MOBILE APPLICATION SINGLE SIGN-ON

For Public Safety and First Responders

Paul Grassi NIST Applied Cybersecurity Division

William Fisher NIST National Cybersecurity Center of Excellence

FINAL DRAFT November 2016 <u>PSFR-NCCoE@nist.gov</u>

The National Cybersecurity Center of Excellence (NCCoE) at the National Institute of Standards and Technology (NIST) addresses businesses' most pressing cybersecurity problems with practical, standards-based solutions using commercially available technologies. The NCCoE collaborates with industry, academic, and government experts to build integrated, open, end-to-end reference designs that are broadly applicable and repeatable. To learn more about the NCCoE, visit <u>http://nccoe.nist.gov</u>. To learn more about NIST, visit <u>http://www.nist.gov</u>.

This document describes a particular problem that is relevant across the Public Safety and First Responder sector. NCCoE cybersecurity experts will address this challenge through collaboration with members of the Public Safety and First Responder community and vendors of cybersecurity solutions. The resulting reference design will detail an approach that can be used by Public Safety and First Responder organizations.

Abstract

Mobile platforms offer a significant operational advantage to public safety stakeholders by giving them access to mission critical information and services while deployed in the field, during training and exercises, or participating in day-to-day business and preparations during non-emergency periods. However, these advantages can be limited if unnecessary or complex authentication requirements stand in the way of an official providing emergency services, especially when any delay – even seconds – is a matter of containing or exacerbating an emergency situation. The vast diversity of public safety personnel, missions, and operational environments magnifies the need for a nimble authentication solution for public safety. This project will explore various multifactor authenticators currently in use by the public safety community, or those potentially offered in the future as their next generation networks are brought online. The effort will not only build an interoperable solution that can accept various authenticators to speed access to online systems while maintaining an appropriate amount of security, but will also focus on delivering single sign-on (SSO) capabilities to both native and web/browser-based apps. It is not enough to have an authenticator that is easy to use; this project sets out to identify technical options for the public safety community to consider deploying to ensure individuals in the field are not kept from meeting their mission goals by unnecessary authentication prompts. This project will result in a freely available NIST Cybersecurity Practice Guide, detailing the technical decisions, trade-offs, lessons learned, and implementation instructions based on market-dominant standards, such that public safety organizations can accelerate the deployment of a range of mobile authentication and SSO services to their population of users.

Keywords

authentication; biometric; first responder; mobile authentication; multifactor authentication; native applications; public safety; single sign-on; SSO

DISCLAIMER

Certain commercial entities, equipment, products, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST or NCCOE, nor is it intended to imply that the entities, equipment, products, or materials are necessarily the best available for the purpose.

COMMENTS ON NCCOE DOCUMENTS

Organizations are encouraged to review all draft publications during public comment periods and provide feedback. All publications from NIST's National Cybersecurity Center of Excellence are available at http://nccoe.nist.gov.

Comments on this publication may be submitted to: <u>PSFR-NCCoE@nist.gov</u>

Table of Contents

1.	Executive Summary1			
	Purpose1			
	Scope1			
	Assumptions2			
	Challenges 2			
	Background3			
2.	Scenarios			
	Scenario 1: MFA and Mobile SSO for Native Applications			
	Scenario 2: MFA and Mobile SSO for Web Applications4			
	Scenario 3: Shared Devices4			
	Scenario 4: Single Log Out (stretch goal)4			
	Scenario 5: App-to-App data sharing (stretch goal)4			
	Scenario 6: Step-up Authentication (stretch goal)5			
3.	Architecture			
	High Level Architecture5			
	Architecture Flow Diagrams6			
	Component List			
	Desired Requirements			
4.	Relevant Standards and Guidance9			
5.	Security Control Map9			
Appendix A – References				
Ap	pendix B – Glossary			

1 **1. EXECUTIVE SUMMARY**

2 Purpose

3 On-demand access to public safety data is critical to ensuring that public safety and first 4 responder (PSFR) personnel can deliver proper care and support during an emergency. 5 This requirement necessitates that PSFR personnel rely heavily on mobile platforms 6 while in the field, which may be used to access sensitive information such as personally 7 identifiable information (PII), law enforcement sensitive (LES) information, or protected 8 health information (PHI). The vast diversity of public safety personnel, missions, and 9 operational environments presents unique challenges to implementing efficient and 10 secure authentication mechanisms in order to protect access to this sensitive 11 information.

