
NIST SPECIAL PUBLICATION 1800-15C 

Securing Small-Business and Home 
Internet of Things (IoT) Devices:  
Mitigating Network-Based Attacks Using Manufacturer 
Usage Description (MUD)  
Volume C: 
How-To Guides 

Mudumbai Ranganathan 
NIST 

Steve Johnson  
Ashwini Kadam  
Craig Pratt  
Darshak Thakore 
CableLabs 

Eliot Lear 
Cisco 

William C. Barker 
Dakota Consulting 

Adnan Baykal 
Global Cyber Alliance 

Drew Cohen 
Kevin Yeich  
MasterPeace Solutions 

Yemi Fashina 
Parisa Grayeli 
Joshua Harrington  
Joshua Klosterman 
Blaine Mulugeta 
Susan Symington 
The MITRE Corporation 

May 2021 

FINAL 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.SP.1800-15 

Draft versions of this publication are available free of charge from: https://www.nccoe.nist.gov/library/
securing-small-busi-ness-and-home-internet-things-iot-devices-mitigating-network-based 

https://doi.org/10.6028/NIST.SP.1800-15
https://www.nccoe.nist.gov/library/securing-small-business-and-home-internet-things-iot-devices-mitigating-network-based
https://www.nccoe.nist.gov/library/securing-small-business-and-home-internet-things-iot-devices-mitigating-network-based


DISCLAIMER 
Certain commercial entities, equipment, products, or materials may be identified by name or company 
logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 
experimental procedure or concept adequately. Such identification is not intended to imply special 
status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it 
intended to imply that the entities, equipment, products, or materials are necessarily the best available 
for the purpose. 

 

 

 

National Institute of Standards and Technology Special Publication 1800-15C, Natl. Inst. Stand. Technol. 
Spec. Publ. 1800-15C, 243 pages, (May 2021), CODEN: NSPUE2 

 

 

 

FEEDBACK 
As a private-public partnership, we are always seeking feedback on our practice guides. We are 
particularly interested in seeing how businesses apply NCCoE reference designs in the real world. If you 
have implemented the reference design, or have questions about applying it in your environment, 
please email us at mitigating-iot-ddos-nccoe@nist.gov. 

All comments are subject to release under the Freedom of Information Act. 

 

 

 

National Cybersecurity Center of Excellence 
National Institute of Standards and Technology 

100 Bureau Drive 
Mailstop 2002 

Gaithersburg, MD 20899 
Email: nccoe@nist.gov   

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

mailto:mitigating-iot-ddos-nccoe@nist.gov
mailto:nccoe@nist.gov


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices iii 

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE 
The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards 
and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and 
academic institutions work together to address businesses’ most pressing cybersecurity issues. This 
public-private partnership enables the creation of practical cybersecurity solutions for specific 
industries, as well as for broad, cross-sector technology challenges. Through consortia under 
Cooperative Research and Development Agreements (CRADAs), including technology partners—from 
Fortune 50 market leaders to smaller companies specializing in information technology security—the 
NCCoE applies standards and best practices to develop modular, easily adaptable example cybersecurity 
solutions using commercially available technology. The NCCoE documents these example solutions in 
the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework 
and details the steps needed for another entity to re-create the example solution. The NCCoE was 
established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, 
Maryland. 

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit 
https://www.nist.gov. 

NIST CYBERSECURITY PRACTICE GUIDES 
NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity 
challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the 
adoption of standards-based approaches to cybersecurity. They show members of the information 
security community how to implement example solutions that help them align more easily with relevant 
standards and best practices, and provide users with the materials lists, configuration files, and other 
information they need to implement a similar approach. 

The documents in this series describe example implementations of cybersecurity practices that 
businesses and other organizations may voluntarily adopt. These documents do not describe regulations 
or mandatory practices, nor do they carry statutory authority.  

ABSTRACT 
The goal of the Internet Engineering Task Force’s Manufacturer Usage Description (MUD) architecture is 
for Internet of Things (IoT) devices to behave as intended by the manufacturers of the devices. This is 
done by providing a standard way for manufacturers to indicate the network communications that a 
device requires to perform its intended function. When MUD is used, the network will automatically 
permit the IoT device to send and receive only the traffic it requires to perform as intended, and the 
network will prohibit all other communication with the device, thereby increasing the device’s resilience 
to network-based attacks. In this project, the NCCoE has demonstrated the ability to ensure that when 
an IoT device connects to a home or small-business network, MUD can be used to automatically permit 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://www.nccoe.nist.gov/
https://www.nist.gov/
https://tools.ietf.org/html/rfc8520


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices iv 

the device to send and receive only the traffic it requires to perform its intended function. This NIST 
Cybersecurity Practice Guide explains how MUD protocols and tools can reduce the vulnerability of IoT 
devices to botnets and other network-based threats as well as reduce the potential for harm from 
exploited IoT devices. It also shows IoT device developers and manufacturers, network equipment 
developers and manufacturers, and service providers who employ MUD-capable components how to 
integrate and use MUD to satisfy IoT users’ security requirements.  

KEYWORDS 
access control; bootstrapping; botnets; firewall rules; flow rules; Internet of Things (IoT); Manufacturer 
Usage Description (MUD); network segment; onboarding; router; server; threat signaling; update server; 
Wi-Fi Easy Connect.  

DOCUMENT CONVENTIONS   
The terms “shall” and “shall not” indicate requirements to be followed strictly to conform to the 
publication and from which no deviation is permitted. 

The terms “should” and “should not” indicate that among several possibilities, one is recommended as 
particularly suitable without mentioning or excluding others or that a certain course of action is 
preferred but not necessarily required or that (in the negative form) a certain possibility or course of 
action is discouraged but not prohibited. 

The terms “may” and “need not” indicate a course of action permissible within the limits of the 
publication. 

The terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or causal. 

Acronyms used in figures can be found in the Acronyms appendix. 

ACKNOWLEDGMENTS 
We are grateful to the following individuals for their generous contributions of expertise and time. 

Name Organization 

Allaukik Abhishek Arm 

Michael Bartling Arm 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices v 

Name Organization 

Mark Walker CableLabs 

Tao Wan CableLabs 

Russ Gyurek Cisco 

Peter Romness Cisco 

Brian Weis Cisco 

Rob Cantu CTIA 

Dean Coclin DigiCert 

Avesta Hojjati DigiCert 

Clint Wilson DigiCert 

Katherine Gronberg Forescout 

Tim Jones Forescout 

Rae'-Mar Horne MasterPeace Solutions, Ltd. 

Nate Lesser MasterPeace Solutions, Ltd. 

Tom Martz MasterPeace Solutions, Ltd. 

Daniel Weller MasterPeace Solutions, Ltd. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices vi 

Name Organization 

Nancy Correll The MITRE Corporation 

Sallie Edwards The MITRE Corporation 

Drew Keller The MITRE Corporation 

Sarah Kinling The MITRE Corporation 

Karri Meldorf The MITRE Corporation 

Mary Raguso The MITRE Corporation 

Allen Tan The MITRE Corporation 

Mo Alhroub Molex 

Jaideep Singh Molex 

Bill Haag NIST 

Tim Polk NIST 

Murugiah Souppaya NIST 

Paul Watrobski NIST 

Bryan Dubois Patton Electronics 

Stephen Ochs Patton Electronics 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices vii 

Name Organization 

Karen Scarfone Scarfone Cybersecurity 

Matt Boucher Symantec A Division of Broadcom 

Petros Efstathopoulos Symantec A Division of Broadcom 

Bruce McCorkendale Symantec A Division of Broadcom 

Susanta Nanda Symantec A Division of Broadcom 

Yun Shen Symantec A Division of Broadcom 

Pierre-Antoine Vervier Symantec A Division of Broadcom 

John Bambenek ThreatSTOP 

Russ Housley Vigil Security 

 
The Technology Partners/Collaborators who participated in this build submitted their capabilities in 
response to a notice in the Federal Register. Respondents with relevant capabilities or product 
components were invited to sign a Cooperative Research and Development Agreement (CRADA) with 
NIST, allowing them to participate in a consortium to build this example solution. We worked with: 

Technology Partner/Collaborator Build Involvement 

Arm Subject matter expertise  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://www.arm.com/


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices viii 

Technology Partner/Collaborator Build Involvement 

CableLabs Micronets Gateway 
Micronets cloud infrastructure  
Prototype IoT devices–Raspberry Pi with Wi-Fi Easy Con-
nect support 
Micronets mobile application 

Cisco Cisco Catalyst 3850S  
MUD manager    

CTIA Subject matter expertise  

DigiCert Private Transport Layer Security certificate 
Premium Certificate 

Forescout Forescout appliance–VCT-R  
Enterprise manager–VCEM-05 

Global Cyber Alliance Quad9 DNS service, Quad9 Threat Application 
Programming Interface 

ThreatSTOP threat MUD file server 

MasterPeace Solutions Yikes! router 
Yikes! cloud 
Yikes! mobile application 

Molex Molex light-emitting diode light bar  
Molex Power over Ethernet Gateway  

Patton Electronics Subject matter expertise 

Symantec A Division of Broadcom Subject matter expertise  

  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://www.cablelabs.com/
https://www.cisco.com/
https://www.ctia.org/
https://www.digicert.com/
https://www.forescout.com/
https://www.globalcyberalliance.org/
https://www.masterpeaceltd.com/
https://www.molex.com/molex/home
https://www.patton.com/
https://www.broadcom.com/


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices ix 

Contents 
1 Introduction ......................................................................................... 1 

1.1 How to Use this Guide ................................................................................................... 1 

1.2 Build Overview .............................................................................................................. 2 
1.2.1 Usage Scenarios ............................................................................................................ 3 
1.2.2 Reference Architecture Overview ................................................................................. 3 
1.2.3 Physical Architecture Overview .................................................................................... 7 

1.3 Typographic Conventions .............................................................................................. 9 

2 Build 1 Product Installation Guides ...................................................... 9 

2.1 Cisco MUD Manager ...................................................................................................... 9 
2.1.1 Cisco MUD Manager Overview ..................................................................................... 9 
2.1.2 Cisco MUD Manager Configurations ........................................................................... 10 
2.1.3 Setup ........................................................................................................................... 11 

2.2 MUD File Server ........................................................................................................... 22 
2.2.1 MUD File Server Overview .......................................................................................... 22 
2.2.2 Configuration Overview .............................................................................................. 22 
2.2.3 Setup ........................................................................................................................... 22 

2.3 Cisco Switch–Catalyst 3850-S ...................................................................................... 29 
2.3.1 Cisco 3850-S Catalyst Switch Overview ...................................................................... 29 
2.3.2 Configuration Overview .............................................................................................. 30 
2.3.3 Setup ........................................................................................................................... 32 

2.4 DigiCert Certificates ..................................................................................................... 36 
2.4.1 DigiCert CertCentral® Overview .................................................................................. 36 
2.4.2 Configuration Overview .............................................................................................. 36 
2.4.3 Setup ........................................................................................................................... 36 

2.5 IoT Devices ................................................................................................................... 37 
2.5.1 Molex PoE Gateway and Light Engine ........................................................................ 37 
2.5.2 IoT Development Kits–Linux Based ............................................................................. 38 
2.5.3 IoT Development Kit–u-blox C027-G35 ...................................................................... 42 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices x 

2.5.4 IoT Devices–Non-MUD-Capable ................................................................................. 47 

2.6 Update Server .............................................................................................................. 48 
2.6.1 Update Server Overview ............................................................................................. 48 
2.6.2 Configuration Overview .............................................................................................. 48 
2.6.3 Setup ........................................................................................................................... 48 

2.7 Unapproved Server ..................................................................................................... 49 
2.7.1 Unapproved Server Overview ..................................................................................... 49 
2.7.2 Configuration Overview .............................................................................................. 49 
2.7.3 Setup ........................................................................................................................... 49 

2.8 MQTT Broker Server .................................................................................................... 50 
2.8.1 MQTT Broker Server Overview ................................................................................... 50 
2.8.2 Configuration Overview .............................................................................................. 50 
2.8.3 Setup ........................................................................................................................... 50 

2.9 Forescout–IoT Device Discovery ................................................................................. 51 
2.9.1 Forescout Overview .................................................................................................... 51 
2.9.2 Configuration Overview .............................................................................................. 51 
2.9.3 Setup ........................................................................................................................... 52 

3 Build 2 Product Installation Guides .................................................... 53 

3.1 Yikes! MUD Manager................................................................................................... 53 
3.1.1 Yikes! MUD Manager Overview .................................................................................. 53 
3.1.2 Configuration Overview .............................................................................................. 53 
3.1.3 Setup ........................................................................................................................... 53 

3.2 MUD File Server ........................................................................................................... 53 
3.2.1 MUD File Server Overview .......................................................................................... 53 

3.3 Yikes! DHCP Server ...................................................................................................... 54 
3.3.1 Yikes! DHCP Server Overview ..................................................................................... 54 
3.3.2 Configuration Overview .............................................................................................. 54 
3.3.3 Setup ........................................................................................................................... 54 

3.4 Yikes! Router ............................................................................................................... 54 
3.4.1 Yikes! Router Overview ............................................................................................... 54 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices xi 

3.4.2 Configuration Overview .............................................................................................. 55 
3.4.3 Setup ........................................................................................................................... 55 

3.5 DigiCert Certificates ..................................................................................................... 55 

3.6 IoT Devices ................................................................................................................... 56 
3.6.1 IoT Development Kits—Linux Based ........................................................................... 56 

3.7 Update Server .............................................................................................................. 57 

3.8 Unapproved Server ..................................................................................................... 57 

3.9 Yikes! IoT Device Discovery, Categorization, and Traffic Policy Enforcement 
 (Yikes! Cloud and Yikes! Mobile Application) ............................................................ 57 
3.9.1 Yikes! IoT Device Discovery, Categorization, and Traffic Policy Enforcement 

 Overview ................................................................................................................... 57 
3.9.2 Configuration Overview .............................................................................................. 58 
3.9.3 Setup ........................................................................................................................... 58 

3.10 GCA Quad9 Threat Signaling in Yikes! Router ............................................................. 89 
3.10.1 GCA Quad9 Threat Signaling in Yikes! Router Overview ............................................ 90 
3.10.2 Configuration Overview .............................................................................................. 90 
3.10.3 Setup ........................................................................................................................... 90 

4 Build 3 Product Installation Guides .................................................... 90 

4.1 Product Installation ..................................................................................................... 91 
4.1.1 DigiCert Certificates .................................................................................................... 91 
4.1.2 MUD Manager............................................................................................................. 91 
4.1.3 MUD File Server .......................................................................................................... 99 
4.1.4 Micronets Gateway ................................................................................................... 102 
4.1.5 IoT Devices ................................................................................................................ 109 
4.1.6 Update Server ........................................................................................................... 131 
4.1.7 Unapproved Server ................................................................................................... 131 
4.1.8 CableLabs MUD Registry ........................................................................................... 131 
4.1.9 CableLabs Micronets Manager for SDN Control ....................................................... 135 
4.1.10 Micronets Websocket Proxy ..................................................................................... 141 
4.1.11 Micronets iPhone Application for Device Onboarding ............................................. 149 
4.1.12 MSO Portal Bootstrapping Interface to the Onboarding Manager .......................... 165 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices xii 

4.2 Product Integration and Operation ........................................................................... 171 
4.2.1 Adding an MSO Subscriber ....................................................................................... 171 
4.2.2 Associating the Micronets Gateway with a Subscriber ............................................ 174 
4.2.3 Integrating Micronets Proto-Pi Device ..................................................................... 184 
4.2.4 Updating MUD Registry ............................................................................................ 186 
4.2.5 Integrating the Micronets iPhone App with MSO Portal .......................................... 188 
4.2.6 Onboarding Micronets Proto-Pi to a Micronet ......................................................... 194 
4.2.7 Interacting with Micronets Manager ........................................................................ 199 
4.2.8 Removing Micronets Proto-Pi from a Micronet ....................................................... 216 
4.2.9 Removing an MSO Subscriber ................................................................................... 218 

5 Build 4 Product Installation Guides .................................................. 220 

5.1 NIST SDN Controller/MUD Manager ......................................................................... 220 
5.1.1 NIST SDN Controller/MUD Manager Overview ........................................................ 220 
5.1.2 Configuration Overview ............................................................................................ 221 
5.1.3 Preinstallation ........................................................................................................... 221 
5.1.4 Setup ......................................................................................................................... 222 

5.2 MUD File Server ......................................................................................................... 225 
5.2.1 MUD File Sever Overview ......................................................................................... 225 
5.2.2 Configuration Overview ............................................................................................ 226 
5.2.3 Setup ......................................................................................................................... 226 

5.3 Northbound Networks Zodiac WX Access Point ....................................................... 228 
5.3.1 Northbound Networks Zodiac WX Access Point Overview ....................................... 228 
5.3.2 Configuration Overview ............................................................................................ 229 
5.3.3 Setup ......................................................................................................................... 229 

5.4 DigiCert Certificates ................................................................................................... 230 

5.5 IoT Devices ................................................................................................................. 230 
5.5.1 IoT Devices Overview ................................................................................................ 230 
5.5.2 Configuration Overview ............................................................................................ 230 
5.5.3 Setup ......................................................................................................................... 231 

5.6 Update Server ............................................................................................................ 232 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices xiii 

5.6.1 Update Server Overview ........................................................................................... 232 
5.6.2 Configuration Overview ............................................................................................ 233 
5.6.3 Setup ......................................................................................................................... 233 

5.7 Unapproved Server ................................................................................................... 234 
5.7.1 Unapproved Server Overview ................................................................................... 234 
5.7.2 Configuration Overview ............................................................................................ 234 
5.7.3 Setup ......................................................................................................................... 234 

Appendix A List of Acronyms ................................................................ 236 

Appendix B Glossary ............................................................................ 238 

Appendix C Bibliography ...................................................................... 242 

 

List of Figures 
Figure 1-1 Reference Architecture ......................................................................................................4 

Figure 1-2 NCCoE Physical Architecture ...............................................................................................8 

Figure 2-1 Physical Architecture–Build 1 ........................................................................................... 31 

 

List of Tables 
Table 2-1 Cisco 3850-S Switch Running Configuration ........................................................................ 32 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



 NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 1 

1 Introduction  
The following volumes of this guide show information technology (IT) professionals and security 
engineers how we implemented this example solution. We cover all of the products employed in this 
reference design. We do not re-create the product manufacturers’ documentation, which is presumed 
to be widely available. Rather, these volumes show how we incorporated the products together in our 
environment. 

Note: These are not comprehensive tutorials. There are many possible service and security configurations 
for these products that are out of scope for this reference design. 

1.1 How to Use this Guide 
This National Institute of Standards and Technology (NIST) Cybersecurity Practice Guide demonstrates a 
standards-based reference design for mitigating network-based attacks by securing home and small-
business Internet of Things (IoT) devices. The reference design is modular, and it can be deployed in 
whole or in part. This practice guide provides users with the information they need to replicate four 
example MUD-based implementations of this reference design. These example implementations are 
referred to as Builds, and this volume describes in detail how to reproduce each one. 

This guide contains four volumes: 

 NIST SP 1800-15A: Executive Summary – why we wrote this guide, the challenge we address, why 
it could be important to your organization, and our approach to solving this challenge 

 NIST SP 1800-15B: Approach, Architecture, and Security Characteristics – what we built and why, 
including the risk analysis performed, and the security control map 

 NIST SP 1800-15C: How-To Guides – instructions for building the example implementations, 
including all the security relevant details that would allow you to replicate all or parts of this 
project (you are here) 

 NIST SP 1800-15D: Functional Demonstration Results – describes the functional demonstration 
results for the four implementations of the MUD-based reference solution 

Depending on your role in your organization, you might use this guide in different ways: 

Business decision makers, including chief security and technology officers, will be interested in the 
Executive Summary, NIST SP 1800-15A, which describes the following topics: 

 challenges that enterprises face in trying to mitigate network-based attacks by securing home 
and small-business IoT devices 

 example solutions built at the National Cybersecurity Center of Excellence (NCCoE)  

 benefits of adopting the example solutions 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 2 

Technology or security program managers who are concerned with how to identify, understand, assess, 
and mitigate risk will be interested in NIST SP 1800-15B, which describes what we did and why. The 
following sections will be of particular interest: 

 Section 3.4, Risk Assessment, describes the risk analysis we performed. 

 Section 5.2, Security Control Map, maps the security characteristics of these example solutions 
to cybersecurity standards and best practices. 

You might share the Executive Summary, NIST SP 1800-15A, with your leadership team members to help 
them understand the importance of adopting a standards-based solution for mitigating network-based 
attacks by securing home and small-business IoT devices. 

IT professionals who want to implement an approach like this will find this whole practice guide useful. 
You can use this How-To portion of the guide, NIST SP 1800-15C, to replicate all or parts of one or all 
four builds created in our lab. This How-To portion of the guide provides specific product installation, 
configuration, and integration instructions for implementing the example solutions. We do not re-create 
the product manufacturers’ documentation, which is generally widely available. Rather, we show how 
we incorporated the products together in our environment to create an example solution. 

This guide assumes that IT professionals have experience implementing security products within the 
enterprise. While we have used a suite of products to address this challenge, this guide does not 
endorse these particular products. Your organization can adopt one of these solutions or one that 
adheres to these guidelines in whole, or you can use this guide as a starting point for tailoring and 
implementing parts of a Manufacturer Usage Description (MUD)-based solution. Your organization’s 
security experts should identify the products that will best integrate with your existing tools and IT 
system infrastructure. We hope that you will seek products that are congruent with applicable standards 
and best practices. NIST SP 1800-15B lists the products that we used in each build and maps them to the 
cybersecurity controls provided by this reference solution. 

A NIST Cybersecurity Practice Guide does not describe “the” solution, but a possible solution. In the case 
of this guide, it describes four possible solutions. Comments, suggestions, and success stories will 
improve subsequent versions of this guide. Please contribute your thoughts to mitigating-iot-ddos-
nccoe@nist.gov. 

1.2 Build Overview 
This NIST Cybersecurity Practice Guide addresses the challenge of using standards-based protocols and 
available technologies to mitigate network-based attacks by securing home and small-business IoT 
devices. It identifies three key forms of protection: 

 use of the MUD specification to automatically permit an IoT device to send and receive only the 
traffic it requires to perform as intended, thereby reducing the potential for the device to be the 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

mailto:mitigating-iot-ddos-nccoe@nist.gov
mailto:mitigating-iot-ddos-nccoe@nist.gov


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 3 

victim of a network-based attack, as well as the potential for the device, if compromised, to be 
used in a network-based attack 

 use of network-wide access controls based on threat intelligence to protect all devices (both 
MUD-capable and non-MUD-capable) from connecting to domains that are known current 
threats 

 automated secure software updates to all devices to ensure that operating system (OS) patches 
are installed promptly  

Four builds that serve as example solutions of how to support the MUD specification have been 
implemented and demonstrated as part of this project. This practice guide provides instructions for 
reproducing these four builds.  

