3.2 Installing MUD Manager
	4.1.2.3.3 Operation

	4.1.3 MUD File Server
	4.1.3.1 MUD File Server Overview
	4.1.3.2 Configuration Overview
	4.1.3.2.1 Network Configuration
	4.1.3.2.2 Software Configuration
	4.1.3.2.3 Hardware Configuration

	4.1.3.3 Setup
	4.1.3.3.1 NGINX Web Server
	4.1.3.3.2 MUD File Creation and Signing

	4.1.4 Micronets Gateway
	4.1.4.1 Micronets Gateway Overview
	4.1.4.2 Configuration Overview
	4.1.4.2.1 Network Configuration
	4.1.4.2.2 Software Configuration
	4.1.4.2.3 Hardware Configuration

	4.1.4.3 Setup
	4.1.4.3.1 Install Dependencies
	4.1.4.3.2 Install Micronets Packages

	4.1.5 IoT Devices
	4.1.5.1 IoT Devices Overview
	4.1.5.2 Configuration Overview
	4.1.5.2.1 Network Configuration
	4.1.5.2.2 Software Configuration
	4.1.5.2.3 Hardware Configuration

	4.1.5.3 Setup
	4.1.5.3.1 Install Dependencies
	4.1.5.3.2 Install Micronets Proto-Pi
	4.1.5.3.3 Operation

	4.1.6 Update Server
	4.1.7 Unapproved Server
	4.1.8 CableLabs MUD Registry
	4.1.8.1 CableLabs MUD Registry Overview
	4.1.8.2 Configuration Overview
	4.1.8.2.1 Network Configuration
	4.1.8.2.2 Software Configuration
	4.1.8.2.3 Hardware Configuration

	4.1.8.3 Setup
	4.1.8.3.1 Install and Configure MUD Registry

	4.1.9 CableLabs Micronets Manager for SDN Control
	4.1.9.1 CableLabs Micronets Manager Overview
	4.1.9.2 Configuration Overview
	4.1.9.2.1 Network Configuration
	4.1.9.2.2 Software Configuration
	4.1.9.2.3 Hardware Configuration

	4.1.9.3 Setup
	4.1.9.3.1 Install Dependencies
	4.1.9.3.2 Install and Configure the Micronets Manager

	4.1.10 Micronets Websocket Proxy
	4.1.10.1 Micronets Websocket Proxy Overview
	4.1.10.2 Configuration Overview
	4.1.10.2.1 Network Configuration
	4.1.10.2.2 Software Configuration
	4.1.10.2.3 Hardware Configuration

	4.1.10.3 Setup

	4.1.11 Micronets iPhone Application for Device Onboarding
	4.1.11.1 Micronets iPhone Application Overview
	4.1.11.2 Configuration Overview
	4.1.11.2.1 Network Configuration
	4.1.11.2.2 Software Configuration
	4.1.11.2.3 Hardware Configuration

	4.1.11.3 Setup
	4.1.11.3.1 Install Dependencies
	4.1.11.3.2 Build Micronets iPhone Application

	4.1.12 MSO Portal Bootstrapping Interface to the Onboarding Manager
	4.1.12.1 MSO Portal Overview
	4.1.12.2 Configuration Overview
	4.1.12.2.1 Network Configuration
	4.1.12.2.2 Software Configuration
	4.1.12.2.3 Hardware Configuration

	4.1.12.3 Setup
	4.1.12.3.1 Install Dependencies
	4.1.12.3.2 Install and Configure MSO Portal

	4.2 Product Integration and Operation
	4.2.1 Adding an MSO Subscriber
	4.2.1.1 Prerequisites
	4.2.1.2 Instructions

	4.2.2 Associating the Micronets Gateway with a Subscriber
	4.2.2.1 Prerequisites
	4.2.2.2 Instructions

	4.2.3 Integrating Micronets Proto-Pi Device
	4.2.3.1 Prerequisites
	4.2.3.2 Instructions

	4.2.4 Updating MUD Registry
	4.2.4.1 Prerequisites
	4.2.4.2 Instructions

	4.2.5 Integrating the Micronets iPhone App with MSO Portal
	4.2.5.1 Prerequisites
	4.2.5.2 Instructions

	4.2.6 Onboarding Micronets Proto-Pi to a micronet
	4.2.6.1 Prerequisites
	4.2.6.2 Instructions

	4.2.7 Interacting with Micronets Manager
	4.2.7.1 Prerequisites
	4.2.7.2 Instructions

	4.2.8 Removing Micronets Proto-Pi from a Micronet
	4.2.8.1 Prerequisites
	4.2.8.2 Instructions:

	4.2.9 Removing an MSO Subscriber
	4.2.9.1 Prerequisites
	4.2.9.2 Instructions

	5 Build 4 Product Installation Guides
	5.1 NIST SDN Controller/MUD Manager
	5.1.1 NIST SDN Controller/MUD Manager Overview
	5.1.2 Configuration Overview
	5.1.2.1 Hardware Configuration
	5.1.2.2 Network Configuration
	5.1.2.3 Software Configuration

	5.1.3 Preinstallation
	5.1.4 Setup

	5.2 MUD File Server
	5.2.1 MUD File Sever Overview
	5.2.2 Configuration Overview
	5.2.2.1 Hardware Configuration
	5.2.2.2 Network Configuration
	5.2.2.3 Software Configuration

	5.2.3 Setup
	5.2.3.1 MUD File Creation
	5.2.3.2 MUD File Signing
	5.2.3.3 MUD File Serving

	5.3 Northbound Networks Zodiac WX Access Point
	5.3.1 Northbound Networks Zodiac WX Access Point Overview
	5.3.2 Configuration Overview
	5.3.2.1 Network Configuration
	5.3.2.2 Software Configuration
	5.3.2.3 Hardware Configuration

	5.3.3 Setup

	5.4 DigiCert Certificates
	5.5 IoT Devices
	5.5.1 IoT Devices Overview
	5.5.2 Configuration Overview
	5.5.2.1 Network Configuration
	5.5.2.2 Software Configuration
	5.5.2.3 Hardware Configuration

	5.5.3 Setup

	5.6 Update Server
	5.6.1 Update Server Overview
	5.6.2 Configuration Overview
	5.6.2.1 Network Configuration
	5.6.2.2 Software Configuration
	5.6.2.3 Hardware Configuration

	5.6.3 Setup

	5.7 Unapproved Server
	5.7.1 Unapproved Server Overview
	5.7.2 Configuration Overview
	5.7.2.1 Network Configuration
	5.7.2.2 Software Configuration
	5.7.2.3 Hardware Configuration

	5.7.3 Setup
	Appendix A List of Acronyms
	Appendix B Glossary
	Appendix C Bibliography

	Word Bookmarks
	RTF5f546f633432343535363830