The purpose of this project is to help PSFR personnel efficiently and securely gain access
to mission data via mobile devices and applications. This project seeks to demonstrate,
using standards-based commercially available and open source products, a reference

design for multifactor authentication (MFA) and mobile single sign-on (SSO) for native and web applications. Through this effort, the NCCoE intends to:

- help PSFR entities define requirements for MFA and mobile application SSO
- improve interoperability between mobile platforms, applications, and identity
 providers (IdPs) regardless of the application development platform used in their
 construction
- develop an architecture and worked example that PSFR entities can quickly
 transition to their operational domains

23 The publication of this Project Description is the beginning of a process that will identify 24 project requirements, scope, participants, and hardware and software components for 25 use in a laboratory environment to build open, standards-based, integrated, end-to-end 26 reference designs that will address the challenge of implementing MFA and mobile 27 application SSO for PSFR organizations. The approach may include architectural 28 definition, logical design, build development, testing and evaluation, and security 29 control mapping. This project will result a publicly available NIST Cybersecurity Practice 30 Guide that will help PSFR organizations implement multifactor authentication and 31 mobile application SSO in their own environments.

32 **Scope**

- 33 The scope of this example solution includes the ability to authenticate to public safety
- 34 applications via the implementation of MFA to widely adopted commercially available
- 35 mobile platforms. This effort will then demonstrate subsequent authentications to
- 36 multiple mobile applications leveraging the initial authentication to accomplish SSO
- 37 capabilities. As technology and resources allow, this project may also demonstrate

- 38 application-to-application data sharing through the use of rights delegation platforms.
- 39 This project will leverage commercially available and open source technology that can
- 40 be employed for enterprise use. Any demonstration leveraging custom and/or
- 41 proprietary technology implementations is out of scope for this effort.

42 Assumptions

- 43 The following assumptions will help shape the scope of the mobile SSO solution and
- 44 provide controlled parameters for the effort such that the focus is centered on
- 45 delivering a successful solution based closely on the operational environment of public
- 46 safety officials.
- 47 An inclusive list of possible credentials will not be used; however multiple types 48 will be employed to ensure that the SSO solution can interoperate with a range 49 of possible authentication standards relevant for first responders. The credential 50 standards that will be considered in this use case are as follows: 51 X.509 certificates, with the corresponding private key preferably stored in 52 a hardware-based keystore in the mobile device, according to NIST SP 53 800-164 54 • FIDO UAF 1.x specifications, leveraging a biometric as one factor 55 o FIDO U2F 1.x specifications for hardware authenticators, inclusive of 56 authenticators using standard interfaces such as USB, NFC, or BLE 57 password and application based OTP 58 The project will select the mobile platforms with the richest native and open 59 capabilities to enable SSO. 60 Identity proofing and access control is not in scope. The solution will create 61 synthetic digital identities that represent the identities and attributes of public 62 safety personnel in order to test authentication assertions. This includes the 63 usage of a lab-configured identity repository—not a genuine repository and 64 schema provided by any public safety organization. 65 Credential storage is not in scope. For example, this use case is not impacted by 66 the storage of a certificate in software versus hardware, such as a TPM. 67 • Enterprise mobile management (EMM) is not in scope, though the potential 68 impact and benefits of including EMM will be considered. The solution will 69 assume all applications involved in the SSO experience are allowable via an 70 EMM. 71 **Challenges** 72 This use case was selected explicitly because of the associated challenges of developing 73 an interoperable, secure, user-friendly SSO solution that can be leveraged by first 74 responders in emergencies as well as in day-to-day operations. The scenarios described 75
- herein will directly address these challenges such that public safety entities choosing to
 deploy a solution based on this architecture can feel comfortable that the computing