1.2.1 Usage Scenarios  
Each of the four builds is designed to fulfill the use case of a MUD-capable IoT device being onboarded 
and used on home and small-business networks, where plug-and-play deployment is required. All four 
builds include both MUD-capable and non-MUD-capable IoT devices. MUD-capable IoT devices include 
the Molex Power over Ethernet (PoE) Gateway and Light Engine as well as four development kits 
(devkits) that the National Cybersecurity Center of Excellence (NCCoE) configured to perform actions 
such as power a light-emitting diode (LED) bulb on and off, start network connections, and power a 
connected lighting device on and off. These MUD-capable IoT devices interact with external systems to 
access notional, secure updates and various cloud services, in addition to interacting with conventional 
personal computing devices, as permitted by their MUD files. Non-MUD-capable IoT devices deployed in 
the builds include three cameras, two mobile phones, two connected lighting devices, a connected 
assistant, a connected printer, a baby monitor with remote control and video and audio capabilities, a 
connected wireless access point, and a connected digital video recorder. The cameras, connected 
lighting devices, baby monitor, and connected digital video recorder are all controlled and managed by a 
mobile phone. In combination, these devices are capable of generating a wide range of network traffic 
that could reasonably be expected on a home or small-business network. 

1.2.2 Reference Architecture Overview  
Figure 1-1 depicts a general reference design for all four builds. It consists of three main components: 
support for MUD, support for threat signaling, and support for periodic updates. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 4 

Figure 1-1 Reference Architecture 

 

 

1.2.2.1 Support for MUD 
A new functional component, the MUD manager, is introduced to augment the existing networking 
functionality offered by the home/small-business network router or switch. Note that the MUD manager 
is a logical component. Physically, the functionality it provides can and often will be combined with that 
of the network router or switch in a single device. 

IoT devices must somehow be associated with a MUD file. The MUD specification describes three 
possible mechanisms through which the IoT device can provide the MUD file URL to the network: 
inserting the MUD URL into the Dynamic Host Configuration Protocol (DHCP) address requests that they 
generate when they attach to the network (e.g., when powered on), providing the MUD URL in a Link 
Layer Discovery Protocol (LLDP) frame, or providing the MUD URL as a field in an X.509 certificate that 
the device provides to the network via a protocol such as Tunnel Extensible Authentication Protocol. In 
addition, the MUD specification provides flexibility to enable other mechanisms by which MUD file URLs 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 5 

can be associated with IoT devices. One such alternative mechanism is to associate the device with its 
MUD file by using the device’s bootstrapping information that is conveyed as part of the Wi-Fi Easy 
Connect (also referred to as Device Provisioning Protocol—DPP) onboarding process. This is the 
mechanism implemented in Build 3. 

Figure 1-1 uses labeled arrows to depict the steps involved in supporting MUD:  

 The IoT device emits a MUD URL by using a mechanism such as DHCP, LLDP, or X.509 certificate 
(step 1). 

 The router extracts the MUD URL from the protocol frame of whatever mechanism was used to 
convey it and forwards this MUD URL to the MUD manager (step 2). 

 Once the MUD URL is received, the MUD manager uses https to request the MUD file from the 
MUD file server by using the MUD URL provided in the previous step (step 3a); if successful, the 
MUD file server at the specified location will serve the MUD file (step 3b).  

 Next, the MUD manager uses https to request the signature file associated with the MUD file 
(step 4a) and upon receipt (step 4b) verifies the MUD file by using its signature file.  

 The MUD file describes the communications requirements for the IoT device. Once the MUD 
manager has determined the MUD file to be valid, the MUD manager converts the access 
control rules in the MUD file into access control entries (e.g., access control lists—ACLs, firewall 
rules, or flow rules) and installs them on the router or switch (step 5).  

Once the device’s access control rules are applied to the router or switch, the MUD-capable IoT device 
will be able to communicate with approved local hosts and internet hosts as defined in the MUD file, 
and any unapproved communication attempts will be blocked. 

1.2.2.2 Support for Updates 
To provide additional security, the reference architecture also supports periodic updates. All builds 
include a server that is meant to represent an update server to which MUD will permit devices to 
connect. Each IoT device on an operational network should be configured to periodically contact its 
update server to download and apply security patches, ensuring that it is running the most up-to-date 
and secure code available. To ensure that such updates are possible, the IoT device’s MUD file must 
explicitly permit the IoT device to receive traffic from the update server. Although regular manufacturer 
updates are crucial to IoT security, the builds described in this practice guide demonstrate only the 
ability to receive faux updates from a notional update server. 

1.2.2.3 Support for Threat Signaling 
To provide additional protection for both MUD-capable and non-MUD-capable devices, the reference 
architecture also incorporates support for threat signaling. The router or switch can receive threat feeds 
from a threat signaling server to use as a basis for restricting certain types of network traffic. For 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 6 

example, both MUD-capable and non-MUD-capable devices can be prevented from connecting to 
internet domains that have been identified as potentially malicious. 

1.2.2.4 Build-Specific Features 
The reference architecture depicted in Figure 1-1 is intentionally general. Each build instantiates this 
reference architecture in a unique way, depending on the equipment used and the capabilities 
supported. The logical and physical architectures of each build are depicted and described in NIST SP 
1800-15B: Approach, Architecture, and Security Characteristics. While all four builds support MUD and 
the ability to receive faux updates from a notional update server, only Build 2 currently supports threat 
signaling. Only Build 3 currently supports onboarding MUD-capable devices using the Wi-Fi Alliance Wi-
Fi Easy Connect protocol. Build 1 and Build 2 include nonstandard device discovery technology to 
discover, inventory, profile, and classify attached devices. Such classification can be used to validate that 
the access being granted to each device is consistent with that device’s manufacturer and model. In 
Build 2, a device’s manufacturer and model can be used as a basis for identifying and enforcing that 
device’s traffic profile.  

Briefly, the four builds of the reference architecture that have been completed and demonstrated are as 
follows:  

 Build 1 uses products from Cisco Systems, DigiCert, Forescout, and Molex. The Cisco MUD 
manager supports MUD, and the Forescout virtual appliances and enterprise manager perform 
non-MUD-related device discovery on the network. Molex PoE Gateway and Light Engine is used 
as a MUD-capable IoT device. Certificates from DigiCert are also used. 

 Build 2 uses products from MasterPeace Solutions Ltd., Global Cyber Alliance (GCA), 
ThreatSTOP, and DigiCert. The MasterPeace Solutions Yikes! router, cloud service, and mobile 
application support MUD as well as perform device discovery on the network and apply 
additional traffic rules to both MUD-capable and non-MUD-capable devices based on device 
manufacturer and model. The GCA threat agent, Quad9 DNS service, and ThreatSTOP threat 
MUD file server support threat signaling. Certificates from DigiCert are also used. 

 Build 3 uses products from CableLabs and DigiCert. CableLabs Micronets (e.g., Micronets 
Gateway, Micronets Manager, Micronets mobile phone application, and related service provider 
cloud-based infrastructure) supports MUD and implements the Wi-Fi Alliance’s Wi-Fi Easy 
Connect protocol to securely onboard devices to the network. It also uses software-defined 
networking to create separate trust zones (e.g., network segments) called micronets to which 
devices are assigned according to their intended network function. Certificates from DigiCert are 
also used. 

 Build 4 uses software developed at the NIST Advanced Networking Technologies Laboratory. 
This software supports MUD and is intended to serve as a working prototype of the MUD 
request for comments (RFC) to demonstrate feasibility and scalability. Certificates from DigiCert 
are also used. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 7 

The logical architectures and detailed descriptions of Builds 1, 2, 3, and 4 can be found in NIST SP 1800-
15B: Approach, Architecture, and Security Characteristics. 

1.2.3 Physical Architecture Overview 
Figure 1-2 depicts the high-level physical architecture of the NCCoE laboratory environment. This 
implementation currently supports four builds and has the flexibility to implement additional builds in 
the future. As depicted, the NCCoE laboratory network is connected to the internet via the NIST data 
center. Access to and from the NCCoE network is protected by a firewall. The NCCoE network includes a 
shared virtual environment that houses an update server, a MUD file server, an unapproved server (i.e., 
a server that is not listed as a permissible communications source or destination in any MUD file), a 
Message Queuing Telemetry Transport (MQTT) broker server, and a Forescout enterprise manager. 
These components are hosted at the NCCoE and are used across builds where applicable. The Transport 
Layer Security (TLS) certificate and Premium Certificate used by the MUD file server are provided by 
DigiCert.  

The following four builds, as depicted in the diagram, are supported within the physical architecture: 

 Build 1 network components consist of a Cisco Catalyst 3850-S switch, a Cisco MUD manager, a 
FreeRADIUS server, and a virtualized Forescout appliance on the local network. Build 1 also 
requires support from all components that are in the shared virtual environment, including the 
Forescout enterprise manager. 

 Build 2 network components consist of a MasterPeace Solutions Ltd. Yikes! router on the local 
network. Build 2 requires support from the MUD file server, Yikes! cloud, and a Yikes! mobile 
application that are resident on the Build 2 cloud. The Yikes! router includes threat-signaling 
capabilities (not depicted) that have been integrated with it. Build 2 also requires support from 
threat-signaling cloud services that consist of the ThreatSTOP threat MUD file server, Quad9 
threat application programming interface (API), and Quad9 DNS service. Build 2 uses only the 
update server and unapproved server components that are in the shared virtual environment. 

 Build 3 network components consist of a CableLabs Micronets Gateway/wireless access point 
(AP). The Gateway/wireless AP resides on the local network and operates in conjunction with 
various service provider components and partner/service provider offerings that reside in the 
Micronets virtual environment in the Build 3 cloud. The Micronets Gateway is controlled by a 
Micronets Manager that resides in the Build 3 cloud and that coordinates a number of cloud-
based Micronets micro-services, some of which are depicted. Build 3 also includes a Micronets 
mobile application that provides the user and device interfaces for device onboarding. 

 Build 4 network components consist of a software-defined networking (SDN)-capable 
gateway/switch on the local network and an SDN controller/MUD manager and approved and 
unapproved servers that are located remotely from the local network. Build 4 also uses the 
MUD file server that is resident in the shared virtual environment.  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 8 

IoT devices used in all four builds include both MUD-capable and non-MUD-capable IoT devices. The 
MUD-capable IoT devices used, which vary across builds, include Raspberry Pi, ARTIK, u-blox, Intel UP 
Squared, BeagleBone Black, NXP i.MX 8M (devkit), and the Molex Light Engine controlled by PoE 
Gateway. Non-MUD-capable devices used, which also vary across builds, include a wireless access point, 
cameras, a printer, mobile phones, lighting devices, a connected assistant device, a baby monitor, and a 
digital video recorder. Each of the completed builds and the roles that their components play in their 
architectures are explained in more detail in NIST SP 1800-15B.  

The remainder of this guide describes how to implement Builds 1, 2, 3, and 4. 

Figure 1-2 NCCoE Physical Architecture 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 9 

1.3 Typographic Conventions 
The following table presents typographic conventions used in this volume. 

Typeface/Symbol Meaning Example 

Italics file names and path names; 
references to documents that 
are not hyperlinks; new 
terms; and placeholders 

For language use and style guidance, 
see the NCCoE Style Guide. 

Bold names of menus, options, 
command buttons, and fields 

Choose File > Edit. 

Monospace command-line input, on-
screen computer output, 
sample code examples, and 
status codes 

Mkdir 

Monospace Bold command-line user input 
contrasted with computer 
output 

service sshd start 

blue text link to other parts of the doc-
ument, a web URL, or an 
email address 

All publications from NIST’s NCCoE 
are available at 
https://www.nccoe.nist.gov. 

2 Build 1 Product Installation Guides 
This section of the practice guide contains detailed instructions for installing and configuring all the 
products used to implement Build 1. For additional details on Build 1’s logical and physical architectures, 
please refer to NIST SP 1800-15B. 

2.1 Cisco MUD Manager 
This section describes how to deploy Cisco’s MUD manager version 1.0, which uses a MUD-based 
authorization system in the network, using Cisco Catalyst switches, FreeRADIUS, and Cisco MUD 
manager.  

2.1.1 Cisco MUD Manager Overview 
The Cisco MUD manager is an open-source implementation that works with IoT devices that emit their 
MUD URLs. In this implementation we tested two MUD URL emission methods: DHCP and LLDP. The 
MUD manager is supported by a FreeRADIUS server that receives MUD URLs from the switch. The MUD 
URLs are extracted by the DHCP server and are sent to the MUD manager via Remote Authentication 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://www.nccoe.nist.gov/


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 10 

Dial-In User Service (RADIUS) messages. The MUD manager is responsible for retrieving the MUD file 
and corresponding signature file associated with the MUD URL. The MUD manager verifies the 
legitimacy of the file and then translates the contents to an Internet Protocol (IP) ACL-based policy that 
is installed on the switch.  

The version of the Cisco MUD manager used in this project is a proof-of-concept implementation that is 
intended to introduce advanced users and engineers to the MUD concept. It is not a fully automated 
MUD manager implementation, and some protocol features are not present. At implementation, the 
“model” construct was not yet implemented. In addition, if a DNS-based system changes its address, this 
will not be noticed. Also, IPv6 access has not been fully supported. 

2.1.2 Cisco MUD Manager Configurations  
The following subsections document the software, hardware, and network configurations for the Cisco 
MUD manager.  

2.1.2.1 Hardware Configuration 
Cisco requires installing the MUD manager and FreeRADIUS on a single server with at least 2 gigabytes 
of random access memory. This server must integrate with at least one switch or router on the network. 
For this build we used a Catalyst 3850-S switch.  

2.1.2.2 Network Configuration 
The MUD manager and FreeRADIUS server instances were installed and configured on a dedicated 
machine leveraged for hosting virtual machines in the Build 1 lab environment. This machine was then 
connected to virtual local area network (VLAN) 2 on the Catalyst 3850-S and assigned a static IP address. 

2.1.2.3 Software Configuration 
For this build, the Cisco MUD manager was installed on an Ubuntu 18.04.01 64-bit server. However, 
there are many approaches for implementation. Alternatively, the MUD manager can be built via docker 
containers provided by Cisco.  

The Cisco MUD manager can operate on Linux operating systems, such as 

 Ubuntu 18.04.01 

 Amazon Linux  

The Cisco MUD manager requires the following installations and components: 

 OpenSSL 

 cJSON 

 MongoDB 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 11 

 Mongo C driver 

 Libcurl 

 FreeRADIUS server 

At a high level, the following software configurations and integrations are required: 

 The Cisco MUD manager requires integration with a switch (such as a Catalyst 3850-S) that 
connects to an authentication, authorization, and accounting (AAA) server that communicates 
by using the RADIUS protocol (i.e., a RADIUS server).  

 The RADIUS server must be configured to identify a MUD URL received in an accounting request 
message from a device it has authenticated.  

 The MUD manager must be configured to process a MUD URL received from a RADIUS server 
and return access control policy to the RADIUS server, which is then forwarded to the switch. 

2.1.3 Setup 

2.1.3.1 Preinstallation  
Cisco’s DevNet GitHub page provides documentation that we followed to complete this section: 
https://github.com/CiscoDevNet/MUD-Manager/tree/3.0.1#dependancies  

1. Open a terminal window, and enter the following command to log in as root: 
sudo su 

 

2. Change to the root directory:  
cd /  

 
3. To install OpenSSL from the terminal, enter the following command: 

apt-get install openssl   

 
a. If unable to link to OpenSSL, install it by entering this command: 

apt-get install libcurl4-openssl-dev 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/CiscoDevNet/MUD-Manager/tree/3.0.1#dependancies


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 12 

 

 

4. To install cJSON, download it from GitHub by entering the following command: 
git clone https://github.com/DaveGamble/cJSON 

 

a. Change directories to the cJSON folder by entering the following command: 
cd cJSON  

 

b. Build cJSON by entering the following commands: 
make 

 

make install 

 

5. Change directories back a folder by entering the following command: 
cd ..  

 
6. To install MongoDB, enter the following commands: 

a. Import the public key:  
apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 
9DA31620334BD75D9DCB49F368818C72E52529D4 

 
b. Create a list file for MongoDB:  

echo "deb [ arch=amd64 ] https://repo.mongodb.org/apt/ubuntu trusty/mongodb-
org/4.0 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-4.0.list 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 13 

 
c. Reload the local package database: 

apt-get update 

 
d. Install the MongoDB packages: 

apt-get install -y mongodb 

 
7. To install the Mongo C driver, enter the following command: 

wget https://github.com/mongodb/mongo-c-driver/releases/download/1.7.0/mongo-c-
driver-1.7.0.tar.gz 

 

a. Untar the file by entering the following command: 

tar -xzf mongo-c-driver-1.7.0.tar.gz 

 

b. Change into the mongo-c-driver-1.7.0 directory by entering the following command: 
cd mongo-c-driver-1.7.0/ 

 

c. Build the Mongo C driver by entering the following commands: 
./configure --disable-automatic-init-and-cleanup --with-libbson=bundled 

 
make 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 14 

make install 

 

8. Change directories back a folder by entering the following command: 
cd ..  

 

9. To install libcurl, enter the following command: 
sudo apt-get install libcurl4-openssl-dev 

 

2.1.3.2 MUD Manager Installation 
A portion of the steps in this section are documented on Cisco’s DevNet GitHub page: 
https://github.com/CiscoDevNet/MUD-Manager/tree/3.0.1#building-the-mud-manager 

1. Open a terminal window, and enter the following command to log in as root: 
sudo su 

 
2. Change to the root directory by entering the following command: 

cd / 

 

3. To install the MUD manager, download it from Cisco’s GitHub by entering the following 
command: 
git clone https://github.com/CiscoDevNet/MUD-Manager 

 

4. Change into the MUD manager directory: 
cd MUD-Manager  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/CiscoDevNet/MUD-Manager/tree/3.0.1#building-the-mud-manager


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 15 

 
5. Build the MUD manager by entering the following commands: 

./configure  

 

Note: If a “pkg-config error” is thrown, run the command below to install the missing package:  
 apt-get install pkg-config   

 
make 

 

Note: If an “ac.local error” is thrown, run the command below to install the missing package:  
 apt-get install automake   

 

make install 

 

2.1.3.3 MUD Manager Configuration  
This section describes configuring the MUD manager to communicate with the NCCoE MUD file server 
and defining the attributes used for translating the fetched MUD files. Details about the configuration 
file and additional fields that can be set within this file can be accessed here: 
https://github.com/CiscoDevNet/MUD-Manager#editing-the-configuration-file. 

1. In the terminal, change to the MUD manager directory: 

cd /MUD-Manager 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/CiscoDevNet/MUD-Manager#editing-the-configuration-file


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 16 

 
2. Copy the contents of the sample mud_manager_conf.json file to a different file: 

sudo cp examples/mud_manager_conf.json mud_manager_conf_nccoe.json 
 

 
3. Modify the contents of the new MUD manager configuration file:  

sudo vim mud_manager_conf_nccoe.json  
 

 
{ 
 "MUD_Manager_Version" : 3, 
 "MUDManagerAPIProtocol" : "http", 
 "ACL_Prefix" : "ACS:", 
 "ACL_Type" : "dACL-ingress-only", 
 "COA_Password" : "cisco", 
 "VLANs" : [ 
  { "VLAN_ID" : 3, 
   "v4addrmask" : "192.168.13.0 0.0.0.255" 
  }, 
  { "VLAN_ID" : 4, 
   "v4addrmask" : "192.168.14.0 0.0.0.255" 
  }, 
  { "VLAN_ID" : 5, 
   "v4addrmask" : "192.168.15.0 0.0.0.255" 
  } 
 ], 
 "Manufacturers" : [  
  { "authority" : "mudfileserver", 
    "cert" : "/home/mudtester/digicertca-chain.crt", 
    "web_cert": "/home/mudtester/digicertchain.pem", 
    "my_controller_v4" : "192.168.10.125", 
    "my_controller_v6" : "2610:20:60CE:630:B000::7", 
    "local_networks_v4" : "192.168.10.0 0.0.0.255", 
    "local_networks_v6" : "2610:20:60CE:630:B000::", 
    "vlan_nw_v4" : "192.168.13.0 0.0.0.255", 
    "vlan" : 3 
  }, 
  { 
  "authority" : "www.gmail.com", 
                  "cert" : "/home/mudtester/digicertca-chain.crt", 
                  "web_cert": "/home/mudtester/digicertchain.pem", 
    "vlan_nw_v4" : "192.168.14.0 0.0.0.255", 
    "vlan" : 4 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 17 

  } 
 ], 
 "DNSMapping" : { 
  "www.osmud.org" : "198.71.233.87", 
  "www.mqttbroker.com" : "192.168.4.6", 
  "us.dlink.com" : "54.187.217.118", 
  "www.nossl.net": "40.68.201.127", 
  "www.trytechy.com" : "99.84.104.21"   
 }, 
 
 "DNSMapping_v6" : { 
  "www.mqttbroker.com" : "2610:20:60CE:630:B000::6", 
  "www.updateserver.com" : "2610:20:60CE:630:B000::7", 
  "www.dominiontea.com": "2a03:2880:f10c:83:face:b00c:0:25de" 
 }, 
 "ControllerMapping" : { 
  "https://www.google.com" : "192.168.10.104", 
  "http://lightcontroller.example2.com": "192.168.4.77", 
  "http://lightcontroller.example.com": "192.168.4.78" 
 }, 
 "ControllerMapping_v6" : { 
  "https:/www.google.com" : "ffff:2343:4444:::", 
  "http://lightcontroller.example2.com": "ffff:2343:4444:::", 
                "http://lightcontroller.example.com": "ffff:2343:4444:::" 
 
 }, 
 "DefaultACL" : ["permit tcp any eq 22 any","permit udp any eq 68 any eq 
67","permit udp any any eq 53", "deny ip any any"], 
 "DefaultACL_v6" : ["permit udp any any eq 53", "deny ipv6 any any"] 

} 

 
Details about the contents of the configuration file can be found at the link provided at the start of this 
section.  

