National Cybersecurity Center of Excellence

Michael Powell, Principal Investigator

Manufacturing Sector Community of Interest Call

Manufacturing_nccoe@nist.gov

June 27, 2019

Agenda

NCCoE Overview

Introduction of Manufacturing Team

Previous Manufacturing Project

 New Project: Detecting and Protecting Against Data Integrity Attacks in Industrial Control Systems Environments Project Description

Questions/Comments

> NCCoE Manufacturing Team: Contacts / Roles

Michael Powell	NIST/NCCoE – Principle Investigator	Michael.Powell@NIST.gov
Keith Stouffer	NIST – Principle Investigator	Keith.Stouffer@NIST.gov
Jim McCarthy	NIST/NCCoE – Senior Engineer	James.McCarthy@NIST.gov
CheeYee Tang	NIST – Project Engineer	Cheeyee.Tang@NIST.gov
Timothy Zimmerman	NIST – Project Engineer	Timothy.Zimmerman@NIST.gov
Titilayo Ogunyale	MITRE/NCCoE – Project Lead	TOgunyale@MITRE.org
Lura Danley	MITRE/NCCoE – Lead Social Scientist	LDanley@MITRE.org
Lauren Acierto	MITRE/NCCoE – Outreach & Engagement	LAcierto@MITRE.org

Mission

NCCoE Tenets

Standards-based

Apply relevant industry standards to each security implementation; demonstrate example solutions for new standards

Commercially available

Work with the technology community to identify commercially available products that can be brought together in example solutions to address challenges identified by industry

Modular

Develop components that can be easily substituted with alternates that offer equivalent input-output specifications

Usable

Design blueprints that end users can easily and cost-effectively adopt and integrate into their businesses without disrupting day-to-day operations

Repeatable

Provide a detailed practice guide including a reference design, list of components, configuration files, relevant code, diagrams, tutorials, and instructions to enable system admins to recreate the example solution and achieve the same results

Open and transparent

Use open and transparent processes to complete work; seek and incorporate public comments on NCCoE publications

Manufacturing Projects

Securing Manufacturing Industrial Control Systems: Behavioral Anomaly Detection

nccoe.nist.gov/nistir-8219

Detecting and Protecting Against Data Integrity Attacks in Industrial Control System Environments

nccoe.nist.gov/ics-integrity

NISTIR 8219

Securing Manufacturing Industrial Control Systems: Behavioral Anomaly Detection

Project focus:

 demonstrate behavioral anomaly detection techniques that businesses can implement and use to strengthen the cybersecurity of their manufacturing processes.

Three detection methods:

- network-based
- agent-based
- operational historian/sensorbased

Behavioral Anomaly Detection High Level Architecture

NISTIR 8219 Build Team

New Project: Detecting and Protecting Against Data Integrity Attacks in Industrial Control Systems (ICS) Environments

Project Focus:

 Provide a comprehensive approach that manufacturing organizations can use to address the challenge of protecting and detecting against data integrity attacks

Project Scope:

- Provide a proposed approach to prevent, mitigate, and detect threats from cyberattacks or insider threats within a manufacturing ICS environment
- Demonstrate how the commercially available technologies deployed in this build provide cybersecurity capabilities that manufacturing organizations can use to secure their operational technology (OT) systems

Cybersecurity Capabilities in New ProjectDetecting and Protecting Against Data Integrity Attacks in ICS Environments

- behavioral anomaly detection
- security incident and event monitoring
- ICS application whitelisting
- malware detection and mitigation
- change control management
- user authentication and authorization
- access control least privilege
- file integrity checking mechanisms

Multiple Capabilities in Two Manufacturing Demo Environments Detecting and Protecting Against Data Integrity Attacks in ICS Environments

Project Execution Timeline

Detecting and Protecting Against Data Integrity Attacks in ICS Environments

Next Steps

Detecting and Protecting Against Data Integrity Attacks in ICS Environments

Comment on the new Project Description:

- Submit comments <u>online</u> or via email to <u>manufacturing_nccoe@nist.gov</u>.
- Public comment period ends July 25th

Stay tuned for a call for collaborators via a Federal Register Notice (FRN):

- Look out for email from us announcing FRN
- Check status on project webpage:
- nccoe.nist.gov/ics-integrity

We Value Your Feedback

Do you:

- Have a success story from using one of our guides?
- Have comments/feedback regarding our guidance?
- Have an idea that you think the NCCoE should pursue?
- Know of an event where NCCoE should present?

Please engage with us: manufacturing_nccoe@nist.gov

Contact Us

Michael Powell, Principle Investigator

Manufacturing Sector Lead

Michael.Powell@NIST.gov

301-975-0310

Titilayo Ogunyale

Project Lead

TOgunyale@MITRE.org

301-975-0219

301-975-0200

nccoe@nist.gov