- 77 and operational challenges of mobile authentication and information access are
- 78 accounted for in their selected solution. However, the challenges listed below are
- specific to the lab environment in which this solution will be deployed, and should be
- 80 mitigated to provide maximum positive impact to this important sector:
- shared devices and variable operating system (OS) support for multiple identities
 per device
- lab access to live test instances of actual public safety applications, both native
 and web-based
- immature and unstable standards for mobile identity and SSO
- multiple credential standards, such as Fast Identity Online (FIDO), PKI
 certificates, and varying mobile OS support for each

88 Background

- 89 Mobile devices have become critical to the operational effectiveness of public safety
- 90 institutions. They have the potential to enable essential personnel to be more effective
- 91 and efficient in responding to emergency situations, which can ultimately help PSFR
- 92 personnel save more lives. The widespread adoption of mobile devices has led to a
- 93 spate of mobile applications, many of which can support public safety activities.
- 94 However, as described in Draft NISTIR 8080, Usability and Security Considerations for
- 95 *Public Safety Mobile Authentication,* "most commercial off-the-shelf (COTS) mobile
- 96 devices and applications are not designed with public safety and their unique
- 97 constraints in mind." More specifically, the document cites, "authenticating to a device,
- 98 service, or application ... can be quite a challenging task when wearing thick gloves and
- 99 donning a protective mask." [1]
- 100 When responding to an emergency, public safety personnel require on-demand access
- 101 to data. The ability to authenticate quickly and securely in order to access public safety
- 102 data is critical to ensuring that first responders can deliver proper care and support
- 103 during an emergency. In order to adequately meet the needs of diverse public safety
- 104 personnel, missions, and operational environments, authentication mechanisms need to
- 105 support deployments where devices may be shared amongst personnel and
- 106 authentication factors have usability constraints.

107 **2. S**CENARIOS

108 Scenario 1: MFA and Mobile SSO for Native Applications

- 109 Multiple mobile devices and OS platforms will be configured to accept the
- authenticators listed in the assumptions section. Each authenticator will be associated
- 111 with the same digital identity. The user will access three (3) native applications. The first
- accessed will trigger a prompt for a valid credential, and the subsequent two will
- 113 incorporate, if possible, multiple SSO techniques dependent on the standards, OS
- 114 capabilities, and technologies selected. The application selection sequence will not be

- fixed, i.e., any application can be selected first, with the remaining two accepting an
- 116 SSO-based authentication. This scenario will also explore the impact of various session
- 117 length policies on a per-application basis, as well as the impact of the mobile device
- being locked by the user or based on a pre-configured OS timeout.

119 Scenario 2: MFA and Mobile SSO for Web Applications

- 120 This scenario will build off of scenario 1, and add two additional web-based applications
- 121 to the SSO workflow. Each application will be accessed via a mobile web browser. Two
- browsers will be included in the scenario, not just the default OS browser. As in scenario
- 123 1, the user will be able to traverse applications in any order they choose, and will be
- able to access each application after the first authentication challenge without being
- 125 prompted for his or her credentials.

126 Scenario 3: Shared Devices

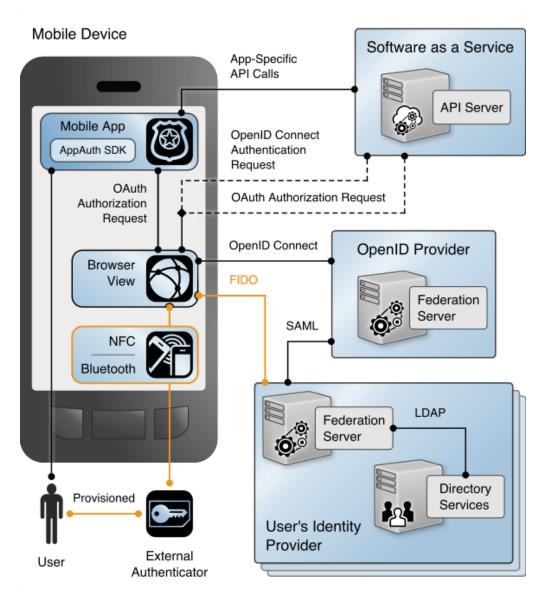
- Adding to the complexity of the previous two scenarios, this scenario will focus on a situation where two or more colleagues share a single mobile device in order to accomplish a mission. The credentials used in scenarios 1 and 2 will be included, but will be associated to multiple digital identities. This scenario will explore situations in which
- 131 multiple or no profiles are installed on a device, potentially requiring the user to log out
- 132 prior to giving the device to another user.