2.1.3.4 FreeRADIUS Installation 
1. Install the dependencies for FreeRADIUS: 

a. sudo apt-get install -y libtalloc-dev 

  
b. sudo apt-get install -y libjson-c-dev 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 18 

  
c. sudo apt-get install -y libcurl4-gnutls-dev 

 
d. sudo apt-get install -y libperl-dev 

 
e. sudo apt-get install -y libkqueue-dev 

 
f. sudo apt-get install -y libssl-dev 

 

2. Download the source by entering the following command. (Note: Version 3.0.19 and later are 
recommended.) 

wget ftp://ftp.freeradius.org/pub/freeradius/freeradius-server-3.0.19.tar.gz 

  
3. Untar the downloaded file by entering the following command:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 19 

tar -xf freeradius-server-3.0.19.tar.gz 

  
4. Move the FreeRADIUS directory to the root directory: 

sudo mv freeradius-server-3.0.19/ / 

  
5. Change to the FreeRADIUS directory:   

cd /freeradius-server-3.0.19/  

  
6. Make and install the source by entering the following:  

a. sudo ./configure --with-rest --with-json-c --with-perl  

  

b. sudo make  

  

c. sudo make install  

  

2.1.3.5 FreeRADIUS Configuration  
1. Change to the FreeRADIUS subdirectory in the MUD manager directory:  

cd /MUD-Manager/examples/AAA-LLDP-DHCP/ 

  
2. Run the setup script:  

sudo ./FR-setup.sh 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 20 

  

3. Enter the following command to log in as root: 
sudo su 

  
4. Change to the RADIUS directory: 

cd /usr/local/etc/raddb/ 

 
5. Open the clients.conf file: 

vim clients.conf 

 
6. Add the network access server (NAS) as an authorized client in the configuration file on the 

server by adding an entry for the NAS in the client.conf file that is opened. (Note: replace the IP 
address below with the IP address of the NAS, and insert the “secret” configured on the NAS to 
talk to the RADIUS servers.) 

client 192.168.10.2 {  
ipaddr = 192.168.10.2  
secret = cisco  

    } 
 

 

7. Save and close the file.  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 21 

2.1.3.6 Start MUD Manager and FreeRADIUS Server 
1. Start and enable the database by executing the following commands:  

sudo systemctl start mongod  

 
sudo systemctl enable mongod 

 

2. Start the MUD manager in the foreground with logging enabled by entering the following  
command: 

sudo mud_manager -f /MUD-Manager/mud_manager_conf_nccoe.json -l 3   

 

The following output should appear if the service started successfully:  

  

3. Start the FreeRADIUS service in the foreground with logging enabled by entering the following 
command: 

sudo radiusd -Xxx 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 22 

  

At this point all the processes required to support MUD are running on the server side, and the next step 
is to configure the Cisco Catalyst switch. Once the switch configuration detailed in the Cisco Switch–
Catalyst 3850-S setup section is completed, any DHCP activity on the network should appear in the 
output of the FreeRADIUS and MUD manager logs.  

2.2 MUD File Server 

2.2.1 MUD File Server Overview 
For this build, the NCCoE built a MUD file server hosted within the lab infrastructure. This file server 
signs and stores the MUD files along with their corresponding signature files for the MUD-capable IoT 
devices used in the build. The MUD file server is also responsible for serving the MUD file and the 
corresponding signature file upon request from the MUD manager. 

2.2.2 Configuration Overview  
The following subsections document the software and network configurations for the MUD file server. 

2.2.2.1 Network Configuration 
This server was hosted in the NCCoE’s virtual environment, functioning as a cloud service. Its IP address 
was statically assigned. 

2.2.2.2 Software Configuration 
For this build, the server ran on the CentOS 7 operating system. The MUD files and signatures were 
hosted by an Apache web server and configured to use Secure Sockets Layer/Transport Layer Security 
(SSL/TLS) encryption. 

2.2.2.3 Hardware Configuration 
The MUD file server was hosted in the NCCoE’s virtual environment, functioning as a cloud service. 

2.2.3 Setup 
The following subsections describe the process for configuring the MUD file server. 

2.2.3.1 Apache Web Server  
The Apache web server was set up by using the official Apache documentation at 
https://httpd.apache.org/docs/current/install.html. After that, SSL/TLS encryption was set up by using 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://httpd.apache.org/docs/current/install.html


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 23 

the digital certificate and key obtained from DigiCert. This was set up by using the official Apache 
documentation, found at https://httpd.apache.org/docs/current/ssl/ssl_howto.html. 

2.2.3.2 MUD File Creation and Signing 
This section details creating and signing a MUD file on the MUD file server. The MUD specification does 
not mandate that this signing process be performed on the MUD file server itself. 

2.2.3.2.1 MUD File Creation 
An online tool called MUD Maker was used to build MUD files. Once the permitted communications 
have been defined for the IoT device, proceed to www.mudmaker.org to leverage the online tool. There 
is also a list of sample MUD files on the site, which can be used as a reference. Upon navigating to 
www.mudmaker.org, complete the following steps to create a MUD file: 

1. Specify the host that will be serving the MUD file and the model name of the device in the ap-
propriate input fields, which are outlined in red in the screenshot below. (Note: this will result in 
the MUD URL for this device.) 

Sample input: mudfileserver, testmudfile 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://httpd.apache.org/docs/current/ssl/ssl_howto.html
http://www.mudmaker.org/
http://www.mudmaker.org/


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 24 

 

2. Specify the Manufacturer Name of the device in the appropriate input field, which is outlined in 
red in the screenshot below: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 25 

 

3. Include a URL to provide documentation about this device in the appropriate input field, which 
is outlined in red in the screenshot below: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 26 

4. Include a short description of the device in the appropriate input field, which is outlined in red in 
the screenshot below: 

 

5. Check the boxes for the types of network communication that are allowed for the device:  

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 27 

6. Specify the IP version that the device leverages: 

 

7. Specify values for the fields (Internet Hosts, Protocol, Local Port, Remote Port, and Initiated by) 
that describe the communications that will be permitted for the device: 

  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 28 

8. Click Submit to generate the MUD file: 

  

9. Once completed, the page will redirect to the following page that outputs the MUD file on the 
screen. Click Download to download the MUD file, which is a .JSON file: 

 

10. Click Save to store a copy of the MUD file:   

 

2.2.3.2.2 MUD File Signature Creation and Verification 
In this build, OpenSSL is used to sign and verify MUD files. This example uses the MUD file created in the 
previous section, which is named ublox.json; the Signing Certificate; the Private Key for the Signing 
Certificate; the Intermediate Certificate for the Signing Certificate; and the Certificate of the Trusted 
Root Certificate Authority (CA) for the Signing Certificate. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 29 

1. Sign the MUD file by using the following command: 

sudo openssl cms -sign -signer <Signing Certificate> -inkey <Private Key for 
Signing Certificate> -in <Name of MUD File> -binary -outform DER -binary -
certfile <Intermediate Certificate for Signing Certificate> -out <Name of MUD 
File without the .json file extension>.p7s 

 

This will create a signature file for the MUD file that has the same name as the MUD file but 
ends with the .p7s file extension, i.e., in our case ublox.p7s. 

2. Manually verify the MUD file signature by using the following command: 

sudo openssl cms -verify -in <Name of MUD File>.p7s -inform DER -content <Name 
of MUD File>.json -CAfile <Certificate of Trusted Root Certificate Authority 
for Signing Certificate> 

 

If a valid file signature was created successfully, a corresponding message should appear. Both the MUD 
file and MUD file signature should be placed on the MUD file server in the Apache server directory. 

2.3 Cisco Switch–Catalyst 3850-S 

2.3.1 Cisco 3850-S Catalyst Switch Overview 
The switch used in this build is an enterprise-class, layer 3 switch. It is a Cisco Catalyst 3850-S that had 
been modified to support MUD functionality as a proof-of-concept implementation. In addition to 
providing DHCP services, the switch acts as a broker for connected IoT devices for authentication, 
authorization, and accounting through a FreeRADIUS server. The Link Layer Discovery Protocol (LLDP) is 
enabled on ports that MUD-capable devices are plugged into to help facilitate recognition of connected 
IoT device features, capabilities, and neighbor relationships at layer 2. Additionally, an access session 
policy is configured on the switch to enable port control for multihost authentication and port 
monitoring. The combined effect of these switch configurations is a dynamic access list, which has been 
generated by the MUD manager, being active on the switch to permit or deny access to and from MUD-
capable IoT devices.  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 30 

2.3.2 Configuration Overview 
The following subsections document the network, software, and hardware configurations for the Cisco 
Catalyst 3850-S switch. 

2.3.2.1 Network Configuration  
This section describes how to configure the required Cisco Catalyst 3850-S switch to support the build. A 
special image for the Catalyst 3850-S was provided by Cisco to support MUD-specific functionality. In our 
build, the switch is integrated with a DHCP server and a FreeRADIUS server, which together support 
delivery of the MUD URL to the MUD manager via either DHCP or LLDP. The MUD manager is also able 
to generate and send a dynamic access list to the switch, via the RADIUS server, to permit or deny access 
to and from the IoT devices. In addition to hosting directly connected IoT devices on VLANs 1, 3, and 4, 
the switch hosts both the MUD manager and the FreeRADIUS servers on VLAN 2. As illustrated in Figure 
2-1, each locally configured VLAN is protected by a firewall that connects the lab environment to the 
NIST data center, which provides internet access for all connected devices. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 31 

Figure 2-1 Physical Architecture–Build 1 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 32 

2.3.2.2 Software Configuration 
The prototype, MUD-capable Cisco 3850-S used in this build is running internetwork operating system 
(IOS) version 16.09.02.   

2.3.2.3 Hardware Configuration 
The Catalyst 3850-S switch configured in the lab consists of 24 one-gigabit Ethernet ports with two 
optional 10-gigabit Ethernet uplink ports. A customized version of Cat-OS is installed on the switch. The 
versions of the OS are as follows:  

 Cat3k_caa-guestshell.16 

 Cat3k_caa-rpbase.16.06 

 Cat3k_caa-rpcore.16.06 

 Cat3k_caa-srdriver.16.06.0 

 Cat3k_caa-webui.16.06.0 

2.3.3 Setup 
Table 2-1 lists the Cisco 3850-S switch running configuration used for the lab environment. In addition to 
the IOS version and a few generic configuration items, configuration items specifically relating to 
integration with the MUD manager and IoT devices are highlighted in bold fonts; these include DHCP, 
LLDP, AAA, RADIUS, and policies regarding access session. Table 2-1 also provides a description of each 
configuration item for ease of understanding. 

Table 2-1 Cisco 3850-S Switch Running Configuration 

Configuration Item Description 

version 16.9 
no service pad 
service timestamps debug datetime msec 
service timestamps log datetime msec 
service call-home 
no platform punt-keepalive disable-kernel-core 
! 
hostname Build1 
! 

general overview of configuration information 
needed to configure AAA to use RADIUS and con-
figure the RADIUS server itself. Note that the Fre-
eRADIUS and AAA passwords must match. 
 

aaa new-model 
! 

enables AAA 
 

aaa authentication dot1x default group radius creates an 802.1X AAA authentication method list 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 33 

Configuration Item Description 

aaa authorization network default group radius 
 

configures network authorization via RADIUS, in-
cluding network-related services such as VLAN as-
signment 

aaa accounting identity default start-stop group 
radius 

enables accounting method list for session-aware 
networking subscriber services 

aaa accounting network default start-stop group 
radius 
! 

enables accounting for all network-related service 
requests 

aaa server radius dynamic-author 
 client 192.168.11.45 server-key cisco 
 server-key cisco 
! 
aaa session-id common 

enables dynamic authorization local server config-
uration mode and specifies a RADIUS client/key 
from which a device accepts change of authoriza-
tion (CoA) and disconnect requests 
 

radius server AAA 
 address ipv4 192.168.11.45 auth-port 1812 

enables AAA server from the list of multiple AAA 
servers configured 

acct-port 1813 
 key cisco 

uses the IP address and ports on which the Fre-
eRADIUS server is listening 

ip routing 
! 

 

ip dhcp excluded-address 192.168.10.1 
192.168.10.100 
! 

DHCP server configuration to exclude selected ad-
dresses from pool 
 

ip dhcp pool NCCOE-V3 
 network 192.168.13.0 255.255.255.0 
 default-router 192.168.13.1 
 dns-server 8.8.8.8 
 lease 0 12 
! 

DHCP server configuration to assign IP address to 
devices on VLAN 3 
 
 
 

ip dhcp pool NCCOE-V4 
 network 192.168.14.0 255.255.255.0 
 default-router 192.168.14.1 
 dns-server 8.8.8.8 
! 

DHCP server configuration to assign IP address to 
devices on VLAN 4 
 
 

ip dhcp pool NCCOE 
 network 192.168.10.0 255.255.255.0 

DHCP server configuration to assign IP address to 
devices on VLAN 1 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 34 

Configuration Item Description 
 default-router 192.168.10.2 
 dns-server 8.8.8.8 
 lease 0 12 
! 

 
 
 
 

ip dhcp snooping 
ip dhcp snooping vlan 1,3 
! 

enables DHCP snooping globally 
 
specifically enables DHCP snooping on VLANs 1 
and 3 

access-session attributes filter-list list mudtest 
 lldp 
 dhcp 
access-session accounting attributes filter-spec 
include list mudtest 
access-session monitor 
! 

configures access-session attributes to cause LLDP 
Time Length Values (including the MUD URL) to be 
forwarded in an accounting message to the AAA 
server 

dot1x logging verbose 
 

global configuration command to filter 802.1x au-
thentication verbose messages 

ldp run 
! 
 

enables LLDP, a discovery protocol that runs over 
layer 2 (the data link layer) to gather information 
on non-Cisco-manufactured devices 

policy-map type control subscriber mud-mab-
test 
 event session-started match-all 
  10 class always do-until-failure 
   10 authenticate using mab 
! 

configures identity control policies that define the 
actions that session-aware networking takes in re-
sponse to specified conditions and subscriber 
events 

template mud-mab-test 
 switchport mode access 
 mab 
 access-session port-control auto 
 service-policy type control subscriber mud-
mab-test 
! 

enables policy-map (mud-mab-test) and template 
to cause media access control (MAC) authentica-
tion bypass (MAB) to happen 
 
dynamically applies an interface template to a tar-
get 
 
sets the authorization state of a port. The default 
value is force-authorized. 
 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 35 

Configuration Item Description 
applies the above previously configured control 
policy called mud-mab-test 

interface GigabitEthernet1/0/13 
 source template mud-mab-test 
! 

statically applies an interface template to a target, 
i.e., an IoT device 

interface GigabitEthernet1/0/14 
 source template mud-mab-test 
! 

statically applies an interface template to a target, 
i.e., an IoT device 

interface GigabitEthernet1/0/15 
 source template mud-mab-test 
! 

statically applies an interface template to a target, 
i.e., an IoT device 

interface GigabitEthernet1/0/16 
 source template mud-mab-test 
! 

statically applies an interface template to a target, 
i.e., an IoT device 

interface GigabitEthernet1/0/17 
 source template mud-mab-test 
! 

statically applies an interface template to a target, 
i.e., an IoT device 

interface GigabitEthernet1/0/18 
 source template mud-mab-test 
! 

statically applies an interface template to a target, 
i.e., an IoT device 

interface GigabitEthernet1/0/19 
 source template mud-mab-test 
! 

statically applies an interface template to a target, 
i.e., an IoT device 

interface GigabitEthernet1/0/20 
 source template mud-mab-test 

statically applies an interface template to a target, 
i.e., an IoT device 

interface Vlan1 
 ip address 192.168.10.2 255.255.255.0 
 ! 

configure and address VLAN1 interface for inter-
VLAN routing 
 

interface Vlan2 
 ip address 192.168.11.1 255.255.255.0 
 ! 

configure and address VLAN2 interface for inter-
VLAN routing 
 

interface Vlan3 
 ip address 192.168.13.1 255.255.255.0 
! 

configure and address VLAN3 interface for inter-
VLAN routing 
 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 36 

Configuration Item Description 

interface Vlan4 
 ip address 192.168.14.1 255.255.255.0 
! 

configure and address VLAN4 interface for inter-
VLAN routing 
 

interface Vlan5 
 ip address 192.168.15.1 255.255.255.0 
! 

configure and address VLAN5 interface for inter-
VLAN routing 
 

! 
ip default-gateway 192.168.10.1 
ip forward-protocol nd 
ip http server 
ip http authentication local 
ip http secure-server 
ip route 0.0.0.0 0.0.0.0 192.168.10.1 
ip route 192.168.12.0 255.255.255.0 192.168.5.1 
! 

 

2.4 DigiCert Certificates 

2.4.1 DigiCert CertCentral® Overview 
DigiCert’s CertCentral® web-based platform allows provisioning and management of publicly trusted 
X.509 certificates for a variety of purposes. After establishing an account, clients can log in, request, 
renew, and revoke certificates by using only a browser. For this build, two certificates were provisioned: 
a private TLS certificate for the MUD file server to support the https connection from the MUD manager 
to the MUD file server, and a Premium Certificate for signing the MUD files. 

2.4.2 Configuration Overview 
This section typically documents the network, software, and hardware configurations, but that is not 
necessary for this component. 

2.4.3 Setup 
DigiCert allows certificates to be requested through its web-based platform, CertCentral. A user account 
is needed to access CertCentral. For details on creating a user account and setting up an account, follow 
the steps described here: https://docs.digicert.com/get-started/. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://www.digicert.com/certcentral/
https://docs.digicert.com/get-started/


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 37 

2.4.3.1 TLS Certificate 
For this build, we leveraged DigiCert’s private TLS certificate because the MUD file server is hosted 
internally. This certificate supports https connections to the MUD file server, which are required by the 
MUD manager. Additional information about the TLS certificates offered by DigiCert can be found at 
https://www.digicert.com/security-certificate-support/.   

For instructions on how to order a TLS certificate, proceed to the DigiCert documentation found here, 
and follow the process for the specific TLS certificate being requested: 
https://docs.digicert.com/manage-certificates/order-your-ssltls-certificates/. 

Once requested, integrate the certificate onto the MUD file server as described in Section 2.2.3.1.  

2.4.3.2 Premium Certificate 
To sign MUD files according to the MUD specification, a client certificate is required. For this 
implementation, we leveraged DigiCert’s Premium Certificate to sign MUD files. This certificate supports 
signing or encrypting Secure/Multipurpose Internet Mail Extensions messages, which is required by the 
specification.  

For detailed instructions on how to request and implement a Premium Certificate, proceed to the 
DigiCert documentation found here: https://docs.digicert.com/manage-certificates/client-certificates-
guide/. 

Once requested, sign MUD files as described in Section 2.2.3.2.2.  

2.5 IoT Devices 

2.5.1 Molex PoE Gateway and Light Engine 
This section provides configuration details of the MUD-capable Molex PoE Gateway and Light Engine 
used in the build. This component emits a MUD URL that uses LLDP.  

2.5.1.1 Configuration Overview 
The Molex PoE Gateway runs firmware created and provided by Molex. This firmware was modified by 
Molex to emit a MUD URL that uses an LLDP message. 

2.5.1.1.1 Network Configuration 
The Molex PoE Gateway is connected to the network over a wired Ethernet connection. The IP address 
is assigned dynamically by using DHCP. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://www.digicert.com/security-certificate-support/
https://docs.digicert.com/manage-certificates/order-your-ssltls-certificates/
https://docs.digicert.com/manage-certificates/client-certificates-guide/
https://docs.digicert.com/manage-certificates/client-certificates-guide/


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 38 

2.5.1.1.2 Software Configuration 
For this build, the Molex PoE Gateway is configured with Molex’s PoE Gateway firmware, version 
1.6.1.8.4. 

2.5.1.1.3 Hardware Configuration 
The Molex PoE Gateway used in this build is model number 180993-0001, dated March 2017.  

2.5.1.2 Setup 
The Molex PoE Gateway is controlled via the Constrained Application Protocol (CoAP), and CoAP 
commands were used to ensure that device functionality was maintained during the MUD process. 

2.5.1.2.1 DHCP Client Configuration  
The device uses the default DHCP client included in the Molex PoE Gateway firmware. 

2.5.2 IoT Development Kits–Linux Based 
This section provides configuration details for the Linux-based IoT development kits used in the build, 
which emit MUD URLs by using DHCP. It also provides information regarding a basic IoT application used 
to test the MUD process.  

2.5.2.1 Configuration Overview 
The devkits run various flavors of Linux-based operating systems and are configured to emit a MUD URL 
during a typical DHCP transaction. They also run a Python script that allows the devkits to receive and 
process commands by using the MQTT protocol, which can be sent to peripherals connected to the 
devkits. 

2.5.2.1.1 Network Configuration 
The devkits are connected to the network over a wired Ethernet connection. The IP address is assigned 
dynamically by using DHCP. 

2.5.2.1.2 Software Configuration 
For this build, the Raspberry Pi is configured on Raspbian 9, the Samsung ARTIK 520 is configured on 
Fedora 24, and the Intel UP Squared Grove is configured on Ubuntu 16.04 LTS. The devkits also utilized 
dhclient as the default DHCP client. This DHCP client is provided with many Linux distributions and can 
be installed using a preferred package manager if not currently present. 

2.5.2.1.3 Hardware Configuration 
The hardware used for these devkits included the Raspberry Pi 3 Model B, Samsung ARTIK 520, and Intel 
UP Squared Grove. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 39 

2.5.2.2 Setup 
The following subsection describes setting up the devkits to send a MUD URL during the DHCP 
transaction and to act as a connected device by leveraging an MQTT broker server (we describe setting 
up the MQTT broker server in Section 2.8).  

2.5.2.2.1 DHCP Client Configuration  
We leveraged dhclient as the default DHCP client for these devices due to the availability of the DHCP 
client on different Linux platforms and the ease of emitting MUD URLs via DHCP. 

To set up the dhclient configuration:  

1. Open a terminal on the device.  

2. Ensure that any other conflicting DHCP clients are disabled or removed. 

3. Install the dhclient package (if needed). 

4. Edit the dhclient.conf file by entering the following command:  

sudo nano /etc/dhcp/dhclient.conf  

 

5. Add the following lines: 

option mud-url code 161 = text; 

send mud-url = "<insert URL for MUD File here>"; 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 40 

 

6. Save and close the file. 

7. Reboot the device: 

reboot 

 

8. Open a terminal. 

9. Execute the dhclient: 

sudo dhclient -v 

 
 

2.5.2.2.2 IoT Application for Testing 
The following Python application was created by the NCCoE to enable the devkits to act as basic IoT 
devices: 

#Program:    IoTapp. 
#Version:   1.0 
#Purpose:    Provide IoT capabilities to devkit. 
#Protocols:   MQTT. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 41 

#Functionality:  Allow remote control of LEDs on connected breadboard. 
 