133 Scenario 4: Single Log Out (stretch goal)

134 In order to ensure only authorized personnel get access to application resources, users 135 must be logged out from application sessions when access is no longer needed, or a 136 session expires. In a single sign on scenario, a user may need to be logged out from one 137 or many applications at a given time. This scenario will demonstrate architectures for 138 tearing down user sessions, clearly communicating to the user which application(s) have 139 active sessions and ensuring active session are not abandoned.

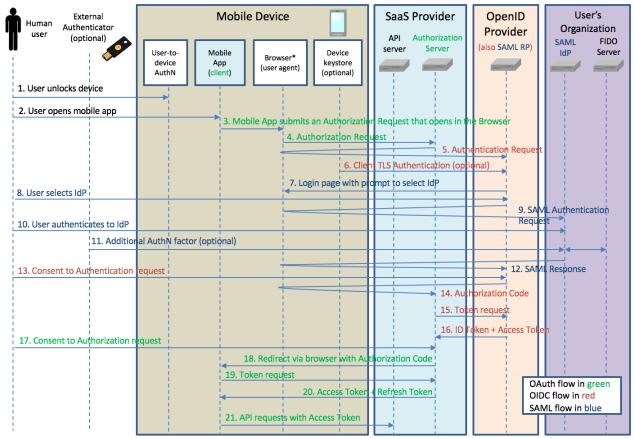
140 Scenario 5: App-to-App data sharing (stretch goal)

- 141 Many applications may wish to share data resources. For example, a municipal law
- 142 enforcement organization may want to supplement its mobile application data with
- 143 information from a national law enforcement fusion center. The municipal mobile
- 144 application needs delegated authorization to access national law enforcement
- 145 information. This would require the user to authenticate to the national law
- 146 enforcement application and consent to allow the municipal application to access fusion
- 147 center data. The benefit of this architecture is that the user controls data sharing from
- 148 one application to the next, without providing the fusion center credentials to the
- 149 municipal app. However, prior to consent of data sharing, the user must authenticate.
- 150 This scenario will add SSO to the authorization and consent required for this type of
- 151 data sharing workflow.


152 Scenario 6: Step-up Authentication (stretch goal)

- 153 A user will access applications using an acceptable, but low assurance, authenticator.
- 154 Upon requesting access to an application that requires higher assurance, the user will be
- 155 prompted for an additional authentication factor. Determinations on whether to step up
- 156 may be based on risk relevant data points collected by the IdP at the time of
- authentication, referred to as the authentication context.

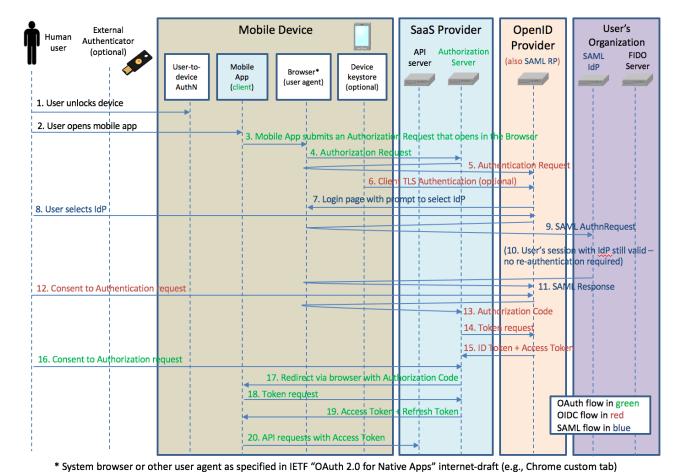
3. ARCHITECTURE


159 High Level Architecture

- 160 Figure 1 illustrates a high-level representation of components and protocols that may
- 161 achieve the desired capabilities.