#Libraries 
import paho.mqtt.client as mqttClient 
import time 
import RPi.GPIO as GPIO 
 
#Global Variables 
BrokerAddress = "192.168.1.87"  #IP address of Broker(Server), change as needed. Best 
practice would be a registered domain name that can be queried for appropriate server 
address. 
BrokerPort = "1883"  #Default port used by most MQTT Brokers. Would be 1883 if 
using Transport Encryption with TLS. 
ConnectionStatus = "Disconnected" #Status of connection to Broker. Should be either 
"Connected" or "Disconnected". 
LED = 26 
 
#Supporting Functions 
def on_connect(client, userdata, flags, rc): #Function for connection status to 
Broker. 
 if rc == 0: 
  ConnectionStatus = "Connected to Broker!" 
  print(ConnectionStatus) 
 else: 
  ConnectionStatus = "Connection Failed!" 
  print(ConnectionStatus) 
 
def on_message(client, userdata, msg):  #Function for parsing message data. 
 if "ON" in msg.payload: 
  print("ON!") 
  GPIO.output(LED, 1) 
 
 if "OFF" in msg.payload: 
  print("OFF!") 
  GPIO.output(LED, 0) 
 
def  MQTTapp(): 
 client = mqttClient.Client() #New instance. 
 client.on_connect = on_connect 
 client.on_message = on_message 
 client.connect(BrokerAddress, BrokerPort) 
 client.loop_start() 
 client.subscribe("test") 
 try: 
  while True: 
   time.sleep(1) 
 except KeyboardInterrupt: 
  print("8") 
  client.disconnect() 
  client.loop_stop() 
 
#Main Function 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 42 

def main(): 
 
 GPIO.setmode(GPIO.BCM) 
 GPIO.setup(LED, GPIO.OUT) 
 
 print("Main function has been executed!") 
 MQTTapp() 
 
if __name__ == "__main__": 
 main() 

2.5.3 IoT Development Kit–u-blox C027-G35 
This section details configuration of a u-blox C027-G35, which emits a MUD URL by using DHCP, and a 
basic IoT application used to test MUD rules. 

2.5.3.1 Configuration Overview 
This devkit runs the Arm Mbed-OS and is configured to emit a MUD URL during a typical DHCP 
transaction. It also runs a basic IoT application to test MUD rules.  

2.5.3.1.1 Network Configuration 
The u-blox C027-G35 is connected to the network over a wired Ethernet connection. The IP address is 
assigned dynamically by using DHCP. 

2.5.3.1.2 Software Configuration 
For this build, the u-blox C027-G35 was configured on the Mbed-OS 5.10.4 operating system. 

2.5.3.1.3 Hardware Configuration 
The hardware used for this devkit is the u-blox C027-G35. 

2.5.3.2 Setup 
The following subsection describes setting up the u-blox C027-G35 to send a MUD URL in the DHCP 
transaction and to act as a connected device by establishing network connections to the update server 
and other destinations.  

2.5.3.2.1 DHCP Client Configuration  
To add MUD functionality to the Mbed-OS DHCP client, the following two files inside Mbed-OS require 
modification: 

 mbed-os/features/lwipstack/lwip/src/include/lwip/prot/dhcp.h 

• NOT mbed-os/features/lwipstack/lwip/src/include/lwip/dhcp.h 

 mbed-os/features/lwipstack/lwip/src/core/ipv4/lwip_dhcp.c 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 43 

Changes to include/lwip/prot/dhcp.h: 

1. Add the following line below the greatest DCHP option number (67) on line 170: 

 

Changes to core/ipv4/lwip_dhcp.c: 

1. Change within container around line 141: 

To enum dhcp_option_idx (at line 141) before the first #if, add 

 

It should now look like the screenshot below: 

 

2. Change within the function around line 975: 

a. To the list of local variables for static err_t dhcp_discover(struct netif 
*netif), add the desired MUD URL (www.example.com used here): 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 44 

 

Note: The MUD URL must be less than 255 octets/bytes/characters long. 

b. Within if (result == ERR_OK) after 

 

and before: 

 

add: 

 

3. Change within the function around line 1486: 

Within the following function: 

 

Within switch(op) before default, add the following case (around line 1606): 

 

char* mud_url = "https://www.example.com";  /*MUD: MUD URL*/ 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 45 

4. Compile by using the following command: 

 

2.5.3.2.2 IoT Application for Testing 
The following application was created by the NCCoE to enable the devkit to test the build as a MUD-
capable device: 

#include "mbed.h" 
#include "EthernetInterface.h" 
 
//DigitalOut led1(LED1); 
PwmOut led2(LED2); 
Serial pc(USBTX, USBRX); 
 
float brightness = 0.0; 
 
// Network interface 
EthernetInterface net; 
 
// Socket demo 
int main() { 
  int led1 = true; 
 
  for (int i = 0; i < 4; i++) { 
 
    led2 = (led1)? 0.5 : 0.0; 
 
    led1 = !led1; 
    wait(0.5); 
  } 
 
  for (int i = 0; i < 8; i++) { 
 
    led2 = (led1)? 0.5 : 0.0; 
 
    led1 = !led1; 
    wait(0.25); 
  } 
 
  for (int i = 0; i < 8; i++) { 
 
    led2 = (led1)? 0.5 : 0.0; 
 
    led1 = !led1; 
    wait(0.125); 
  } 
  TCPSocket socket; 
  char sbuffer[] = "GET / HTTP/1.1\r\nHost: www.updateserver.com\r\n\r\n"; 
  char bbuffer[] = "GET / HTTP/1.1\r\nHost: www.unapprovedserver.com\r\n\r\n"; 
  int scount, bcount; 
  char rbuffer[64]; 
  char brbuffer[64]; 

mbed compile -m ublox_c027 -t gcc_arm 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 46 

  int rcount, brcount; 
 
  /* By default grab an IP address*/ 
  // Bring up the ethernet interface 
  pc.printf("Ethernet socket example\r\n"); 
  net.connect(); 
  // Show the network address 
  const char *ip = net.get_ip_address(); 
  pc.printf("IP address is: %s\r\n", ip ? ip : "No IP"); 
  socket.open(&net); 
  /* End of default IP address */ 
 
  pc.printf("Press U to turn LED1 brightness up, D to turn it down, G to get IP, R to 
release IP, H for HTTP request, B for blocked HTTP request\r\n"); 
 
  while(1) { 
    char c = pc.getc(); 
    if((c == 'u') && (brightness < 0.5)) { 
      brightness += 0.01; 
      led2 = brightness; 
    } 
    if((c == 'd') && (brightness > 0.0)) { 
      brightness -= 0.01; 
      led2 = brightness; 
    } 
    if(c == 'g'){ 
      // Bring up the ethernet interface 
      pc.printf("Sending DHCP Request...\r\n"); 
      net.connect(); 
      // Show the network address 
      const char *ip = net.get_ip_address(); 
      pc.printf("IP address is: %s\r\n", ip ? ip : "No IP"); 
    } 
    if(c == 'r'){ 
      socket.close(); 
      net.disconnect(); 
      pc.printf("IP Address Released\r\n"); 
    } 
    if(c == 'h'){ 
      
     pc.printf("Sending HTTP Request...\r\n"); 
     // Open a socket on the network interface, and create a TCP connection 
     socket.open(&net);      
     socket.connect("www.updateserver.com", 80); 
     // Send a simple http request 
     scount = socket.send(sbuffer, sizeof sbuffer); 
     pc.printf("sent %d [%.*s]\r\n", scount, strstr(sbuffer, "\r\n")-sbuffer, sbuffer); 
     // Receive a simple http response and print out the response line 
     rcount = socket.recv(rbuffer, sizeof rbuffer); 
     pc.printf("recv %d [%.*s]\r\n", rcount, strstr(rbuffer, "\r\n")-rbuffer, rbuffer); 
     socket.close(); 
    } 
    if(c == 'b'){ 
     pc.printf("Sending Blocked HTTP Request...\r\n"); 
     // Open a socket on the network interface, and create a TCP connection 
     socket.open(&net);      

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 47 

     socket.connect("www.unapprovedserver.com", 80); 
     // Send a simple http request 
     bcount = socket.send(bbuffer, sizeof bbuffer); 
     pc.printf("sent %d [%.*s]\r\n", bcount, strstr(bbuffer, "\r\n")-bbuffer, bbuffer); 
 
     // Receive a simple http response and print out the response line 
     brcount = socket.recv(brbuffer, sizeof brbuffer); 
     pc.printf("recv %d [%.*s]\r\n", brcount, strstr(brbuffer, "\r\n")-brbuffer, 
brbuffer); 
     socket.close(); 
    }   
  } 
} 

2.5.4 IoT Devices–Non-MUD-Capable 
This section details configuration of non-MUD-capable IoT devices attached to the implementation 
network. These include several types of devices, such as cameras, mobile phones, lighting, a connected 
assistant, a printer, a baby monitor, a wireless access point, and a digital video recorder. These devices 
did not emit a MUD URL or have MUD capabilities of any kind. 

2.5.4.1 Configuration Overview 
These non-MUD-capable IoT devices are unmodified and still retain the default manufacturer 
configurations.  

2.5.4.1.1 Network Configuration 
These IoT devices are configured to obtain an IP address via DHCP. 

2.5.4.1.2 Software Configuration 
The software on these devices is configured according to standard manufacturer instructions. 

2.5.4.1.3 Hardware Configuration 
The hardware used in these devices is unmodified from manufacturer specifications. 

2.5.4.2 Setup 
These devices were set up according to the manufacturer instructions and connected to the Cisco switch 
via Ethernet cable or connected wirelessly through the wireless access point. 

2.5.4.2.1 DHCP Client Configuration 
These IoT devices used the default DHCP clients provided by the original manufacturer and were not 
modified in any way. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 48 

2.6 Update Server 
This section describes how to implement a server that will act as an update server. It will attempt to 
access and be accessed by the IoT device, in this case one of the development kits we built in the lab.  

2.6.1 Update Server Overview 
The update server is an Apache web server that hosts mock software update files to be served as 
software updates to our IoT device devkits. When the server receives an http request, it sends the 
corresponding update file. 

2.6.2 Configuration Overview 
The following subsections document the software, hardware, and network requirements for the update 
server.  

2.6.2.1 Network Configuration 
The IP address was statically assigned. 

2.6.2.2 Software Configuration 
For this build, the update server was configured on the Ubuntu 18.04 LTS operating system. 

2.6.2.3 Hardware Configuration 
The update server was hosted in the NCCoE’s virtual environment, functioning as a cloud service.  

2.6.3 Setup 
The Apache web server was set up by using the official Apache documentation at 
https://httpd.apache.org/docs/current/install.html. After completing the process, the SSL/TLS 
encryption was set up by using the digital certificate and key obtained from DigiCert. This was set up by 
using the official Apache documentation, found at 
https://httpd.apache.org/docs/current/ssl/ssl_howto.html.  

The following configurations were made to the server to host the update file: 

1. Open a terminal. 

2. Change directories to the Hypertext Markup Language (HTML) folder: 

cd /var/www/html/ 

  
3. Create the update file. (Note: this is a mock update file.)  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://httpd.apache.org/docs/current/install.html
https://httpd.apache.org/docs/current/ssl/ssl_howto.html


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 49 

touch IoTsoftwareV2.tar.gz 

 

2.7 Unapproved Server 
This section describes how to implement a server that will act as an unapproved server. It will attempt 
to access and to be accessed by an IoT device, in this case one of the MUD-capable devices on the 
implementation network.  

2.7.1  Unapproved Server Overview 
The unapproved server is an internet host that is not explicitly authorized in the MUD file to 
communicate with the IoT device. When the IoT device attempts to connect to this server, the router or 
switch should not allow this traffic because it is not an approved internet service as defined by the 
corresponding MUD file. Likewise, when the server attempts to connect to the IoT device, this traffic 
should be denied at the router or switch.  

2.7.2  Configuration Overview 
The following subsections document the software, hardware, and network configurations for the 
unapproved server.  

2.7.2.1 Network Configuration 
The unapproved server hosts a web server that is accessed via Transmission Control Protocol (TCP) port 
80. Any applications that request access to this server need to be able to connect on this port. Use 
firewall-cmd, iptables, or any other system utility for manipulating the firewall to open this port. 

2.7.2.2 Software Configuration 
For this build, the CentOS 7 OS was leveraged with an Apache web server.   

2.7.2.3 Hardware Configuration 
The unapproved server was hosted in the NCCoE’s virtual environment, functioning as a cloud service. 
The IP address was statically assigned. 

2.7.3 Setup 
The following subsection describes the setup process for configuring the unapproved server. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 50 

2.7.3.1 Apache Web Server 
The Apache web server was set up by using the official Apache documentation at 
https://httpd.apache.org/docs/current/install.html. SSL/TLS encryption was not used for this server.  

2.8 MQTT Broker Server 

2.8.1 MQTT Broker Server Overview 
For this build, the open-source tool Mosquitto was used as the MQTT broker server. The server 
communicates publish and subscribe messages among multiple clients. For our implementation, this 
server allows mobile devices set up with the appropriate application to communicate with the MQTT-
enabled IoT devices in the build. The messages exchanged by the devices are on and off messages, 
which allow the mobile device to control the LED light on the MQTT-enabled IoT device.  

2.8.2 Configuration Overview 
The following subsections document the software, hardware, and network requirements for the MQTT 
broker server. 

2.8.2.1 Network Configuration 
The MQTT broker server was hosted in the NCCoE’s virtual environment, functioning as a cloud service. 
The IP address was statically assigned. 

The server is accessed via TCP port 1883. Any clients that require access to this server need to be able to 
connect on this port. Use firewall-cmd, iptables, or any other system utility for manipulating the firewall 
to open this port. 

2.8.2.2 Software Configuration 
For this build, the MQTT broker server was configured on an Ubuntu 18.04 LTS operating system. 

2.8.2.3 Hardware Configuration 
This server was hosted in the NCCoE’s virtual environment, functioning as a cloud service. The IP address 
was statically assigned. 

2.8.3 Setup 
In this section we describe setting up the MQTT broker server to communicate messages to and from 
the controlling application and the IoT device. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://httpd.apache.org/docs/current/install.html


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 51 

2.8.3.1 Mosquitto Setup 
1. Install the open-source MQTT broker server, Mosquitto, by entering the following command: 

sudo apt-get update && sudo apt-get install mosquitto 

 

Following the installation, this implementation leveraged the default configuration of the 
Mosquitto server. The MQTT broker server was set up by using the official Mosquitto 
documentation at https://mosquitto.org/man/. 

2.9 Forescout–IoT Device Discovery  
This section describes how to implement Forescout’s appliance and enterprise manager to provide 
device discovery on the network.   

2.9.1 Forescout Overview 
The Forescout appliance discovers, catalogs, profiles, and classifies the devices that are connected to the 
demonstration network. When a device is added to or removed from the network, the Forescout 
appliance is updated and actively monitors these devices on the network. The administrator will be able 
to manage multiple Forescout appliances from a central point by integrating the appliance with the 
enterprise manager. 

2.9.2 Configuration Overview 
The following subsections document the software, hardware, and network requirements for the 
Forescout appliance and enterprise manager. 

2.9.2.1 Network Configuration 
The virtual Forescout appliance was hosted on VLAN 2 of the Cisco switch. It was set up with just the 
monitor interface. The network configuration for the Forescout appliance was completed by using the 
official Forescout documentation at 
https://docs.forescout.com/bundle/Installation_Guide_8.0.1/resource/Installation_Guide_8.0.1.pdf (see 
Chapters 2 and 8). 

The virtual enterprise manager was hosted in the virtual environment that is shared across each build.  

2.9.2.2 Software Configuration 
The build leveraged a virtual Forescout appliance VCT-R version 8.0.1 along with a virtual enterprise 
manager VCEM-05 version 8.0.1. Both virtual appliances were built on a Linux OS supported by 
Forescout.  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://mosquitto.org/man/
https://docs.forescout.com/bundle/Installation_Guide_8.0.1/resource/Installation_Guide_8.0.1.pdf


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 52 

Forescout provides software for managing the appliances on the network. The Forescout console is 
software that allows management of the Forescout appliance/enterprise manager and visualization of 
the data gathered by the appliances.  

2.9.2.3 Hardware Configuration 
The build leveraged a virtual Forescout appliance, which was set up in the lab environment on a 
dedicated machine hosting the local virtual machines in Build 1. 

The virtual enterprise manager was hosted in the NCCoE’s virtual environment with a static IP 
assignment. 

2.9.3 Setup 
In this section we describe setting up the virtual Forescout appliance and the virtual enterprise manager. 

2.9.3.1 Forescout Appliance Setup 
The virtual Forescout appliance was set up by using the official Forescout documentation at 
https://docs.forescout.com/bundle/Installation_Guide_8.0.1/resource/Installation_Guide_8.0.1.pdf (see 
Chapters 3 and 8).  

2.9.3.2 Enterprise Manager Setup 
The enterprise manager was set up by using the official Forescout documentation at 
https://docs.forescout.com/bundle/Installation_Guide_8.0.1/resource/Installation_Guide_8.0.1.pdf (see 
Chapters 4 and 8).  

Using the enterprise manager, we configured the following modules: 

 Endpoint 

 Network 

 Authentication 

 Core Extension  

 Device Profile Library—https://www.Forescout.com/wp-
content/uploads/2018/04/CounterACT_Device_Profile_Library.pdf  

 IoT Posture Assessment Library—https://www.Forescout.com/wp-
content/uploads/2018/04/CounterACT_IoT_Posture_Assessment_Library-1.pdf  

 Network Interface Card (NIC) Vendor DB—https://www.Forescout.com/wp-
content/uploads/2018/04/CounterACT_NIC_Vendor_DB_17.0.12.pdf    

 Windows Applications—https://www.Forescout.com/wp-
content/uploads/2018/04/CounterACT_Windows_Applications.pdf  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://docs.forescout.com/bundle/Installation_Guide_8.0.1/resource/Installation_Guide_8.0.1.pdf
https://docs.forescout.com/bundle/Installation_Guide_8.0.1/resource/Installation_Guide_8.0.1.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Device_Profile_Library.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Device_Profile_Library.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_IoT_Posture_Assessment_Library-1.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_IoT_Posture_Assessment_Library-1.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_NIC_Vendor_DB_17.0.12.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_NIC_Vendor_DB_17.0.12.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Applications.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Applications.pdf


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 53 

 Windows Vulnerability Database (DB)—https://www.Forescout.com/wp-
content/uploads/2018/04/CounterACT_Windows_Vulnerability_DB_18.0.2.pdf  

 eyeExtend Connect Module - https://docs.forescout.com/bundle/connect-module-1-7-
rn/page/connect-module-1-7-rn.About-eyeExtend-Connect-Module-1.7.html   

3 Build 2 Product Installation Guides 
This section of the practice guide contains detailed instructions for installing and configuring the 
products used to implement Build 2. For additional details on Build 2’s logical and physical architectures, 
please refer to NIST SP 1800-15B. 

3.1 Yikes! MUD Manager 
This section describes the Yikes! MUD manager version v1.1.3, which is a software package deployed on 
the Yikes! router. It should not require configuration as it should be fully functioning upon connecting 
the Yikes! router to the network.  

3.1.1 Yikes! MUD Manager Overview 
The Yikes! MUD manager is a software package supported by MasterPeace within the Yikes! physical 
router. The version of the Yikes! router used in this implementation supports IoT devices that leverage 
DHCP as their default MUD emission method. 

3.1.2 Configuration Overview 
At this implementation, no additional network, software, or hardware configuration was required to 
enable the Yikes! MUD manager capability on the Yikes! router.   

3.1.3 Setup 
At this implementation, no setup was required to enable the Yikes! MUD manager capability on the 
Yikes! router. See the Yikes! Router section for details on the router setup.   

3.2 MUD File Server 

3.2.1 MUD File Server Overview 
For this build, the NCCoE leveraged a MUD file server hosted by MasterPeace. This file server hosts MUD 
files along with their corresponding signature files for the MUD-capable IoT devices used in Build 2. The 
MUD file server is responsible for serving the MUD file and the corresponding signature file upon 
request from the MUD manager. These files were created by the NCCoE and provided to MasterPeace to 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Vulnerability_DB_18.0.2.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Vulnerability_DB_18.0.2.pdf
https://docs.forescout.com/bundle/connect-module-1-7-rn/page/connect-module-1-7-rn.About-eyeExtend-Connect-Module-1.7.html
https://docs.forescout.com/bundle/connect-module-1-7-rn/page/connect-module-1-7-rn.About-eyeExtend-Connect-Module-1.7.html


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 54 

host due to the Yikes! cloud component requirement that the MUD file server be internet accessible to 
display the contents of the MUD file in the Yikes! user interface (UI).  

To build an on-premises MUD file server and to create MUD files for MUD-capable IoT devices, please 
follow the instructions in Build 1’s MUD File Server section.  

3.3 Yikes! DHCP Server 
This section describes the Yikes! DHCP server, which should also be fully functional out of the box and 
should not require any modification upon receipt.  

3.3.1 Yikes! DHCP Server Overview 
The Yikes! DHCP server is MUD capable and, like the Yikes! MUD manager and Yikes! threat-signaling 
agent, is a logical component within the Yikes! router. In addition to dynamically assigning IP addresses, 
it recognizes the DHCP option (161) and logs DHCP events that include this option to a log file. This log 
file is monitored by the Yikes! MUD manager, which is responsible for handling the MUD requests.  

3.3.2 Configuration Overview 
At this implementation, no additional network, software, or hardware configuration was required to 
enable the Yikes! DHCP server capability on the Yikes! router.   

3.3.3 Setup 
At this implementation, no additional setup was required.  

3.4 Yikes! Router 
This section describes how to implement and configure the Yikes! router, which requires minimal 
configuration from a user standpoint.   

3.4.1 Yikes! Router Overview 
The Yikes! router is a customized original equipment manufacturer product, which at implementation 
was a preproduction product. It is a self-contained router, Wi-Fi access point, and firewall that 
communicates locally with Wi-Fi devices and wired devices. The Yikes! router leveraged in this 
implementation was developed on an OpenWRT base router with the Yikes! capabilities added on. The 
Yikes! router hosts all the software necessary to enable a MUD infrastructure on premise. It also 
communicates with the Yikes! cloud and threat-signaling services to support additional capabilities in 
the network. 

At this implementation, the Yikes! MUD manager, DHCP server, and GCA threat-signaling components 
all reside on the Yikes! router and are configured to function without any additional configuration. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 55 

3.4.2 Configuration Overview 

3.4.2.1 Network Configuration  
Implementation of a Yikes! router requires an internet source such as a Digital Subscriber Line (DSL) or 
cable modem.  

3.4.2.2 Software Configuration  
At this implementation, no additional software configuration was required to set up the Yikes! router.   

3.4.2.3 Hardware Configuration  
At this implementation, no additional hardware configuration was required to set up the Yikes! router.   

3.4.3 Setup 
As stated earlier, the version of the Yikes! router used in Build 2 was preproduction, so MasterPeace 
may have performed some setup and configuration steps that are not documented here. Those 
additional steps, however, are not expected to be required to set up the production version of the 
router. The following setup steps were performed: 

1. Unbox the Yikes! router and provided accessories. 

2. Connect the Yikes! router’s wide area network port to an internet source (e.g., cable modem or 
DSL). 

3. Plug the power supply into the Yikes! router. 

4. Power on the Yikes! router. 

After powering on the router, the network password must be provided so the router can authenticate 
itself to the network. In addition, best security practices (not documented here), such as changing the 
router’s administrative password, should be followed in accordance with the security policies of the 
user. 