164 Architecture Flow Diagrams

- 165 Figure 2 details one potential initial flow between architectural components, depicting the user performing multifactor
- 166 authentication to a mobile application.



* System browser or other user agent as specified in IETF "OAuth 2.0 for Native Apps" internet-draft (e.g., Chrome custom tab)

Figure 2 Initial Application Authentication

167

168

169 Continuing the flow in Figure 2, Figure 3 shows a user leveraging the initial authentication to sign into additional mobile applications.

170 171

Figure 3 Single Sign on to Subsequent Application

172 Component List

- mobile devices with built-in user-to-device authentication capabilities (including biometric) and cryptographic keystores
- mobile web browser application, Identity Provider application, or built-in device capability that manages authentication to the Identity Provider (using protocols such as FIDO UAF, FIDO U2F, or TLS with client certificate authentication) and interfaces with Relying Party applications to enable SSO
- external hardware authenticators that interoperate with mobile devices over
 Near Field Communication (NFC) or Bluetooth Low Energy (BLE)
- Software Development Kit (SDK), libraries, or platform APIs that enable mobile
 SSO capabilities within Relying Party mobile applications and their backend
 servers
- Identity Provider server with OpenID Connect support

185 **Desired Requirements**

- This project seeks to develop a reference design and implementation that meets thefollowing requirements:
- 188 a standards-based solution architecture that selects the most effective and 189 secure approach to implementing mobile SSO leveraging native capabilities of the mobile OS 190 191 supports mobile SSO both for authentication and, as technology and resources 192 allow, delegated authorization 193 ensures that mobile applications do not have access to user credentials 194 supports multiple authenticators, taking into account unique environmental 195 constraints faced by first responders in emergency medical services, law enforcement, and the fire service such as: 196 197 o gloved, one-handed, or hands-free operation 198 o use of smoke hoods, fire hoods, or gas masks that may prevent facial or iris recognition 199 200 o proximity based authenticators 201 o biometric based authentication mechanisms that meet the requirements 202 of NIST SP 800-63r3B 203 allows for multi-user operation of shared mobile devices, where each individual 204 has a unique identity on the mobile platform 205 • supports MFA and multiple authentication protocols 206 supports a spectrum of Bring Your Own Device (BYOD) and Corporate Owned, • 207 Personally Enabled (COPE) scenarios

208 4. Relevant Standards and Guidance

Standards-based and open source activities in the mobile application SSO and rightsdelegation space that may be leveraged for this effort include:

211	٠	IETF: The OAuth Working Group has drafted a Best Current Practice (BCP) for
212		mobile application rights delegation demonstrating how OAuth 2.0 authorization
213		requests can be made from native apps using either an "in-app browser tab" or
214		the "system browser" instead of using the "web-view" approach, which is
215		inherently insecure [2].
216	٠	OpenID Foundation: The Connect Working Group has developed an open source
217		implementation for OpenID Connect to enable an SSO model for native
218		applications installed on mobile devices [3] [4].
219	٠	FIDO Universal Authentication Framework (UAF) [5]
220	٠	FIDO Universal 2 nd Factor (U2F) [6]
221	•	W3C Web Auth API (FIDO 2.0) [7]
222	•	Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
223		(CRL) Profile [8]
224	•	ISO/IEC 30107, Biometric Presentation Attack Detection [9]
225	٠	ISO/IEC 27001, Information Technology – Security Techniques – Information
226		Security Management Systems [10]
227	٠	ISO/IEC 29115, Information Technology – Security Techniques – Entity
228		authentication assurance framework [11]
229	•	NIST Cybersecurity Framework - Standards, guidelines, and best practices to
230		promote the protection of critical infrastructure [12]
231	•	NIST SP 800-53, Recommended Security Controls for Federal Information [13]
232	•	NIST SP 800-63-3, Electronic Authentication Guide [14]
233	٠	NIST SP 800-73-4, Interfaces for Personal Identity Verification (3 Parts) [15]
234	٠	Draft NIST SP 800-164, Guidelines on Hardware Rooted Security in Mobile Devices
235	٠	Draft NISTIR 8080, Usability and Security Considerations for Public Safety Mobile
236		Authentication
237	٠	NISTIR 8014, Considerations for Identity Management in Public Safety Mobile
238		Networks

239 5. SECURITY CONTROL MAP

Table 1 maps the characteristics of the commercial products that the NCCoE will apply
to this cybersecurity challenge to the applicable standards and best practices described
in the *Framework for Improving Critical Infrastructure Cybersecurity* (CSF) and other
NIST activities. This exercise is meant to demonstrate the real-world applicability of
standards and best practices, but does not imply that products with these
characteristics will meet your industry's requirements for regulatory approval or
accreditation.

247 Table 1: Security Control Map

Solution	NIST CSF	Informative References
Characteristic	Category	
local authentication of	PR.AC-4,	NIST SP 800-53 Rev. 4 AC-3, IA-6
user to device	PR.DS-5	IEC/ISO 27002 6.2.1, 9.3.1, 9.4.1, 9.4.2, 10.1.1
local user	PR.AC-4,	NIST SP 800-53 Rev. 4 AC-3, IA-6
authentication to	PR.DS-5	IEC/ISO 27002 6.2.1, 9.1.1, 9.3.1, 9.4.1, 9.4.2, 10.1.1
applications		
remote user	PR.AC-1,	NIST SP 800-53 Rev. 4 AC-3, AC-17, IA-2, IA-2(2), IA-
authentication	PR.AC-4,	2(11), IA-6
	PR.DS-5	IEC/ISO 27002 6.2.1, 9.1.1, 9.1.2, 9.3.1, 9.4.1, 9.4.2,
		10.1.1, 13.1.1, 14.1.3
remote device	PR.AC-1,	NIST SP 800-53 Rev. 4 AC-3, AC-17, AC-19, IA-3, IA-3(1),
authentication	PR.AC-3,	IA-3(4)
	PR.AC-4	IEC/ISO 27002 6.2.1, 9.1.1, 9.4.1, 10.1.1, 13.1.1, 14.1.3
implementation of	PR.AC-4	NIST SP 800-53 Rev. 4 AC-3, AC-3(7), AC-6
user and device roles		IEC/ISO 27002 6.2.1, 9.1.1
for authorization		
device provisioning	ID.AM-1,	NIST SP 800-53 Rev. 4 AC-19, CM-7(3), CM-8(4), MP-
and enrollment	PR.AC-3,	5(3), MP-7(1)
	PR.PT-1,	IEC/ISO 27002 6.2.1, 8.1.2, 8.1.4, 8.2.3, 8.3.1, 8.3.2,
	PR.PT-2,	9.2.2, 11.2.5
	PR.PT-3	
credential and token	PR.AC-1	NIST SP 800-53 Rev. 4 IA-2, IA-2(10), IA-2(11), IA-2(12),
storage and use		IA-5, IA-5(1), IA-5(2), IA-5(4), IA-5(6), IA-5(9), IA-5(10),
		IA-5(11), IA-5(12), IA-5(13)
		IEC/ISO 27002 9.2.3, 9.2.4, 9.3.1, 9.4.2, 10.1.1, 10.1.2,
		14.1.3
shared authentication	PR.AC-1	NIST SP 800-53 Rev. 4 IA-5, AC-2
state across		IEC/ISO 27002 A.9.2.1, A.9.2.2, A.9.2.4, A.9.3.1, A.9.4.2,
applications on the		A.9.4.3
device		
secure inter-process	PR.DS-5	NIST SP 800-53 Rev. 4 AC-4, AC-5, AC-6, PE-19, PS-3, PS-
communication		6, SC-7, SC-8, SC-13, SC-31, SI-4
methods		IEC/ISO 27002 A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2,
		A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4,
		A.9.4.5, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2,
		A.14.1.3
remote user	PR.AC-1,	NIST SP 800-53 Rev. 4 AC-2, AC-3, AC-4, AC-5, AC-6, AC-
authentication using	PR.AC-3,	16, AC17, AC-19, AC-20, PE-19, PS-3, PS-6, SC-7, SC-8,
multiple factors	PR.AC-4,	SC-13, SC-31, SI-4
	PR.DS-5	IEC/ISO 27002 A.6.1.2, A.6.2.2, A.7.1.1, A.7.1.2, A.7.3.1,
		A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.2,
		A.9.2.3, A.9.2.4, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3,
		A.9.4.4, A.9.4.5, A.14.1.2, A.14.1.3, A.13.1.1, A.13.1.3,
		A.13.2.1, A.13.2.3, A.13.2.4