3.5 DigiCert Certificates 
DigiCert’s CertCentral web-based platform allows provisioning and management of publicly trusted 
X.509 certificates for a variety of purposes. After establishing an account, clients can log in, request, 
renew, and revoke certificates by using only a browser. For Build 2, the Premium Certificate created in 
Build 1 was leveraged for signing the MUD files. To request and implement DigiCert certificates, follow 
the documentation in Build 1’s DigiCert Certificates section and subsequent sections.  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 56 

3.6 IoT Devices 

3.6.1 IoT Development Kits—Linux Based 

3.6.1.1 Configuration Overview 
This section provides configuration details for the Linux-based IoT development kits used in the build, 
which emit MUD URLs by using DHCP. It also provides information regarding a basic IoT application used 
to test the MUD process.  

3.6.1.1.1 Network Configuration  
The devkits are connected to the network over both a wired Ethernet connection and wirelessly. The IP 
address is assigned dynamically by using DHCP.  

3.6.1.1.2 Software Configuration  
For this build, Raspberry Pi is configured on Raspbian 9, the Samsung ARTIK 520 is configured on Fedora 
24, the NXP i.MX 8m is configured on Yocto Linux, and the BeagleBone Black is configured on Debian 9.5. 
The devkits also utilized a variety of DHCP clients, including dhcpcd and dhclient (see Build 1’s IoT 
Development Kits–Linux Based section for dhclient configurations). This build introduced dhcpcd as a 
method for emitting a MUD URL for all devkits in this build, apart from the NXP i.MX 8m, which 
leveraged dhclient. Dhcpcd is provided with many Linux distributions and can be installed using a 
preferred package manager if not currently present. 

3.6.1.1.3 Hardware Configuration  
The hardware used for these devkits included the Raspberry Pi 3 Model B, Samsung ARTIK 520, NXP i.MX 
8m, and BeagleBone Black. 

3.6.1.2 Setup 
The following subsection describes setting up the devkits to send a MUD URL during the DHCP 
transaction using dhcpcd as the DHCP client on the Raspberry Pi. For dhclient instructions, see Build 1’s 
Setup and DHCP Client Configuration sections.  

3.6.1.2.1 DHCP Client Configuration 
These devkits utilized dhcpcd version 7.2.3. Configuration consisted of adding the following line to the 
file located at /etc/dhcpcd.conf: 

mudurl https://<example-url> 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 57 

 

3.7 Update Server 
Build 2 leveraged the preexisting update server that is described in Build 1’s Update Server section. To 
implement a server that will act as an update server, see the documentation in Build 1’s Update Server 
section. The update server will attempt to access and be accessed by the IoT device, which, in this case, 
is one of the development kits we built in the lab.  

3.8 Unapproved Server 
Build 2 leverages the preexisting unapproved server that is described in Build 1’s Unapproved Server 
section. To implement a server that will act as an unapproved server, see the documentation in Build 1’s 
Unapproved Server section. The unapproved server will attempt to access and to be accessed by an IoT 
device, which, in this case, is one of the MUD-capable devices on the implementation network.  

3.9 Yikes! IoT Device Discovery, Categorization, and Traffic Policy 
Enforcement (Yikes! Cloud and Yikes! Mobile Application) 

This section describes how to implement and configure Yikes! IoT device discovery, categorization, and 
traffic policy enforcement, which is a capability supported by the Yikes! router, Yikes! cloud, and Yikes! 
mobile application.   

3.9.1 Yikes! IoT Device Discovery, Categorization, and Traffic Policy Enforcement 
Overview 

The Yikes! router provides an IoT device discovery service for Build 2. Yikes! discovers, inventories, 
profiles, and classifies devices connected to the local network consistent with each device’s type and 
allows traffic enforcement policies to be configured by the user through the Yikes! mobile application.  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 58 

Yikes! isolates every device on the network so that, by default, no device is permitted to communicate 
with any other device. Devices added to the network are automatically identified and categorized based 
on information such as DHCP header, MAC address, operating system, manufacturer, and model. 

Using the Yikes! mobile application, users can define fine-grained device filtering. The enforcement can 
be set to enable specific internet access (north/south) and internal network access to specific devices 
(east/west) as determined by category-specific rules.  

3.9.2 Configuration Overview 

3.9.2.1 Network Configuration  
No network configurations outside Yikes! router network configurations are required to enable this 
capability.  

3.9.2.2 Software Configuration  
MasterPeace performed some software configuration on the Yikes! router after it was deployed as part 
of Build 2. Aside from this, no additional software configuration was required to support device 
discovery. When the production version of the Yikes! router is available, it is not expected to require 
configuration. The Yikes! mobile application was still in development during deployment. The build used 
the web-based Yikes! mobile application from a laptop in the lab environment to display and configure 
device information and traffic policies.  

3.9.2.3 Hardware Configuration  
At this implementation, the Yikes! mobile application was not published in an application store. For this 
reason, a desktop was leveraged to load the web page hosting the “mobile application.”  

3.9.3 Setup 
Once devices have been added to the network on the Yikes! router, they will appear in the Yikes! cloud 
inventory, which is accessible via the Yikes! mobile application. At this implementation, the Yikes! 
mobile application and the processes associated with the Yikes! cloud service were under development. 
It is possible that the design of the UI and the workflow will change for the final implementation of the 
mobile application. 

3.9.3.1 Yikes! Router and Account Cloud Registration 
At this implementation, the Yikes! router and cloud account registration processes were under 
development. As a result, this section will not describe how to associate a Yikes! router with a Yikes! 
cloud instance. The steps below show the process for account registration at this implementation. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 59 

1. Open a browser and access the Yikes! UI. (Note: in the preproduction version of the router, 
accessing the UI required inputting a URL provided by MasterPeace.) 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 60 

2. Click on the Register button to sign up for an account:  

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 61 

3. Populate the requested information for the account: First Name, Last Name, Email, and 
Password. Click Sign Up: 

 
Note: There will be additional steps related to associating the Yikes! router with the Yikes! 
account being created. However, at this implementation, this process was still under 
development.  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 62 

4. Once the account is approved and linked to the Yikes! router, Log in with the credentials created 
in step 3: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 63 

5. The home screen will show the network overview:  

 

3.9.3.2 Yikes! MUD-Capable IoT Device Discovery 
This section details the Yikes! MUD-capable IoT device discovery capability. This feature is accessible 
through the Yikes! mobile application and identifies all MUD-capable IoT devices that are connected to 
the network.  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 64 

1. Open the menu pane in the UI: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 65 

2. Click the Devices button to open the devices menu: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 66 

3. Click the MUD tab to switch from the ALL device view to review the MUD-capable IoT devices 
connected to the network: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 67 

4. All MUD-capable devices on the network will have the MUD label as seen below: 

 

3.9.3.3 Yikes! Alerts 
This section details the Yikes! alerting capability. This feature is accessible through the Yikes! mobile 
application and notifies users when new devices have been connected to the network. Additionally, this 
feature alerts the user when new devices are not recognized as known devices and are placed in the 
uncategorized device category by the Yikes! cloud.  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 68 

From the Yikes! mobile application, the user can edit the information about the device (e.g., name, 
make, and model) and modify the device’s category or can choose to ignore the alert by removing the 
notification. 

1. Open the menu pane in the UI: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 69 

2. Click Alerts to open the Alerts menu: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 70 

3.  Select a device to edit the device information and category by clicking Edit Device: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 71 

4. Modify the Category of the device by clicking the device’s current category: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 72 

5. Select the desired category, in this case Smart Appliances, and click OK: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 73 

6. The device Category will update to reflect the new selection. Click Add Device to complete the 
process:  

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 74 

7. The alerts menu will update and no longer include the device that was just modified and added: 

 

3.9.3.4 Yikes! Device Categories and Setting Rules 
The Yikes! mobile application provides the capability to view predefined device categories and set rules 
for local communication between categories of devices on the local network and internet rules for all 
devices in a selected category.  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 75 

1. Click the menu bar to open the menu pane: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 76 

2. Click the Device Categories option to view all device categories: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 77 

3. Select the category of device to view and configure rules: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 78 

4. Modify local rules by clicking on the category of devices with which the selected category is 
permitted to communicate: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 79 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 80 

5. Scroll to the bottom of the page to view the current Internet Rules for this category, and change 
the permissions by clicking on IoT Specific Sites: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 81 

 
 

Smart appliances should now be permitted to communicate locally to Smart Appliances, Home 
Assistants, Tablets, Cell Phones, and, externally, to IoT Specific Sites.  

3.9.3.5 Yikes! Network Rules  
1. The Yikes! mobile application allows reviewing the rules that have been implemented on the 

network. These rules are divided into two main sections: Local Rules and Internet Rules. Local 
rules display the local communications permitted for each category of devices. Internet rules 
display the internet communications permitted for each category of devices. This section re-
views the rules defined for Smart Appliances in Yikes! Device Categories and Setting Rules UI: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 82 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 83 

2. Click Network Rules to navigate to the rules menu: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 84 

3. Click Local Rules to view the permitted local communications for each device category:  

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 85 

4. Scroll down to view the local rules for the Smart Appliances category: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 86 

5. Minimize the rules by clicking the Local Rules button: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 87 

6. Expand the rules that show internet rules for device categories by clicking Internet Rules: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 88 

7. Scroll down to view the internet rules for the Smart Appliances category: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 89 

8. Minimize the rules by clicking the Internet Rules button: 

 

 

3.10 GCA Quad9 Threat Signaling in Yikes! Router  
This section describes the threat-signaling service provided by GCA in the Yikes! router. This capability 
should not require configuration because the Quad9 Active Threat Response (Q9Thrt) open-source 
software should be fully functional when the Yikes! router to connects to the network. Please see the 
Q9Thrt GitHub page for details on this software: https://github.com/osmud/q9thrt#q9thrt. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/osmud/q9thrt#q9thrt


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 90 

3.10.1  GCA Quad9 Threat Signaling in Yikes! Router Overview 
The GCA Q9Thrt leverages DNS traffic by using Quad9 DNS services and threat intelligence from 
ThreatSTOP. As detailed in NIST SP 1800-15B, Q9Thrt is integrated into the Yikes! router and relies on 
the availability of three third-party services in the cloud: Quad9 DNS service, Quad9 threat API, and 
ThreatSTOP threat MUD file server. The Yikes! router is integrated with GCA Q9Thrt capabilities 
implemented, configured, and enabled out of the box.   

3.10.2  Configuration Overview 
At this implementation, no additional network, software, or hardware configuration was required to 
enable GCA Q9Thrt on the Yikes! router.   

3.10.3  Setup 
At this implementation, no additional setup was required to enable GCA Q9Thrt on the Yikes! router. 
See the Yikes! Router section for details on the router setup.   

To take advantage of threat signaling, the Yikes! router uses the Quad9 DNS services for domain name 
resolution. GCA Quad threat signaling depends upon the Quad9 DNS services to be up and running. The 
Quad9 threat API must also be available to provide the Yikes! router with information regarding specific 
threats. In addition, for any given threat that is found, the MUD file server provided by the threat 
intelligence service that has flagged that threat as potentially dangerous must also be available. These 
are third-party services that GCA Q9Thrt relies upon to be set up, configured, and available. 

It is possible to implement the Q9Thrt feature onto a non-Yikes! router. To integrate the Q9Thrt feature 
onto an existing router, see the open-source software on GitHub: https://github.com/osmud/q9thrt.  

This software was designed for and has been integrated successfully using the OpenWRT platform but 
has the potential to be integrated into various networking environments. Instructions on how to deploy 
Q9thrt onto an existing router can be found on https://github.com/osmud/q9thrt#q9thrt. 

4 Build 3 Product Installation Guides 
This section of the practice guide contains detailed instructions for installing, configuring, and 
integrating the products used to implement Build 3. For additional details on Build 3’s logical and 
physical architectures, please refer to NIST SP 1800-15B. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/osmud/q9thrt
https://github.com/osmud/q9thrt#q9thrt


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 91 

4.1 Product Installation 

4.1.1 DigiCert Certificates 
DigiCert’s CertCentral web-based platform allows provisioning and management of publicly trusted 
X.509 certificates for a variety of purposes. After establishing an account, clients can log in, request, 
renew, and revoke certificates by using only a browser. For Build 3, the Premium Certificate created in 
Build 1 was leveraged for signing the MUD files. Additionally, this implementation leveraged a standard 
SSL certificate to secure the cloud servers. You will need to request standard SSL certificates for each of 
the servers in your implementation. For this build we requested standard SSL certificates for two 
servers—the MUD file server and the Micronets service provider cloud server. To request and 
implement DigiCert certificates, follow the documentation in Build 1’s DigiCert Certificates section and 
subsequent sections.  

Once you have received the requested certificates, you can store these on the respective servers in your 
desired location. For this demonstration, we simply stored them in the workspace directory on the 
appropriate servers, but it is likely these would be stored in the /usr/lib or /etc/lib directories.  

4.1.2 MUD Manager 
This section describes the CableLabs MUD manager, which, for this implementation, is a cloud-provided 
service. This implementation leveraged the nccoe-build-3 branch of CableLabs MUD manager Git 
release. This service can be hosted by the implementer or another party. This documentation describes 
setting up your own MUD manager.  

4.1.2.1 MUD Manager Overview 
The CableLabs MUD manager is used by the Micronets Manager as a utility service to retrieve MUD files 
from a passed URL, parse the MUD file, and produce device communication restriction declarations that 
can be passed to the associated Micronets Gateway Service.  

This Micronets MUD manager is hosted in the service provider cloud and for this implementation is on 
the same server as the other Micronets services. The MUD manager is responsible for retrieving MUD 
files and their associated signature files and executing verification as outlined in the MUD specification. 
It generates the ACLs for the device based on the MUD file and provides this information to the 
Micronets Manager.  

4.1.2.2 Configuration Overview 
The following subsections document the software and network configurations for the MUD manager. 
Please note that the MUD manager, Micronets Manager, Websocket Proxy, MUD registry, and MSO 
portal are all implemented on the same server, nccoe-server1.micronets.net. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/install/mud-manager.md
https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/install/mud-manager.md
https://github.com/cablelabs/micronets-manager/blob/master/README.md
https://github.com/cablelabs/micronets-gw/blob/master/README.md


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 92 

4.1.2.2.1 Network Configuration 
The nccoe-server1.micronets.net server was hosted outside the lab environment on a Linode cloud-
hosted Linux server. Its IP address was statically assigned. 

4.1.2.2.2 Software Configuration 
For this build, the server ran on an Ubuntu 18.04 LTS operating system. The MUD manager runs in its 
own docker container and is configured to use SSL/TLS encryption.  

The following software is required to install, configure, and operate the MUD manager: 

 an Ubuntu 18.04 LTS server reachable by the server hosting the Micronets Manager instances 
and any Micronets gateways 

 docker (v18.06 or higher) 

 curl 

 NGINX 

4.1.2.2.3 Hardware Configuration 
The following hardware is required to install, configure, and operate the MUD manager: 

 4 gigabyte (GB) of RAM 

 50 GB of free disk space 

4.1.2.3 Setup 
The subsequent sections describe installing, configuring, and confirming general operation for the MUD 
manager.  

4.1.2.3.1 Install and Set Up Dependencies 
1. Make directory for downloading micronets-related scripts and packages: 

mkdir Projects/micronets/ 

2. Install docker, curl, and NGINX by entering the following command:  

sudo apt install docker curl nginx 

3. Create an NGINX config file for this server. (Note: If you are following the architecture for this 
implementation, all Micronets cloud components will be hosted on this server, and this will be 
the same config file that will be modified to add routes to the different Micronets services.)  

sudo vim /etc/nginx/sites-available/<ServerURL> 

sudo vim /etc/nginx/sites-available/nccoe-server1.micronets.net 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 93 

4. Add the following configuration block to the file and add the path to the certificate and key file 
received from your DigiCert standard SSL. (Note: additional locations will be added to this con-
figuration block as you continue to set up the different Micronets services.) 

server { 
      listen 443 ssl; 

 listen [::]:443 ssl;         

root /var/www/html; 

index index.html index.htm index.nginx-debian.html; 

server_name nccoe-server1.micronets.net; 

        location / { 

                try_files $uri $uri/ =404; 

        } 

ssl_certificate /home/micronets-dev/Projects/micronets/cert/nccoe-
server1_micronets_net.crt; 

ssl_certificate_key /home/micronets-dev/Projects/micronets/cert/nccoe-
server1_micronets_net.key;  

} 

5. Enable the file by creating a link from it to the sites-enabled directory, which NGINX reads from 
during start-up: 

sudo ln -s /etc/nginx/sites-available/nccoe-server1.micronets.net 
/etc/nginx/sites-enabled/nccoe-server1.micronets.net 

6. Next, test to make sure that there are no syntax errors in the NGINX files: 

sudo nginx -t 

You should see output similar to the following: 

 

7. If there are no problems, restart NGINX to enable your changes: 

sudo systemctl restart nginx 

4.1.2.3.2 Installing MUD Manager 

1. Change directory to the Projects/micronets/ folder: 

cd Projects/micronets/  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 94 

2. Download the management script by executing the following command: 

curl -O https://raw.githubusercontent.com/cablelabs/micronets-mud-tools/nccoe-
build-3/bin/micronets-mud-manager 

3. Install and execute the management script: 

sudo install -v -o root -m 755 -D -t /etc/micronets/micronets-mud-manager.d/ 
micronets-mud-manager 

You should see output similar to the following: 

 

4. Open the management script to configure it for your implementation by entering the following 
command:  

sudo vim /etc/micronets/micronets-mud-manager.d/micronets-mud-manager 

5. Once the file is opened, modify the default variables in the management script to point to the 
server hosting our Micronets manager by changing the DEF_CONTROLLER_ADDRESS variable: 

DEF_CONTROLLER_ADDRESS=nccoe-server1.micronets.net 

  

6. Download the docker image by entering the following command: 

/etc/micronets/micronets-mud-manager.d/micronets-mud-manager docker-pull 

You should see output similar to the following: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://raw.githubusercontent.com/cablelabs/micronets-mud-tools/nccoe-build-3/bin/micronets-mud-manager
https://raw.githubusercontent.com/cablelabs/micronets-mud-tools/nccoe-build-3/bin/micronets-mud-manager


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 95 

 

7. Next, set up the MUD cache directory by using the management script and entering the follow-
ing command: 

sudo /etc/micronets/micronets-mud-manager.d/micronets-mud-manager setup-cache-
dir 

8. Last, start the MUD manager by entering the following command to run the docker container: 

/etc/micronets/micronets-mud-manager.d/micronets-mud-manager docker-run 

You should see output similar to the following: 

 

9. Verify that the MUD manager is running by using the following command and reviewing the 
logs: 

/etc/micronets/micronets-mud-manager.d/micronets-mud-manager docker-logs 

You should see output similar to the following: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 96 

 

10. Set up a proxy pass to the MUD manager by adding the following entry to the 
NGINX server block: 

a. Open the NGINX sites-available file for the server: 

 sudo vim /etc/nginx/sites-available/nccoe-server1.micronets.net  

b. Add the following location to the server block: 

location /micronets/mud-manager/ { 

 proxy_pass      http://localhost:8888/; 

} 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 97 

 

11. Reload the NGINX server by executing the following command: 

 sudo nginx -s reload 

4.1.2.3.3 Operation  
In this section, we test general operation of the MUD manager.  

1. Test the MUD manager by retrieving a MUD file and using the following command (replace the 
MUD manager URL with the URL you created in Section 4.1.2.3.1): 

curl -q -X POST -H "Content-Type: application/json" \ 
 https://nccoe-server1.micronets.net/micronets/mud-manager/getMudFile \ 
 -d '{"url": "https://alpineseniorcare.com/micronets-mud/ciscopi.json"}'  

 

You should see the MUD file requested printed in the terminal:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 98 

 

2. Check the MUD file cache directory to confirm that the MUD file requested is stored in the 
cache:  

ls -1  /var/cache/micronets-mud/ 

You should see the MUD file you just requested stored in the cache directory: 

 

3. Now that the MUD manager has successfully retrieved its first MUD file, you can clear the cache 
by entering the following command: 

 /etc/micronets/micronets-mud-manager.d/micronets-mud-manager clear-cache-dir 

You should see the following output once the command above has been executed:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 99 

 

4. To output a list of additional docker commands supported by the management script, you can 
execute the following command: 

/etc/micronets/micronets-mud-manager.d/micronets-mud-manager –– 

You should see output similar to the following: 

 

4.1.3 MUD File Server 
This section describes the CableLabs MUD file server, which is a cloud-hosted service. The Build 3 
implementation is designed a bit differently from the other three builds insofar as it requires a MUD 
registry to be incorporated in the solution as described in Volume B. We describe the MUD registry in 
this section of the documentation.  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 100 

4.1.3.1 MUD File Server Overview 
In the absence of a commercial MUD file server for use in this project, the NCCoE leveraged a Linode 
cloud-hosted Linux server to create the MUD file server that is accessible via the internet. This file server 
stores the MUD files along with their corresponding signature files for the IoT devices used in the 
project. Upon receiving a GET request for the MUD files and signatures, it serves the request to the 
MUD manager by using https. 

4.1.3.2 Configuration Overview 
The following subsections document the software and network configurations for the MUD file server. 

4.1.3.2.1 Network Configuration 
This server was hosted outside the lab environment on a Linode cloud-hosted Linux server. Its IP address 
was statically assigned. 

4.1.3.2.2 Software Configuration 
For this build, the server ran on an Ubuntu 18.04 LTS operating system. The MUD files and signatures 
were hosted by an NGINX web server and configured to use SSL/TLS encryption.  

4.1.3.2.3 Hardware Configuration 
The following hardware is required to install, configure, and operate the MUD file server: 

 4 GB of RAM 

 50 GB of free disk space 

4.1.3.3 Setup 

4.1.3.3.1 NGINX Web Server 
1. Update your local package index by entering the following command: 

sudo apt update  

2. Install NGINX by entering the following command: 

sudo apt install nginx  

3. Create the directory where the MUD files will be stored on the MUD file server as follows:  

sudo mkdir -p /var/www/nccoe-server2.micronets.net/html/micronets-mud/ 

4. Create an NGINX config file for this server. (Note: If you are following the architecture for this 
implementation, all Micronets cloud components will be hosted on this server, and this will be 
the same config file that will be modified to add routes to the different Micronets services.) 

sudo vim /etc/nginx/sites-available/<ServerURL> 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 101 

 
Below is an example of this command: 
 
sudo vim /etc/nginx/sites-available/nccoe-server2.micronets.net  

5. Add the following configuration block to the file. (Note: additional locations will be added to this 
configuration block as you continue to set up the different Micronets services.) 

server { 
     listen 443 ssl; 
     listen [::]:443 ssl; 
     root /var/www/nccoe-server2.micronets.net/html; 
     index index.html index.htm index.nginx-debian.html; 
     server_name nccoe-serve2.micronets.net; 
      location / { 
        # First attempt to serve request as file, then 
        # as directory, then fall back to displaying a 404. 
        try_files $uri $uri/ =404; 
    } 
    if ($scheme != "https") { 
        return 301 https://$host$request_uri; 
    } 

ssl_certificate /home/micronets-dev/Projects/micronets/cert/nccoe-
server2_micronets_net.crt; 
ssl_certificate_key /home/micronets-dev/Projects/micronets/cert/nccoe-
server2_micronets_net.key;  

 
include /etc/nginx/micronets-subscriber-forwards/*.conf; 
} 

 
6. Enable the file by creating a link from it to the sites-enabled directory, which NGINX reads from 

during startup: 

sudo ln -s /etc/nginx/sites-available/nccoe-server2.micronets.net \ 
/etc/nginx/sites-enabled/nccoe-server2.micronets.net 

7. Next, test to make sure that there are no syntax errors in any of your NGINX files: 

sudo nginx -t 

You should see output similar to the following: 

 

8. If there are no problems, restart NGINX to enable your changes: 

sudo systemctl restart nginx 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 102 

4.1.3.3.2 MUD File Creation and Signing 
To create MUD files for MUD-capable IoT devices, please follow the instructions in Build 1’s MUD File 
Server. Once MUD files and signature files are created, they can be stored in the web server directory 
created on the MUD file server in the previous section.  

4.1.4 Micronets Gateway 
This section describes the CableLabs Micronets Gateway, which, for this implementation, is an on-
premises component. This implementation leveraged the nccoe-build-3 tagged version of CableLabs 
Micronets Gateway Git release. This documentation describes setting up your own Micronets gateway.  

4.1.4.1 Micronets Gateway Overview 
The Micronets Gateway establishes a connection to the Micronets Manager through the Websocket 
Proxy and receives traffic flow rules and other configuration information that it applies and enforces. 
Additionally, the Micronets Gateway supports wired and wireless connections, MUD-defined ACLs, and 
DPP onboarding. 

4.1.4.2 Configuration Overview 
The following subsections document the software and network configurations for the Micronets 
Gateway. 

4.1.4.2.1 Network Configuration 
Implementation of a Micronets gateway requires an internet source such as a digital subscriber line 
(DSL) or cable modem.  

4.1.4.2.2 Software Configuration 

The Micronets Gateway runs an Ubuntu 16.04 LTS server, which can support all the software dependen-
cies and packages that will be installed during setup.  

4.1.4.2.3 Hardware Configuration 
For this implementation, we leveraged a Shuttle XPC slim DH170 with the following specs:  

 x86_64 processor (Intel or AMD) 

 at least two Ethernet ports 

 wireless adapter with a QUALCOMM Atheros AR9271 chipset  

 2 GB or higher of RAM 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets-gw/releases/tag/1.0.55


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 103 

4.1.4.3 Setup 

4.1.4.3.1 Install Dependencies 
1. If Micronets is already installed and running, you should stop the services first by executing the 

following commands: 

sudo systemctl stop micronets-gw.service  

sudo systemctl stop micronets-hostapd.service  

2. Update your local package index by entering the following command: 

sudo apt-get update 

You should see the following output from this command: 

 

3. Install the python-pip, virtualenv, dnsmasq, python-six, and libnl-route-3-200 packages by exe-
cuting the following command:  

sudo apt-get -y install python-pip virtualenv dnsmasq python-six libnl-route-3-
200 

If the packages are not already installed, you should see the following output from this 
command: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 104 

 

4. Install openvswitch version 2.9.2 and its dependencies from the CableLabs micronets-gw github 
repository by executing the following for loop:  

for package in libopenvswitch_2.9.2-1_amd64.deb \ 

  openvswitch-common_2.9.2-1_amd64.deb \ 

  openvswitch-switch_2.9.2-1_amd64.deb ; 

do curl -L -O https://github.com/cablelabs/micronets-gw/releases/down-
load/1.0.55/${package}; 

sudo dpkg -i ${package}; 

done 

You should see the following output from this command: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 105 

 

5. Install Python version 3.6 and its dependencies from the CableLabs micronets-gw github reposi-
tory by executing the following for loop:  

for package in libpython3.6-minimal_3.6.5-5.16.04.york1_amd64.deb \ 

  libpython3.6-stdlib_3.6.5-5.16.04.york1_amd64.deb \ 

  python3.6-minimal_3.6.5-5.16.04.york1_amd64.deb \ 

  python3.6_3.6.5-5.16.04.york1_amd64.deb ; 

do curl -L -O https://github.com/cablelabs/micronets-gw/releases/down-
load/1.0.55/${package}; 

 

You should see the following output from this command: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 106 

 

4.1.4.3.2 Install Micronets Packages 
1. Enter the following command to download the Micronets hostapd package: 

curl -L -O https://github.com/cablelabs/micronets-gw/releases/down-
load/1.0.55/micronets-hostapd-1.0.21.deb 

You should see output similar to the following: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 107 

 

2. Enter the following command to de-package the Micronets hostapd package: 

sudo dpkg -i micronets-hostapd-1.0.21.deb  

You should see output similar to the following: 

 

3. Enter the following command to download the Micronets Gateway package: 

curl -L -O https://github.com/cablelabs/micronets-gw/releases/down-
load/1.0.55/micronets-gw-1.0.55.deb 

You should see output similar to the following: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets-gw/releases/download/1.0.55/micronets-gw-1.0.55.deb
https://github.com/cablelabs/micronets-gw/releases/download/1.0.55/micronets-gw-1.0.55.deb


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 108 

 

4. Enter the following command to install the Micronets hostapd package: 

sudo dpkg -i micronets-gw-1.0.55.deb  

After a bit of a delay, you should see output similar to the following: 

 

5. Enable autostart for the Micronets hostapd service by entering the following command:  

sudo systemctl enable micronets-hostapd.service  

6. Enable autostart for the Micronets Gateway Service by entering the following command:  

sudo systemctl enable micronets-gw.service  

7. Start the Micronets hostapd service by entering the following command:  

sudo systemctl start micronets-hostapd.service  

8. Start the Micronets Gateway Service by entering the following command:  

sudo systemctl start micronets-gw.service  

9. Verify that the gateway service started successfully by running the following command:   

sudo systemctl status micronets-gw.service 

10. Verify that the Micronets hostapd service started successfully by running the following 
command:   

sudo systemctl status micronets-hostapd.service  

 

CableLabs documentation notes that installing the micronets-gw package should produce the following 
results:  

 installation of the Micronets Gateway Service in the /opt/micronets-gw directory 

 installation of the ifup/down and dnsmasq extension scripts for configuration of openvswitch 
and the micronets-gw service via /etc/network/interfaces  

 installation of a sample/etc/network/interfaces file in /opt/micronets-gw/doc/interfaces.sample 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 109 

 installation and start of the micronets-gw-service systemd service 

4.1.5 IoT Devices 
This section provides configuration details for the Linux-based IoT development kits used in the build, 
which can be onboarded via DPP. It also provides information regarding a basic IoT application used to 
test the MUD process.  

4.1.5.1 IoT Devices Overview 
Build 3, like the other builds in this project, leverages the Raspberry Pi devkit with capabilities developed 
to make these devices both MUD- and DPP-capable. The Raspberry Pi runs the Raspbian 9 OS and is pro-
visioned with one bootstrapping public/private key pair during device setup. The Micronets Proto-Pi 
software developed by CableLabs in combination with the added hardware outlined in the configuration 
section adds DPP capability to these devices. There are two onboarding mechanisms called modes sup-
ported by the Micronets Proto-Pi software: DPP mode and clinic mode. The clinic mode provides an 
onboarding mechanism via automated installation of Wi-Fi security certificates, and the DPP mode pro-
vides QR code–based device onboarding. For this implementation, we only describe setting up and lev-
eraging the Micronets Proto-Pi software in DPP mode. If you would like to leverage the clinic mode of 
this software, follow the documentation provided by CableLabs: https://github.com/cablelabs/mi-
cronets-pi3/blob/nccoe-build-3/README.md#Installation. 

4.1.5.2 Configuration Overview 
The following subsections document the software and network configurations for the Micronets Proto-
Pi device.  

4.1.5.2.1 Network Configuration 
The following network configurations are required to install, configure, and operate the Micronets 
Proto-Pi device: 

 wired network connection to a separate access point that provides both initial internet access to 
self-register the device and remote management access to the device during setup  

4.1.5.2.2 Software Configuration 
The following software is required to install, configure, and operate the Micronets Proto-Pi device: 

 tool for flashing images to Secure Digital (SD) card (This implementation leveraged 
balenaEtcher: https://www.balena.io/etcher/.) 

 latest Raspbian image from: 

• CableLabs at the following link (this image has Secure Shell (SSH) and Visual (vi) 
preinstalled): https://www.dropbox.com/s/37ygauo02ltxirf/raspbian-buster-ssh-
updates.zip?dl=0 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#Installation
https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#Installation
https://www.balena.io/etcher/
https://www.dropbox.com/s/37ygauo02ltxirf/raspbian-buster-ssh-updates.zip?dl=0
https://www.dropbox.com/s/37ygauo02ltxirf/raspbian-buster-ssh-updates.zip?dl=0


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 110 

• Or you can download the latest Buster distribution and install packages yourself from the 
following link: https://www.raspberrypi.org/software/operating-systems/  

4.1.5.2.3 Hardware Configuration 
The following hardware is required to install, configure, and operate the Micronets Proto-Pi device: 

 Raspberry Pi (version 3B+) 

 SD card 

 Alfa adapter  

 Ethernet cable 

4.1.5.3 Setup 

4.1.5.3.1 Install Dependencies 
1. Connect the SD card to your computer. 

2. Open balenaEtcher (or whatever tool you have downloaded for flashing SD cards).   

3. Click Select image, and select the Raspbian image you downloaded:  

 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://www.raspberrypi.org/software/operating-systems/


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 111 

 

4. Click Select target, and select the SD card you connected to the computer (the software may 
automatically recognize the target): 

 

You should see something similar to the following:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 112 

 

 

5. Click Flash! to start the flashing process:  

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 113 

You may be prompted to enter your password, as seen below: 

  

When the flashing has completed, you should see output similar to the following:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 114 

 

 

4.1.5.3.2 Install Micronets Proto-Pi 
1. Insert the SD card to the Raspberry Pi, and connect power using a micro–Universal Serial Bus 

(USB) cable. 

2. Connect to the Raspberry Pi from a remote machine by using SSH: 

Note: You will need to figure out the Ethernet IP address of the Raspberry Pi, which can be done 
by looking at the DHCP assignments on the gateway to which you connected the Raspberry Pi. 

a. Enter the following command once you have identified the device’s IP address: 

ssh pi@[ipaddress]  

  

b. You will be prompted to continue connecting, as this is the first time connecting to the 
device: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 115 

c. Enter the password for the Raspberry Pi:  

Note: The password is “micronets” if you are leveraging the CableLabs Raspberry Pi 
image: 

 

d. You will now have access to a terminal on the Raspberry Pi: 

 
3. Ensure that you are in the home directory by entering the following command:  

cd ~ 

4. Download the Micronets Proto-Pi software from GitHub by entering the following command:  

git clone https://git@github.com/cablelabs/micronets-pi3.git 

You should see output similar to the following:  

   

5. Change into the micronets-pi3 directory by entering the following command: 

cd micronets-pi3/ 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 116 

6. Check out the nccoe-build-3 branch by entering the following branch:  

git checkout nccoe-build-3 

You should see output similar to the following:  

 

7. Change into the deploy directory by entering the following command:  

cd deploy/  

8. Install the Micronets Proto-Pi software by entering the following command:  

./install 

When prompted to accept disk space required, input Y as seen below: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 117 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 118 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 119 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 120 

   

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 121 

4.1.5.3.3 Operation 
Four buttons are used for general operation in the Micronets Proto-Pi application. These buttons are on 
the right side of the application and will be described in the upcoming sections.  

 Accessing Raspberry Pi Using Virtual Network Computing (VNC )Viewer: 

a. Access the Raspberry Pi using the VNC Viewer, enter the IP address of the Raspberry Pi, 
and click Connect: 

 

You will be prompted to accept and store the signature for this device as it is the first 
time connecting to it. Click OK: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 122 

 

Once accepted, proceed to log in with the username and password, as seen below:   

 

b. You should see the Micronets Proto-Pi application on the screen as seen below: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 123 

 

 The onboard button described in the following steps allows the user to initiate the onboard op-
eration: 

 Click the green button to initiate the onboard process:  

 

 

A QR code will appear as seen below. The mobile application will be used to scan this QR 
code for onboarding: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 124 

 

 The cycle button described in the following steps turns the Wi-Fi off/on to reconnect to the con-
figured service set identifier (SSID).  

 Click the orange cycle button: 

 

You should see output similar to the following: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 125 

 The settings button described in the following steps will open the settings menu, which has four 
different operations/buttons: 

a. Click the gear button: 

 

The following menu will appear: 

 

b. Click the Mode button to change the onboarding mode from DPP to clinic, and vice 
versa:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 126 

 

The following screen displays:  

 

c. Click the Mode button again to return to DPP mode: 

 

You will see the following change to your screen: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 127 

  

d. Click the Reset button to clear Wi-Fi credentials. (Note: If the device is in clinic mode, it 
will restore the credentials for the clinic Wi-Fi.) 

 

You should see output similar to the following: 

  

e. Click the Reboot button to reboot the Pi: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 128 

 

You should see output similar to the following: 

 

f. Click the Done button to exit the settings screen: 

 

You should see output similar to the following: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 129 

 

 The power button described in the following steps appears on the main screen of the Micronets 
Proto-Pi application and is used to restart the application as well as shut down the Pi entirely: 

a. Tap the power button to restart the application: 

  

You should see output similar to the following: 

 

Next, the following screen should appear: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 130 

 

Finally, the main screen appears as seen below: 

 

b. Hold the power button to shut down the Pi: 

 

You should see output similar to the following: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 131 

  

 

4.1.6 Update Server 
Build 3 leverages the preexisting update server that is described in Build 1’s Update Server section. To 
implement a server that will act as an update server, see the documentation in Build 1’s Update Server 
section. The update server will attempt to access and be accessed by the IoT device, which, in this case, 
is one of the development kits we built in the lab.  

4.1.7 Unapproved Server 
Build 3 leverages the preexisting unapproved server that is described in Build 1’s Unapproved Server 
section. To implement a server that will act as an unapproved server, see the documentation in Build 1’s 
Unapproved Server section. The unapproved server will attempt to access and be accessed by an IoT 
device, which, in this case, is one of the MUD-capable devices on the implementation network.  

4.1.8 CableLabs MUD Registry 
This section describes the CableLabs MUD registry, which, for this implementation, is a cloud-provided 
service. This implementation leveraged the nccoe-build-3 branch of CableLabs MUD registry Git release. 
This service can be hosted by the implementer or another party. This documentation describes setting 
up your own MUD registry.  

4.1.8.1 CableLabs MUD Registry Overview 
The Micronets MUD registry provides the capability to look up the MUD URL that is associated with a 
particular device. This registration and MUD URL association can be done manually or by the device us-
ing self-registration.   

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets-mud-registry/blob/nccoe-build-3/README.md#Installation


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 132 

4.1.8.2 Configuration Overview 
The following subsections document the software and network configurations for the MUD registry. 
Please note that the MUD manager, Micronets Manager, Websocket Proxy, MUD registry, and MSO 
portal are all implemented on the same server, nccoe-server1.micronets.net. Many of these 
configurations have already been covered in previous sections of this document but are repeated here 
for consistency. 

4.1.8.2.1 Network Configuration 
This server was hosted outside the lab environment on a Linode cloud-hosted Linux server. Its IP address 
was statically assigned. 

4.1.8.2.2 Software Configuration 
For this build, the server ran on an Ubuntu 18.04 LTS operating system. The MUD registry runs in its own 
docker container and is configured to use SSL/TLS encryption.  

The following software is required to install, configure, and operate the MUD registry: 

 an Ubuntu 18.04 LTS server reachable by the server hosting the Micronets Manager instances 
and any Micronets gateways 

 docker (v18.06 or higher) 

 curl 

 NGINX 

4.1.8.2.3 Hardware Configuration 
The following hardware is required to install, configure, and operate the MUD registry: 

 4 GB of RAM 

 50 GB of free disk space 

4.1.8.3 Setup 

4.1.8.3.1 Install and Configure MUD Registry 
 Log in to docker by using the following command: 

docker login 

You should see output similar to the following: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 133 

  

 Retrieve the nccoe-build-3 tagged image by entering the following command:  

docker pull community.cablelabs.com:4567/micronets-docker/micronets-mud-regis-
try:nccoe-build-3 

 Execute the following command to run the image that was just retrieved:  

The command will follow the syntax below. Replace <MUDFILESERVER_URL> with your MUD 
file server URL: 

docker run -d -p 127.0.0.1:3082:3082 --env mud_base_uri=https://<MUDFILESERVER_URL> -v 
/etc/micronets/micronets-mud-registry.d/:/etc/micronets/config --name=micronets-mud-regis-
try community.cablelabs.com:4567/micronets-docker/micronets-mud-registry:nccoe-build-3 

docker run -d -p 127.0.0.1:3082:3082 --env mud_base_uri=https://nccoe-
server2.micronets.net/micronets-mud -v /etc/micronets/micronets-mud-regis-
try.d/:/etc/micronets/config --name=micronets-mud-registry community.cable-
labs.com:4567/micronets-docker/micronets-mud-registry:nccoe-build-3 

 Configure your own vendor code for your implementation by completing the following steps: 

 Create and modify the mud-registry.conf file by executing the following command. 
(Note: The configuration file must be named “mud-registry.conf” and must reside in a 
host folder that is passed to the docker instance in the docker run command executed in 
the previous step.)  

sudo vim /etc/micronets/micronets-mud-registry.d/mud-registry.conf   

 Replace <VENDOR-CODE> with your choice of vendor name, <MUDREGISTRY_URL> 
with the MUD registry URL, and <MUDFILESERVER_URL> with the MUD file server URL: 

{ 
    "vendors" : { 
       "<VENDOR-CODE> ": "https:// <MUDREGISTRY_URL> /registry/devices", 

   "ABCD": "https://abcd-domain.com:3082/vendors" 
    }, 
    "mud_base_uri": "https:// <MUDFILESERVER_URL> /micronets-mud", 
    "device_db_file": "/etc/micronets/config/device-registration.nedb" 
} 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 134 

For this implementation, we added the following: 

{ 
    "vendors" : { 
        "TEST": "https://nccoe-server1.micronets.net/registry/devices", 
        "ABCD": "https://abcd-domain.com:3082/vendors" 
    }, 
    "mud_base_uri": "https://nccoe-server2.micronets.net/micronets-mud", 
    "device_db_file": "/etc/micronets/config/device-registration.nedb" 
} 
 

 

 Modify the sites-available file for the NGINX server to route appropriate traffic to the 
docker container by executing the following commands:  

i. Open the sites-available file for the NGINX server by entering the following  
command: 

sudo vim /etc/nginx/sites-available/nccoe-server1.micronets.net  

ii. Map the location for the /registry/devices so it is routed to vendors/ in the docker 
instance running on port 3082 and for the /mud/ to be passed to the global regis-
try by adding the following to the server block: 

location /registry/devices { 
  proxy_pass http://localhost:3082/vendors/; 
} 
location /mud/{ 
  proxy_pass http://localhost:3082/registry/; 
} 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 135 

 

4.1.9 CableLabs Micronets Manager for SDN Control 
This section describes the CableLabs Micronets Manager, which, for this implementation, is a cloud-
provided service. This implementation leveraged the nccoe-build-3 branch of CableLabs Micronets 
Manager Git release. This service can be hosted by the implementer or another party. This 
documentation describes setting up your own Micronets Manager.  

4.1.9.1 CableLabs Micronets Manager Overview 
The Micronets Manager provides micro-services to the implementation. It receives onboarding requests, 
bootstrapping information, and more for a particular subscriber and is a core component for handing off 
requests among different components in the architecture.   

4.1.9.2 Configuration Overview 
The following subsections document the software and network configurations for the Micronets 
Manager. Please note that these instructions have the MUD manager, Micronets Manager, Websocket 
Proxy, MUD registry, and MSO portal all deployed onto the same server, nccoe-server1.micronets.net. 
Many of these configurations are already covered in previous sections of this document but are 
repeated here for consistency. 

4.1.9.2.1 Network Configuration 
This server was hosted outside the lab environment on a Linode cloud-hosted Linux server. Its IP address 
was statically assigned. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets-mud-registry/blob/nccoe-build-3/README.md#Installation


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 136 

4.1.9.2.2 Software Configuration 
For this build, the server ran on an Ubuntu 18.04 LTS operating system. The Micronets Manager runs in 
its own docker container and is configured to use SSL/TLS encryption.  

The following software is required to install, configure, and operate the Micronets Manager: 

 an Ubuntu 18.04 LTS server reachable by any Micronets gateways 

 docker (v18.06 or higher) 

 docker-compose (v1.23.1 or higher) 

 OpenSSL (1.0.2g or higher) 

 curl 

 NGINX (1.14.0 or higher) 

4.1.9.2.3 Hardware Configuration 
The following hardware is required to install, configure, and operate the Micronets Manager: 

 4 GB of RAM 

 50 GB of free disk space 

4.1.9.3 Setup 

4.1.9.3.1 Install Dependencies 
1. Install docker, docker-compose, openssl, curl, and NGINX by entering the following command:  

sudo apt-get install docker docker-compose openssl curl nginx 

4.1.9.3.2 Install and Configure the Micronets Manager 
1. Ensure the version of docker-compose is correct and upgrade if needed: 

a. Check the current version by entering the following command: 

docker-compose ––version 

You should see the version output as seen below: 

 

b. If the version is earlier than v1.23.1, run the following command to install a new version 
in /usr/local/bin directory:  

i. Download the docker-compose utility: 

curl -s -L -O https://github.com/docker/compose/releases/down-
load/1.24.1/docker-compose-Linux-`uname -m`  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 137 

ii. Install the docker-compose utility to the appropriate directory: 

sudo install -v -o root -m 755 docker-compose-Linux-`uname -m` 
/usr/local/bin/docker-compose 

You should see output similar to the following: 

 

2. Download the Micronets Manager management script, and install it by entering the following 
commands:  

a. Download the Micronets Manager management script: 

curl -s -O https://raw.githubusercontent.com/cablelabs/micronets-man-
ager/nccoe-build-3/scripts/mm-container 

b. Download the docker-compose utility: 

curl -s -O https://raw.githubusercontent.com/cablelabs/micronets-man-
ager/nccoe-build-3/scripts/docker-compose.yml 

c. Install the management script to the appropriate location: 

sudo install -v -o root -m 755 -D -t /etc/micronets/micronets-manager.d 
mm-container 

You should see output similar to the following: 

 

d. Install the docker-compose utility to the appropriate location: 

sudo install -v -o root -m 644 -D -t /etc/micronets/micronets-manager.d 
docker-compose.yml 

You should see output similar to the following: 

 

3. Copy the Micronets Manager server cert/key and the Websocket Proxy root CA cert created in 
earlier steps for use by the Micronets Manager docker container(s): 

a. Install the certificates and keys by entering the following command:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/mm-container
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/mm-container
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/docker-compose.yml
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/docker-compose.yml


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 138 

sudo install -v -o root -m 600 -D -t /etc/micronets/micronets-
manager.d/lib micronets-manager.{cert,key}.pem micronets-ws-root.cert.pem 

You should see output similar to the following: 

 

b. Create a placeholder micronets-ws-proxy.pkeycert.pem file. This file is not used, but the 
Micronets Manager currently checks for it: 

sudo touch /etc/micronets/micronets-manager.d/lib/micronets-ws-
proxy.pkeycert.pem 

4. Copy the shared secret value generated during the MSO portal installation: 

sudo install -v -o root -g docker -m 660 -D -t /etc/micronets/micronets-
manager.d/lib mso-auth-secret 

You should see output similar to the following: 

 

5. Execute the following command to download the Micronets Manager docker image. (Note: If 
you cannot connect to the docker service, use sudo usermod -aG docker to add the user account 
to the docker group.) 