remote user	PR.AC-1,	NIST SP 800-53 Rev. 4 AC-2, AC-3, AC-4, AC-5, AC-6, AC-
authentication using	PR.AC-3,	16, AC17, AC-19, AC-20, PE-19, PS-3, PS-6, SC-7, SC-8,
strong cryptography	PR.AC-4,	SC-13, SC-31, SI-4
	PR.DS-5	IEC/ISO 27002 A.6.1.2, A.6.2.2, A.7.1.1, A.7.1.2, A.7.3.1,
		A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.2,
		A.9.2.3, A.9.2.4, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3,
		A.9.4.4, A.9.4.5, A.14.1.2, A.14.1.3, A.13.1.1, A.13.1.3,
		A.13.2.1, A.13.2.3, A.13.2.4
contextually based	PR.AC-1,	NIST SP 800-53 Rev. 4 AC-2, AC-3, AC-4, AC-5, AC-6, AC-
authentication	PR.AC-3,	16, AC17, AC-19, AC-20, PE-19, PS-3, PS-6, SC-7, SC-8,
decisions	PR.AC-4,	SC-13, SC-31, SI-4
	PR.DS-5	IEC/ISO 27002 A.6.1.2, A.6.2.2, A.7.1.1, A.7.1.2, A.7.3.1,
		A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.2,
		A.9.2.3, A.9.2.4, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3,
		A.9.4.4, A.9.4.5, A.14.1.2, A.14.1.3, A.13.1.1, A.13.1.3,
		A.13.2.1, A.13.2.3, A.13.2.4
modularized/pluggable	PR.DS-5,	NIST SP 800-53 Rev. 4 AC-3, CM-7, AC-4, AC-5, AC-6, PE-
authentication	PR.PT-3	19, PS-3, PS-6, SC-7, SC-8, SC-13, SC-31, SI-4
methods		IEC/ISO 27002 A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2,
		A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4,
		A.9.4.5, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2,
		A.14.1.3
protection of	PR.AC-4,	NIST SP 800-53 Rev. 4 AC-2, AC-3, AC-5, AC-6, AC-16
authentication	PR.PT-3	IEC/ISO 27002 A.6.1.2, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4
material using a secure		
context		
protection of user	PR.DS-5	NIST SP 800-53 Rev. 4 AC-4, AC-5, AC-6, PE-19, PS-3, PS-
biometric data		6, SC-7, SC-8, SC-13, SC-31, SI-4
		IEC/ISO 27002 A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2,
		A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4,
		A.9.4.5, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2,
		A.14.1.3
proof of user	PR.PT-4	NIST SP 800-53 Rev. 4 AC-4, AC-17, AC-18, CP-8, SC-7
authentication intent		IEC/ISO 27002 A.13.1.1, A.13.2.1
	I	• - / -