/etc/micronets/micronets-manager.d/mm-container pull 

 You should see output similar to the following: 

 

6. Complete the following step to configure NGINX for the Micronets Manager: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 139 

 The Micronets Manager management script creates NGINX forward entries that provide 
a unique URI for each Micronets Manager docker image. To create the infrastructure for 
these entries, run: 

sudo /etc/micronets/micronets-manager.d/mm-container setup-web-proxy 

You should see output similar to the following: 

 

7. This sets up the folder to dynamically create forwarding entries for Micronets Manager in-
stances as they are created/removed. But the site files in /etc/nginx/sites-available/ need the 
following added to the server blocks to enable forwarding subscriber operations to the correct 
docker container. 

a. Open the NGINX sites-available file created in: 

sudo vim /etc/nginx/sites-available/nccoe-server1.micronets.net 

b. Add the following entry to the file:  

include /etc/nginx/micronets-subscriber-forwards/*.conf; 

For example: 

server { 
     server_name nccoe-server1.micronets.net; 
 {…] 
     include /etc/nginx/micronets-subscriber-forwards/*.conf; 
} 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 140 

 

8. Complete the following steps to configure the Micronets Manager to communicate with other 
Micronets services on the server: 

a. Open the docker-compose.yml file by entering the following command: 

sudo vim /etc/micronets/micronets-manager.d/docker-compose.yml 

b. Modify the following environmental variables in the docker-compose.yml file. Replace 
<ServerURL> with your server URL: 

 MM_API_PUBLIC_BASE_URL: https://<ServerURL>/sub/${MM_SUBSCRIBER_ID}/api 

 MM_APP_PUBLIC_BASE_URL: https:// <ServerURL>/sub/${MM_SUBSCRIBER_ID}/app 

 MM_IDENTITY_SERVER_BASE_URL: https://<ServerURL>:8888/ 

 MM_MSO_PORTAL_BASE_URL: https:// <ServerURL>/micronets/mso-portal 

 MM_MUD_MANAGER_BASE_URL: https:// <ServerURL>/micronets/mud-manager 

 MM_MUD_REGISTRY_BASE_URL: https:// <ServerURL>/micronets/mud/v1 

 MM_GATEWAY_WEBSOCKET_BASE_URL: wss://<ServerURL>:5050/micronets/v1/ws-
proxy/gw 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 141 

 

4.1.10  Micronets Websocket Proxy 
This section describes the CableLabs Micronets Websocket Proxy, which, for this implementation, is a 
cloud-provided service. This implementation leverages the nccoe-build-3 branch of CableLabs Micronets 
Websocket Proxy Git release. This service can be hosted by the implementer or another party. This 
documentation describes setting up your own Micronets Manager.  

4.1.10.1  Micronets Websocket Proxy Overview 
The Micronets Websocket Proxy is a service for establishing a Websocket connection between a sub-
scriberʼs gateway and Micronets Manager. This connection is leveraged to issue representational state 
transfer (REST) commands to the gateway and to receive event notifications from the gateway.  

4.1.10.2  Configuration Overview 
The following subsections document the software and network configurations for the Websocket Proxy. 
Please note that the MUD manager, Micronets Manager, Websocket Proxy, MUD registry, and MSO 
portal are all implemented on the same server, nccoe-server1.micronets.net. Many of these 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/install/ws-proxy.md


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 142 

configurations are already covered in previous sections of this document but are repeated here for 
consistency. 

4.1.10.2.1 Network Configuration 
This server was hosted outside the lab environment on a Linode cloud-hosted Linux server. Its IP address 
was statically assigned. 

4.1.10.2.2 Software Configuration 
For this build, the server ran on an Ubuntu 18.04 LTS operating system. The Websocket Proxy runs in its 
own docker container and is configured to use SSL/TLS encryption.  

The following software is required to install, configure, and operate the Websocket Proxy: 

 an Ubuntu 18.04 LTS server reachable by the Micronets Manager and any Micronets gateways 

 docker (v18.06 or higher) 

 docker-compose (v1.23.1 or higher) 

 curl 

 Python 3.6+  

 Python virtualenv package 

4.1.10.2.3 Hardware Configuration 
The following hardware is required to install, configure, and operate the Websocket Proxy: 

 4 GB of RAM 

 50 GB of free disk space 

4.1.10.3  Setup 
 Change to the working directory by entering the following command:  

cd Projects/micronets/ 

If you have not already created this directory:  

 Execute the following command: 

mkdir Projects/micronets/ 

 Next, change directories by entering the following command: 

cd Projects/micronets/  

 Download and install the cert generation scripts by executing the following commands: 

 Download the script to generate the root certificates: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 143 

curl -s -O https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-
build-3/bin/gen-root-cert 

 Download the script to generate leaf certificates: 

curl -s -O https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-
build-3/bin/gen-leaf-cert 

 Install both scripts by executing the following command: 

sudo install -v -o root -m 755 -D -t /etc/micronets/micronets-ws-proxy.d/ 
gen-*-cert 

You should see output similar to the following: 

 

 Create the root certificate for the Websocket Proxy: 

/etc/micronets/micronets-ws-proxy.d/gen-root-cert --cert-basename micronets-ws-
root \ 
    --subject-org-name "Micronets Websocket Root Cert" \ 
    --expiration-in-days 3650 
 

You should see output similar to the following: 

 

 Create the Websocket Proxyʼs server certificate and private key by entering the following  
command. (Note: This certificate and key host the Websocket Proxy server.) 

/etc/micronets/micronets-ws-proxy.d/gen-leaf-cert --cert-basename micronets-ws-
proxy \ 
   --subject-org-name "Micronets Websocket Proxy Cert" \ 
   --expiration-in-days 3650 \ 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 144 

   --ca-certfile micronets-ws-root.cert.pem \ 
   --ca-keyfile micronets-ws-root.key.pem 
 

You should see output similar to the following: 

 

 Combine the private key and certificate into one file by entering the following command: 

cat micronets-ws-proxy.cert.pem micronets-ws-proxy.key.pem \ 
   > micronets-ws-proxy.pkeycert.pem 
 

 Generate the client certificate and key to be used by the Micronets Manager to connect to the 
Websocket Proxy. (Note: these files will enable the Micronets Manager to connect to the proxy.) 

 /etc/micronets/micronets-ws-proxy.d/gen-leaf-cert --cert-basename micronets-
manager \ 
     --subject-org-name "Micronets Manager Websocket Client Cert" \ 
     --expiration-in-days 3650 \ 
     --ca-certfile micronets-ws-root.cert.pem \ 
     --ca-keyfile micronets-ws-root.key.pem 
 

You should see output similar to the following: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 145 

 Combine the private key and certificate into one file by entering the following command: 

 cat micronets-manager.cert.pem micronets-manager.key.pem \ 
     > micronets-manager.pkeycert.pem 
 

 Generate the certificate and key to be used by the Micronets Gateway to connect to the Web-
socket Proxy. (Note: these files will enable the Micronets Gateway to connect to the proxy.) 

 /etc/micronets/micronets-ws-proxy.d/gen-leaf-cert --cert-basename micronets-gw-
service \ 
     --subject-org-name "Micronets Gateway Service Websocket Client Cert" \ 
     --expiration-in-days 3650 \ 
     --ca-certfile micronets-ws-root.cert.pem \ 
     --ca-keyfile micronets-ws-root.key.pem 
 

You should see output similar to the following: 

 

 Combine the private key and certificate into one file by entering the following command: 

 cat micronets-gw-service.cert.pem micronets-gw-service.key.pem \ 
     > micronets-gw-service.pkeycert.pem 
 

 Download and install the management script by entering the following commands: 

 Download the micronets-ws-proxy script: 

curl -s -O https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-
build-3/bin/micronets-ws-proxy 

 Install the script to the appropriate directory: 

sudo install -v -o root -m 755 -D -t /etc/micronets/micronets-ws-proxy.d/ 
micronets-ws-proxy  

You should see output similar to the following: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 146 

 

 Copy the Websocket Proxy server cert and key for use by the Websocket Proxy docker con-
tainer: 

sudo install -v -o root -m 600 -D -t /etc/micronets/micronets-ws-proxy.d/lib \ 
  micronets-ws-proxy.pkeycert.pem  micronets-ws-root.cert.pem  
 

You should see output similar to the following: 

 

 Download the Micronets Websocket Proxy docker image. (Note: if you cannot connect to the 
docker service, use sudo usermod -aG docker to add the user account to the docker group.) 

/etc/micronets/micronets-ws-proxy.d/micronets-ws-proxy docker-pull 

You should see output similar to the following:  

 

 Start the Websocket Proxy: 

/etc/micronets/micronets-ws-proxy.d/micronets-ws-proxy docker-run 

You should see output similar to the following:  

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 147 

 Verify that the Websocket Proxy is running: 

/etc/micronets/micronets-ws-proxy.d/micronets-ws-proxy docker-logs 

You should see output similar to the following:  

 

 Verify the Websocket Proxy credentials by executing the following steps: 

 Download the Websocket test client script: 

curl -O https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-
build-3/bin/websocket-test-client.py 

 Download the requirements text file:  

curl -O https://raw.githubusercontent.com/cablelabs/micronets-ws-proxy/nccoe-
build-3/requirements.txt 

 Clear out the nonroot installation of virtualenv, and set the Python interpreter to use 
Python 3.6 for the script installation: 

virtualenv --clear -p $(which python3.6) $PWD/virtualenv 

You should see output similar to the following: 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 148 

 Install virtualenv and pass the requirements text file: 

./virtualenv/bin/pip install -r requirements.txt 

You should see output similar to the following:  

 

 Run the Websocket test client script:  

./virtualenv/bin/python websocket-test-client.py \ 
     --client-cert micronets-manager.pkeycert.pem \ 
     --ca-cert micronets-ws-root.cert.pem  \ 
     wss://localhost:5050/micronets/v1/ws-proxy/test/mm 
 

You should see output similar to the following: 

 

 Verify communication from the test client to the Websocket Proxy by checking the logs: 

/etc/micronets/micronets-ws-proxy.d/micronets-ws-proxy docker-logs  

You should see output similar to the following:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 149 

 

 Save the micronets-manager.pkeycert.pem, micronets-gw-service.pkeycert.pem, and micronets-
ws-root.cert.pem files for configuring the Micronets Manager and Micronets Gateway compo-
nents. 

4.1.11  Micronets iPhone Application for Device Onboarding  
This section describes the CableLabs Micronets iPhone application, which is a mobile application used 
for onboarding DPP-capable devices. This implementation leverages the latest CableLabs Micronets 
iPhone application Git release. This documentation describes setting up your own Micronets iPhone 
application.  

4.1.11.1  Micronets iPhone Application Overview 
The Micronets iPhone application is responsible for sending onboarding requests and related elements 
to the MSO portal when the user initiates the onboarding process on the Micronets Proto-Pi device and 
scans the QR code. If building with an Android phone, follow the documentation provided here: 
https://github.com/cablelabs/micronets-mobile/blob/nccoe-build-3/README.md#android  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets-mobile/blob/nccoe-build-3/README.md#Installation
https://github.com/cablelabs/micronets-mobile/blob/nccoe-build-3/README.md#android


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 150 

4.1.11.2  Configuration Overview 
The following subsections document the software and network configurations for the Micronets iPhone 
application.  

4.1.11.2.1 Network Configuration 
The mobile phone on which the Micronets application is being installed should have internet access via 
either the cellular network or Wi-Fi.  

4.1.11.2.2 Software Configuration 

The following software is required to install, configure, and operate the Micronets iPhone application: 

 macOS (minimum version 10.13; High Sierra) 

 Apple iOS Developer license 

 Node (minimum version 8) 

 Cordova (version 8.0.0; problems with version 9) 

 Xcode (minimum version 9.2) 

 ImageMagick 

 Brew  

4.1.11.2.3 Hardware Configuration 

The following hardware is required to install, configure, and operate the Micronets iPhone application: 

 Apple computing system (laptop or desktop)  

 Apple iPhone (any model compatible with iOS 10.3 and above) 

4.1.11.3  Setup 

4.1.11.3.1  Install Dependencies 
1. Install Node by entering the following command in the terminal:  

brew install node 

 
2. Install ImageMagick by entering the following command in the terminal:  

brew install imagemagick  
 

3. Install Cordova version 8.0.0 by entering the following command:  

sudo npm install -g cordova@8.0.0 
 

4. Install ios-deploy, which Cordova uses to cable-load the application, by entering the following 
command:   

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

mailto:cordova@8.0.0


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 151 

sudo npm install -g --unsafe-perm=true ios-deploy 
 

Note: The unsafe-perm flag is required on macOS versions El Capitan and higher.  

If you run into an EACCES: permission denied error, attempt the following fixes:  

sudo chown -R $USER:$GROUP ~/.npm 
 
sudo chown -R $USER:$GROUP ~/.config 
 

5. Open Xcode, and add Xcode to your command-line tools:  

Preferences > Location > Command Line Tools 

Select your Xcode version as seen in screenshot below:  

 

4.1.11.3.2  Build Micronets iPhone Application  
1. Check out the repo that contains the Micronets mobile application build by entering the follow-

ing command:  

git clone https://www.github.com/cablelabs/micronets-mobile.git 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 152 

2. Enter the Micronets mobile directory by entering the following command:  

cd micronets-mobile 

3. Add the target platform by entering the following command:  

cordova platform add ios 

 

4. Generate iOS icon set by entering the following command:  

npx app-icon generate 

You should see the following output:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 153 

 

5. Plug your iPhone into your computer, unlock your phone, and open to home screen. (You will 
need to allow developer use of the phone. You will be prompted.) 

6. Run the following command to build the mobile application:  

cordova run ios --device --buildFlag='-UseModernBuildSystem=0' 

You should see output similar to the following: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 154 

 

Note: This initial attempt to build is expected to fail. It is necessary to open the project in Xcode 
and change some settings.  

7. Open the project file platforms/ios/Micronets.xcodeproj in Xcode. 

8. Click the Micronets icon in the navigator pane on the left. The properties pane should now be 
visible on the right: 

 

9. Select Micronets under TARGETS:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 155 

 

10. Select the Signing & Capabilities tab in the heading: 

 

11. Ensure Automatically manage signing is checked:  

 

You will see the following notification. Select Enable Automatic:  

 

The Automatically manage signing setting should now be selected as seen below:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 156 

 

12. Ensure that your team is selected under the Team drop-down:   

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 157 

 

 

Note: If you encounter the following error to register the bundle identifier, proceed to step a: 

 

a. Change the Bundle Identifier to your own unique identifier: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 158 

 

b. Navigate to the config.xml file by selecting as shown below:  

  

c. Modify the widget id from com.cablelabs.micronets.mobile to the build identifier cre-
ated in step a as seen below:  

 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 159 

13. Select the General tab in the heading: 

 

14. Under Deployment Info, make the following modifications:  

a. Select the deployment Target (suggested 10.3) 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 160 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 161 

b. Select Device type iPhone and iPad, Device Orientation Portrait and Upside Down,  
Status Bar style Hide status bar: 

 

15. Select the Info tab, and make the following modifications:  

 

a. On the last entry in Custom iOS Target Properties, hover over the down arrow. 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 162 

b. A plus sign appears. Click it to create a new property. 

 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 163 

c. In the combo box drop-down, start typing View controller, and choose the auto-fill  
suggestion View controller-based status bar appearance:

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 164 

d. Click enter to add this entry. Ensure this entry is set to NO. 

 

16. Return to the terminal, and run the following command (ensure the iPhone is unlocked first): 

 cordova run ios --device --buildFlag='-UseModernBuildSystem=0' 

Note: You may see an UnhandledPromiseRejectionWarning as seen below, but the application 
should still have been loaded onto your iPhone: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 165 

 

4.1.12  MSO Portal Bootstrapping Interface to the Onboarding Manager 
This section describes the CableLabs Micronets MSO portal, which, for this implementation, is a cloud-
provided service. This implementation leverages the nccoe-build-3 branch of CableLabs Micronets MSO 
portal Git release. This service can be hosted by the implementer or another party. This documentation 
describes setting up your own MSO portal.  

4.1.12.1  MSO Portal Overview 
The MSO portal is the interface between the Micronets iPhone application and the Micronets Manager. 
It is responsible for passing onboarding requests and respective onboarding information to the Mi-
cronets Manager to complete the request.   

4.1.12.2  Configuration Overview 
The following subsections document the software and network configurations for the MSO portal. 
Please note that the MUD manager, Micronets Manager, Websocket Proxy, MUD registry, and MSO 
portal are all implemented on the same server, nccoe-server1.micronets.net. Many of these 
configurations are already covered in previous sections of this document but are repeated here for 
consistency.  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/install/mso-portal.md


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 166 

4.1.12.2.1 Network Configuration 
This server was hosted outside the lab environment on a Linode cloud-hosted Linux server. Its IP address 
was statically assigned. 

4.1.12.2.2 Software Configuration 
The following software is required to install, configure, and operate the MSO portal: 

 docker (v18.06 or higher) 

 docker-compose (v1.23.1 or higher) 

 OpenSSL (1.0.2g or higher) 

 NGINX and requisite certificates if https is to be supported 

4.1.12.2.3 Hardware Configuration 
The following hardware is required to install, configure, and operate the MSO portal: 

 4 GB of RAM 

 50 GB of free disk space 

4.1.12.3  Setup 

4.1.12.3.1 Install Dependencies  
1. Install docker, docker-compose, openssl, and NGINX by entering the following command:  

sudo apt-get install docker docker-compose openssl nginx 

4.1.12.3.2 Install and Configure MSO Portal  
1. Install a newer version of docker-compose, if necessary. (Ubuntu 18.04 comes with an older ver-

sion.) 

a. Check the current version by entering the following command: 

docker-compose --version 

The result should be similar to the following: 

 

b. If the version is earlier than v1.23.1, run the following commands to install a new 
version in /usr/local/bin: 

i. Download the docker compose utility: 
curl -L -O 
https://github.com/docker/compose/releases/download/1.24.1/docker-
compose-Linux-`uname -m’ 
 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 167 

ii. Install the docker compose utility into the appropriate directory: 
sudo install -v -o root -m 755 docker-compose-Linux-`uname -m` 
/usr/local/bin/docker-compose 

The result should be similar to the following: 

 

2. Download and install the MSO portal management script by entering the following commands: 

 Download the MSO portal management script by executing the following command: 

curl -O https://raw.githubusercontent.com/cablelabs/micronets-mso-portal/nccoe-
build-3/scripts/mso-portal 

 Download the docker-compose.yml file by executing the following command: 

curl -O https://raw.githubusercontent.com/cablelabs/micronets-mso-portal/nccoe-
build-3/scripts/docker-compose.yml 

 Install the MSO portal management script to the appropriate directory by executing the 
following command: 

sudo install -v -o root -m 755 -D -t /etc/micronets/mso-portal.d mso-
portal 

The result should be similar to the following: 

 

 Install the docker-compose.yml management script to the appropriate directory by exe-
cuting the following command: 

sudo install -v -o root -m 644 -D -t /etc/micronets/mso-portal.d docker-
compose.yml 

The result should be similar to the following: 

 

Note: The MSO portal management script contains default values that can be modified directly 
in your copy of the management script or overridden via command-line parameters. 
Run /etc/micronets/mso-portal.d --help to see the options. 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 168 

3. Download the MSO portal docker image by executing the following command. (Note: If you can-
not connect to the docker service, you can use sudo usermod -aG docker <username> to add 
the user account to the docker group.) 

/etc/micronets/mso-portal.d/mso-portal docker-pull 

The result should be similar to the following: 

 

4. Generate a shared secret for enabling communication between the Micronets Manager in-
stances and the MSO portal: 

sudo /etc/micronets/mso-portal.d/mso-portal create-mso-secret 

The result should be similar to the following: 

 

Note: This value will need to be copied to the Micronets Manager host server to allow Micronets 
Manager instances to access the MSO portal APIs. 

5. Configure MSO portal URLs: 

a. Open the mso-portal file by entering the following command:  

sudo vim /etc/micronets/mso-portal.d/mso-portal 

b. Modify the parameters of the MSO portal management script to reflect the public end 
points of the MSO portal service. For example: 

i. The DEF_MSO_API_BASE_URL path variable can be set to: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 169 

DEF_MSO_API_BASE_URL="https://nccoe-
server1.micronets.net/micronets/mso-portal/" 

ii. The DEF_WS_PROXY_BASE_URL path variable can be set to: 

DEF_WS_PROXY_BASE_URL="wss://nccoe-
server1.micronets.net:5050/micronets/v1/ws-proxy/gw" 

 

6. Start the MSO portal docker image by executing the following command: 

sudo /etc/micronets/mso-portal.d/mso-portal docker-run 

The result should be similar to the following: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 170 

 

7. Verify that the MSO portal started successfully by executing the following command: 

/etc/micronets/mso-portal.d/mso-portal docker-logs 

You should see output like the following at the end of the log: 

Feathers application started on "http://0.0.0.0:3210" 

Feathers  webSocketBaseUrl "wss://<ServerURL>:5050/micronets/v1/ws-proxy/gw" 

Feathers  publicApiBaseUrl "https://< ServerURL>/micronets/mso-portal/" 

 

8. To securely expose the MSO API, configure your NGINX server block to allow the https proxy to 
redirect to localhost port 3210: 

 Open the NGINX sites-available file for the server: 

 sudo vim /etc/nginx/sites-available/nccoe-server1.micronets.net 

 Add the following location to the server block: 

server { 
 […] 
     location /micronets/mso-portal/ { 
         proxy_pass  http://127.0.0.1:3210/; 
     } 

[…] 
} 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 171 

 

4.2 Product Integration and Operation   
This section details integration and operation of the Micronets components that were previously 
installed in the product installation section. Please ensure that the components from that section are 
installed as described before proceeding to the following sections.   