249 **APPENDIX A – REFERENCES**

- Y. Choong, J.M. Franklin, and K.K. Greene, Usability and Security Considerations for Public Safety Mobile Authentication, DRAFT NISTIR 8080, National Institute of Standards and Technology, Gaithersburg, Maryland, November 2015, 40pp. <u>http://csrc.nist.gov/publications/drafts/nistir-8080/nistir_8080_draft.pdf</u>.
- W. Denniss, Google, J. Bradley, and Ping Identity, OAuth 2.0 for Native Apps, Internet Engineering Task Force (IETF) OAuth Working Group Internet-Draft, March 2016. <u>https://tools.ietf.org/html/draft-ietf-oauth-native-apps-01</u>.
- [3] *AppAuth for iOS*, GitHub [website], <u>http://openid.github.io/AppAuth-iOS/</u>.
- [4] *AppAuth for Android*, GitHub [website], <u>http://openid.github.io/AppAuth-Android/</u>.
- [5] Dr. R. Lindemann and D. Baghdasaryan, FIDO AppID Facet Specification v1.0, Fast Identity Online (FIDO) Alliance Proposed Standard, December 2014. <u>http://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208.zip</u>.
- [6] Universal 2nd Factor Overview, Fast Identity Online (FIDO) Alliance Proposed Standard, May 2015. <u>https://fidoalliance.org/specs/fido-undefined-undefined-ps-</u>20150514/fido-u2f-overview-v1.0-undefined-ps-20150514.html.
- [7] H. Le Van Gong, D. Balfanz, A. Czeskis, A. Birgisson, J. Hodges, FIDO 2.0: Web API for accessing FIDO 2.0 credentials, World Wide Web Consortium (W3C) Member Submission, November 2015. <u>https://www.w3.org/Submission/2015/SUBM-fido-web-api-20151120/</u>.
- [8] R. Housley, RSA Laboratories, W. Polk, NIST, W. Ford, VeriSign, D. Solo, Citigroup, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, Internet Engineering Task Force (IETF) Network Working Group Request for Comments (RFC) 3280, April 2002. <u>https://www.ietf.org/rfc/rfc3280.txt</u>.
- [9] International Organization for Standardization/International Electrotechnical Commission, Information technology—Biometric presentation attack detection— Part 3: Testing and reporting, ISO/IEC CD 30107-3.
- [10] International Organization for Standardization/International Electrotechnical Commission, Information technology—Security techniques—Information security management systems—Requirements, ISO/IEC 27001:2013. 2013.

- [11] International Organization for Standardization/International Electrotechnical Commission, Information technology—Security techniques—Entity authentication assurance framework, ISO/IEC 29115:2013. 2013.
- [12] National Institute of Standards and Technology, Framework for Improving Critical Infrastructure Cybersecurity, National Institute of Standards and Technology, Gaithersburg, Maryland, February 2014. <u>http://www.nist.gov/cyberframework/upload/cybersecurity-framework-021214.pdf</u>.
- [13] Joint Task Force Transformation Initiative, Security and Privacy Controls for Federal Information Systems and Organizations, NIST Special Publication 800-53 Revision 4, National Institute of Standards and Technology, Gaithersburg, Maryland, April 2013. <u>http://dx.doi.org/10.6028/NIST.SP.800-53r4</u>.
- P.A. Grassi, J.L. Fenton, *Digital Authentication Guideline*, DRAFT NIST Special Publication 800-63-3, National Institute of Standards and Technology, Gaithersburg, Maryland, 2016. <u>https://pages.nist.gov/800-63-3/sp800-63-3.html</u>.
- [15] D. Cooper, H. Ferraiolo, K. Mehta, S. Francomacaro, R. Chandramouli, J. Mohler, Interfaces for Personal Identity Verification—Part 1: PIV Card Application Namespace, Data Model and Representation, NIST Special Publication 800-73-4, National Institute of Standards and Technology, Gaithersburg, Maryland, May 2015. <u>http://dx.doi.org/10.6028/NIST.SP.800-73-4</u>.

250

- 251 **APPENDIX B GLOSSARY**
- All definitions in this document are sourced from NIST SP800-63-3 and can be found
- 253 online here:
- 254 https://pages.nist.gov/800-63-3/sp800-63a.html#sec3
- 255 <u>https://pages.nist.gov/800-63-3/sp800-63b.html#sec3</u>
- 256 https://pages.nist.gov/800-63-3/sp800-63c.html#sec3