4.2.1 Adding an MSO Subscriber  
This section describes adding an MSO portal subscriber. This subscriber account will allow a valid 
connection and association among the Micronets mobile application, Micronets Gateway, and 
Micronets services.  

4.2.1.1 Prerequisites  
To successfully complete this section, complete the product installation section.  

4.2.1.2 Instructions 
 Add a subscriber and associated user account and password to the MSO portal by entering the 

following command. (Note: be sure to use the server URL that reflects the location of your MSO 
portal.) 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 172 

curl -s -X POST https://nccoe-server1.micronets.net/micronets/mso-
portal/portal/v1/subscriber \ 
    -H "Content-Type: application/json" \ 
    -d '{ 
            "id" : "subscriber-001", 
            "ssid" : "micronets-gw", 
            "name" : "Subscriber 001", 
            "gatewayId":"micronets-gw", 
            "username":"micronets", 
            "password":"micronets" 
    }' \ 
| json_pp 
 

You should see output similar to the following: 

 

 Start the Micronets Manager for the subscriber by executing the following command: 

sudo /etc/micronets/micronets-manager.d/mm-container start subscriber-001 

 You should see output similar to the following: 

 

 Check the logs to confirm that the Micronets Manager for the new subscriber started success-
fully by executing the following command: 

/etc/micronets/micronets-manager.d/mm-container logs subscriber-001 

 You should see output similar to the following: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 173 

 

 Verify that the Micronets Manager for the subscriber has registered with the MSO portal by exe-
cuting the following command: 

curl -s https://my-server.org/micronets/mso-
portal/portal/v1/subscriber/subscriber-001 | json_pp 

You should see output similar to the following:
 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 174 

4.2.2 Associating the Micronets Gateway with a Subscriber 
This section describes associating an MSO portal subscriber with the Micronets Gateway. For additional 
instructions not detailed in this documentation, please follow the link to the CableLabs documentation: 
https://github.com/cablelabs/micronets-gw/releases/tag/1.0.62-u18.04 (for Micronets Gateway config-
uration) and https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/gateway-
4subscriber.md (for operations documentation).    

4.2.2.1 Prerequisites 
To successfully complete this section, complete the product installation section and complete Section 
4.2.1. Ensure that all steps have been successfully completed before proceeding to the instructions. 

4.2.2.2 Instructions 
 Create the /etc/network/interfaces file on the Micronets Gateway: 

 Open a terminal on the Micronets Gateway. If this is the first installation of the Mi-
cronets Gateway, copy the sample interfaces file to your /etc/network/interfaces file by 
entering the following command: 

sudo cp /opt/micronets-gw/doc/interfaces.sample /etc/network/interfaces 
 

 Modify the /etc/network/interfaces file:  

i. Retrieve the desired interface names on the gateway by running the following  
command in a terminal on the gateway:  

ifconfig 

ii. Configure your wireless and wired interface by renaming the corresponding por-
tion of the file to reference the respective interface name, as seen in the config 
below: 

# 
# A wired interface managed by the Micronets gateway 
# 
allow-brmn001 enp1s0  
iface enp1s0 manual 
  ovs_type OVSPort 
  ovs_bridge brmn001 
  ovs_port_req 4 
  ovs_port_initial_state blocked 
# 
# A wireless interface managed by the Micronets gateway 
# 
allow-brmn001 wlp2s0 
iface wlp2s0inet manual 
  ovs_type OVSPort 
  ovs_bridge brmn001 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets-gw/releases/tag/1.0.62-u18.04
https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/gateway-4subscriber.md
https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/gateway-4subscriber.md


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 175 

  ovs_port_req 3 
  ovs_port_initial_state blocked 
 

iii. Confirm that the bridge entry contains an ovs_ports line referring to the micronet 
interfaces (enp1s0 and wlp2s0) as seen in the config below: 

auto brmn001 
allow-ovs brmn001 
iface brmn001 inet manual 
 ovs_type OVSBridge 
  ... 
 # the ovs_ports should list all wired and wireless interfaces under 
Micronets management 
  ovs_ports diagout1 enp1s0 wlp2s0 
  ... 
 

iv. Confirm that the entry in the interfaces file for the wired interface is set up cor-
rectly for the network to supply the uplink (the uplink interface is enp1s0) and get 
its address via DHCP so the configuration is similar to the following: 

# 
# The uplink port 
# 
auto eth enp1s0 
iface eth0inet dhcp 
 

v. Confirm that the bridge entry contains an ovs_bridge_uplink_port line referring 
to the uplink interface as seen in the config below: 

auto brmn001 
allow-ovs brmn001 
iface brmn001 inet manual 
  ovs_type OVSBridge 
  ... 
  # This is the port that's connected to the Internet 
  ovs_bridge_uplink_port enp1s0 
  ... 
 

vi. Reboot the gateway to apply the changes to the /etc/network/interfaces file by 
executing the following command:  

sudo reboot 

 Create a gateway configuration file for the Micronets Gateway to register for the subscriber: 

 Copy and save the MAC addresses and corresponding interface names output by execut-
ing the following command: 

ifconfig 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 176 

 Navigate to the /etc/network/interfaces file on the gateway, and copy the subnets con-
figurations, which will be used for the gateway configuration file in the following steps: 

sudo vim /etc/network/interfaces  

Copy and save the subnet and ranges associated with the interfaces identified in the 
previous step from this file. (Note: these are at the bottom of the file.)  

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 177 

 

 Create the gateway config file by entering the following command: 

sudo vim gateway-config-001.json 

 Modify the following configuration to include your gateway’s MAC address and subnets 
as seen below, and copy them into the gateway-config-001.json file. 

Be sure to modify the ipv4SubnetRanges definition to match the bridge subnet range—
e.g., the file above defines five different subnets ranging from 10.135.1.1/24– 
10.135.5.1/24, so we set octetC to have a minimum of 1 and a maximum of 5, and oc-
tetD to have a minimum of 2 and a maximum of 254, as seen in the config below: 

{ 
    "version": "1.0", 
    "gatewayId": "micronets-gw", 
    "gatewayModel": "proto-gateway", 
    "gatewayVersion": {"major":1, "minor":0, "micro":0}, 
    "configRevision": 1, 
    "vlanRanges": [ 
        {"min":1000, "max":4095} 
    ], 
    "micronetInterfaces": [ 
        { 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 178 

            "medium": "wifi", 
            "name": "wlp2s0", 
            "macAddress": "20:16:d8:2b:4b:41", 
            "ssid": "micronets-gw", 
            "dpp": { 
                "supportedAkms": ["psk"] 
            }, 
            "ipv4SubnetRanges": [ 
                { 
                    "id": "range001", 
                    "subnetRange": {"octetA": 10, 
                                    "octetB": 135, 
                                    "octetC": {"min":1, "max":5} 
                    }, 
                    "subnetGateway": {"octetD": 1}, 
                    "deviceRange": {"octetD": {"min":2, "max":254}} 
                } 
            ] 
        }, 
        { 
            "medium": "ethernet", 
            "name": "enp1s0", 
            "macAddress": "80:ee:73:dc:64:1d", 
            "ipv4Subnets": [ 
                { 
                    "id": "range001", 
                    "subnetRange": {"octetA": 10, 
                                    "octetB": 135, 
                                    "octetC": 250 
                    }, 
                    "subnetGateway": {"octetD": 1}, 
                    "deviceRange": {"octetD": {"min":2, "max":254}} 
                } 
            ] 
        } 
    ] 
}     

 

 Register a gateway configuration for a subscriber with the subscriber’s Micronets Manager in-
stance by entering the following command (with the subscriber being subscriber-001 in this 
case): 

curl -s -X POST https://nccoe-server1.micronets.net/sub/subscriber-
001/api/mm/v1/micronets/odl \ 

-H "Content-Type: application/json" -d @./gateway-config-001.json | json_pp 

You should see output similar to the following:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 179 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 180 

 

 Confirm that the gateway ID is updated in the MSO portal by executing the following command: 

curl -s https://nccoe-server1.micronets.net/micronets/mso-
portal/portal/v1/subscriber/subscriber-001 | json_pp 

You should see output similar to the following:  
 

 
 

 Configure the Micronets Gateway with the Websocket Proxy keys provisioned for the gateway: 

a. Copy the client cert and key as well as the Websocket root certificate, created in the 
product installation section, from the cloud server into the gateway by executing the 
following commands from the gateway: 

i. Copy the micronets-gw-service.pkeycert.pem to the gateway: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 181 

scp micronets-dev@nccoe-server1.micronets.net:Projects/mi-
cronets/micronets-gw-service.pkeycert.pem . 

You should see the following output: 

 
ii. Copy the micronets-ws-root.cert.pem to the gateway: 

scp micronets-dev@nccoe-server1.micronets.net:Projects/mi-
cronets/micronets-ws-root.cert.pem . 

You should see the following output: 

 
b. Copy them into the gateway service library to be loaded when the gateway is restarted: 

sudo cp -v micronets-gw-service.pkeycert.pem micronets-ws-root.cert.pem 
/opt/micronets-gw/lib/ 

 Change the Websocket lookup URL to use the MSO portal service on your server by completing 
the following commands: 

a. Open the Micronets Gateway config file by executing the following command: 

sudo vim /opt/micronets-gw/config.py 

b. Modify the WEBSOCKET_LOOKUP_URL and GATEWAY_ID to match the MSO portal 
Websocket lookup end point created in the product installation section and the Mi-
cronets Gateway ID:  

WEBSOCKET_LOOKUP_URL = 'https://nccoe-
server1.micronets.net/micronets/mso-
portal/portal/v1/socket?gatewayId={gateway_id}' 

GATEWAY_ID = 'micronets-gw' 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

mailto:micronets-dev@nccoe-server1.micronets.net
mailto:micronets-dev@nccoe-server1.micronets.net


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 182 

 

 Restart the Micronets Gateway Service by executing the following command: 

sudo systemctl restart micronets-gw.service  

 Check the Micronets Gateway Service log (/opt/micronets-gw/micronets-gw.log ) to verify that 
the gatewayʼs Websocket registration status was successful: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 183 

cat /opt/micronets-gw/micronets-gw.log   

You should see output similar to the following: 

  

 Confirm the establishment of the gateway-manager control connection by examining the Web-
socket Proxy connection reports in the Websocket Proxy log: 

/etc/micronets/micronets-ws-proxy docker-logs | less 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 184 

Look for the following in the log (with the MEETUP ID matching the subscriber name in ques-
tion): 

 

This indicates that the Micronets Gateway Service and the Micronets Manager for the sub-
scriber connected and can exchange provisioning commands and event indications. 

4.2.3 Integrating Micronets Proto-Pi Device 
This section describes associating an MSO portal subscriber with the Micronets Gateway. For additional 
instructions not detailed in this documentation, please follow the link to the CableLabs documentation: 
https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#Operation. 

4.2.3.1 Prerequisites  
To successfully complete this section, be sure to have completed the product installation section 
associated with the Micronets Proto-Pi device. Ensure all steps have been successfully completed before 
proceeding to the instructions. 

4.2.3.2 Instructions 
1. Connect to the Raspberry Pi via SSH by entering the following command: 

ssh pi@192.168.30.191 

You will be prompted to enter the device password; the password will remain the same. 

2. Change to the keys directory by entering the following command: 

cd micronets-pi3/keys/ 

3. Output the content of the proto-pi.dpp.pub file to copy the public key for this device. (Note: 
you will need to store this device key for registering the device with the MUD registry if doing so 
manually.) 

cat proto-pi.dpp.pub 

Highlight and copy the key that was output by the previous command: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#Operation


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 185 

 

4. Modify the config.json file to include the key that was copied in the previous step, and modify 
the parameters of the file to match your setup: 

sudo vim ~/micronets-pi3/config/config.json 

The original file before editing should be similar to the following screenshot: 

 

If doing manual device registration, edit the file to reflect the correct DeviceModelUID (should 
be the same name as the MUD file associated with this device), dppMUDUrl, msoPortalUrl, reg-
istrationServer, vendorCode as seen below: 

{ 
    "channel": 1, 
    "channelClass": 81, 
    "comcast": false, 
    "demo": true, 
    "deviceModelUID": "nist-model-fe_northsouth.json", 
    "deviceProfile": "device-0", 
    "disableMUD": false, 
    "dppMUDUrl": "https://nccoe-server1.microents.net/mud/v1/mud-
url/TEST/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgACxjMF8Ucp6d3gRBImv78eGEMwB5igS2Kt5b
nXI7VeBrc=", 
    "dppName": "myDevice", 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://nccoe-server1.microents.net/mud/v1/mud-url/TEST/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgACxjMF8Ucp6d3gRBImv78eGEMwB5igS2Kt5bnXI7VeBrc=
https://nccoe-server1.microents.net/mud/v1/mud-url/TEST/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgACxjMF8Ucp6d3gRBImv78eGEMwB5igS2Kt5bnXI7VeBrc=
https://nccoe-server1.microents.net/mud/v1/mud-url/TEST/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgACxjMF8Ucp6d3gRBImv78eGEMwB5igS2Kt5bnXI7VeBrc=


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 186 

    "dppProxy": { 
        "msoPortalUrl": "https://nccoe-server1.micronets.net/micronets/mso-por-
tal/", 
        "password": "grandma", 
        "username": "grandma" 
    }, 
    "messageTimeoutSeconds": 45, 
    "mode": "dpp", 
    "onboardAnimationSeconds": 5, 
    "qrcodeCountdown": 30, 
    "registrationServer": "https://nccoe-server1.micronets.net/registry/de-
vices", 
    "splashAnimationSeconds": 10, 
    "vendorCode": "TEST" 
} 
 

If enabling self-registry, follow the steps described in this documentation: 
https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#dpp-mode-mud-
registry 

5. Reboot the device for the new config file to take effect: 

sudo reboot 

4.2.4 Updating MUD Registry  
This section describes the HTTP API operations for interacting with the MUD registry. The instructions 
detail how to register a MUD-capable device and its MUD URL with a vendor. For additional API opera-
tions not documented here, follow the link to the CableLabs MUD registry operation documentation: 
https://github.com/cablelabs/micronets-mud-registry/blob/nccoe-build-3/README.md#Operation.  

4.2.4.1 Prerequisites  
To successfully complete this section, be sure to have completed the product installation section.  

4.2.4.2 Instructions 
 Retrieve the device registry URL for a vendor by entering the following curl command: 

/mud/v1/device-registry/:vendor-code 

curl -L https://nccoe-server1.micronets.net/mud/v1/device-registry/TEST 

You should see output similar to the following: 

 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://nccoe-server1.micronets.net/micronets/mso-portal/
https://nccoe-server1.micronets.net/micronets/mso-portal/
https://nccoe-server1.micronets.net/registry/devices
https://nccoe-server1.micronets.net/registry/devices
https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#dpp-mode-mud-registry
https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#dpp-mode-mud-registry
https://github.com/cablelabs/micronets-mud-registry/blob/nccoe-build-3/README.md#Operation


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 187 

2. Register a device with a vendor's registry. This requires the device model UID and the public key, 
which can be modified and retrieved through the Micronets Proto-Pi: 

/registry/devices/register-device/:device-model-UID64/:public-key 

curl -X POST https://nccoe-server1.micronets.net/registry/devices/register-
device/nist-model-
fe_northsouth.json/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfM
rQ2mcCazdJNfNdgTkZM=   

You should see output similar to the following: 

 

3. Retrieve the MUD registry URL for a vendor: 

/mud/v1/mud-registry/:vendor-code 

curl https://nccoe-server1.micronets.net/mud/v1/mud-registry/TEST  

You should see output similar to the following: 

 

4. Lookup a MUD URL from the vendor MUD registry: 

/registry/devices/mud-registry/:public-key 

curl https://nccoe-server1.micronets.net/registry/devices/mud-registry/ 
MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfMrQ2mcCazdJNfNdgTkZM
=  

You should see output similar to the following: 

  

5. Delete a device from the MUD registry. (Note: if you do this step, the device will no longer be 
associated with a MUD file. Therefore, you should execute this command only if you do not in-
tend to onboard the device with MUD capabilities.) 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 188 

/registry/devices/remove-device/:public-key 

curl -L -X POST https://nccoe-server1.micronets.net/registry/devices/remove-de-
vice/MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgADSOi8J6JCJJ0h4+NmPtARUgfMrQ2mcCazdJNfNd
gTkZM=  

You should see output similar to the following: 

 

4.2.5 Integrating the Micronets iPhone App with MSO Portal  
This section describes integrating the Micronets iPhone application with the MSO portal. For additional 
instructions not detailed in this documentation, please follow the link to the CableLabs documentation: 
https://github.com/cablelabs/micronets-mobile/blob/nccoe-build-3/README.md#Operation. 

4.2.5.1 Prerequisites  
A valid network connection on the iPhone is required as well as the completion of the product 
installation section related to the Micronets iPhone application.  

4.2.5.2 Instructions 
 Open the Micronets mobile application: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets-mobile/blob/nccoe-build-3/README.md#Operation


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 189 

 

2. From the splash screen, click the gear button in the upper right corner to open the settings 
page: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 190 

 

3. Modify the following fields in the general settings: 

Mode - DPP or Clinic: We select DPP; if you are selecting the Clinic mode, please follow the 
documentation for details related to the Clinic mode. 

Debug - Leave this off, as CableLabs will be deprecating this in the future. 

Enable MUD – If enabled, it will try to fetch the MUD file for the scanned device and pre-
populate the Submit form prior to onboarding. 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 191 

 

4. Modify the servers for the Micronets application: 

DPP – MSO portal server URL for submitting onboard requests 

IdOra – Server for user authentication. (Note: this is only required if utilizing the Clinic 
Mode.) 

MUD – MUD registry server for looking up MUD files using the vendor code and public key 
in the QRCode. (Note: this only needs to be changed if you are deploying your own 
MUD registry.) 

 

5. Back on the Micronets mobile application, enter your subscriber credentials and click SIGN IN: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 192 

  

6. Click the READY TO SCAN button to open the camera for onboarding:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 193 

 

7. If prompted, allow the Micronets application camera access by clicking OK: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 194 

 

4.2.6 Onboarding Micronets Proto-Pi to a Micronet 
This section describes how to onboard a configured Micronets Proto-Pi device to a micronet using the 
Micronet iPhone app. For additional instructions not detailed in this documentation, please follow the 
link to the CableLabs documentation: https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-
3/README.md#Operation. 

4.2.6.1 Prerequisites  
To successfully complete this section, the following is required:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#Operation
https://github.com/cablelabs/micronets-pi3/blob/nccoe-build-3/README.md#Operation


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 195 

 a Raspberry Pi with the Micronets Proto-Pi software installed and configured 

 an iOS or Android phone with the Micronets application installed and configured 

 a Micronets subscriber account configured in Section 4.2.1 

 a gateway device associated with the Micronets subscriber configured in Section 4.2.2 

4.2.6.2 Instructions 
 If leveraging the self-registration feature for MUD onboarding, ensure that an ethernet cable is 

connected to the Raspberry Pi running the Micronets Proto-Pi software.  

 Power on the Pi device. If leveraging the self-registration feature, the device will automatically 
be registered on first run. 

 On the mobile device, open the Micronets mobile application and log in with your subscriber 
credentials. 

 

 On the Mobile device, tap the Ready to Scan button: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 196 

 

 On the Pi, click the Onboard icon: 

 

You should see a QR code appear on the screen: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 197 

 

 Scan the QRCode with the Micronet mobile application: 

 

  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 198 

 On the next screen that appears on the Micronets mobile application, input the following 
information in a timely fashion. (Note: these steps must be completed while the device is still in 
onboard mode.) 

a. If a MUD file was found, the device CLASS and NAME will be pre-populated; modify as 
needed. In the case that a MUD file was not found, populate the CLASS and NAME  
manually.  

b. Set the MODE to STA. (Note: the Mode should always be STA as of the time of this  
implementation.) 

c. Tap the ONBOARD button to send the onboarding request to the MSO portal. 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 199 

 On the Pi, you will see the device has been onboarded to the Micronets Gateway and has  
received an IP address: 

 

4.2.7 Interacting with Micronets Manager 
The Micronets Manager, which is hosted in the cloud, has API endpoints exposed in order to allow 
implementers to manage the Micronets Gateway through the Micronets Manager service. This section 
describes how to set up postman and execute different functions.  

4.2.7.1 Prerequisites  
In order to successfully complete this section of the documentation, be sure to have completed the 
product installation section above and downloaded the Postman application onto a laptop that has  
internet access: https://www.postman.com/downloads/. 

4.2.7.2 Instructions 
 Once Postman is installed and set up on the laptop, proceed to the following site to download 

the Micronets Manager Linode postman collections: 

Follow the links:   
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-
3/scripts/Micronets_Manager_API.postman_collection.json 

https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-
3/scripts/Micronets_Manager_API.postman_globals.json 

  

 

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://www.postman.com/downloads/
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/Micronets_Manager_API.postman_collection.json
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/Micronets_Manager_API.postman_collection.json
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/Micronets_Manager_API.postman_collection.json
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/Micronets_Manager_API.postman_globals.json
https://raw.githubusercontent.com/cablelabs/micronets-manager/nccoe-build-3/scripts/Micronets_Manager_API.postman_globals.json


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 200 

 Open the Postman application and sign in. 

 Click the import button to import the collections downloaded in step 1: 

 

 Next, click upload files: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 201 

 

 Select the Postman and global environmental variables collections downloaded in step 1: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 202 

 

 Confirm your import and click Import:  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 203 

 

 You will need to set the Globals for the micronets-manager-linode-ip, subscriberId, and  
mso-portal-linode-ip:  

 Click the gear button in the top right-hand corner of the application to Manage  
Environments: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 204 

 

 

 Click Globals: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 205 

  

 Modify the current values for the micronets-manager-linode-ip, subscriberId, and  
mso-portal-linode-ip variables as follows and click Save: 

micronets-manager-linode-ip: nccoe-server1.micronets.net 

  subscriberId: subscriber-001 

 mso-portal-linode-ip: nccoe-server1.micronets.net 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 206 

 

  

 Exit out of the menu: 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 207 

 

  

 

 Next, open the Postman collection and review and modify the URLs for the calls to ensure the 
API endpoint paths match your implementation:    

 Modify the GET MM Gateway Config command to reflect the following. Executing this 
command will pull the current Gateway config from the Micronets Manager:     

http://{{micronets-manager-linode-ip}}/mm/v1/micronets/odl    
  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 208 

  
b. Modify the GET MM Registry command to reflect the following. Executing this  

command will pull the current registry from the Micronets Manager:     

 
https://{{micronets-manager-linode-ip}}/mm/v1/micronets/registry   

 

  

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 209 

c. Modify the GET Micronets command to reflect the following. Executing this command 
will pull a list of the current micronets on the Gateway from the Micronets Manager:     

 
https://{{micronets-manager-linode-ip}}/sub/{{subscrib-
erId}}/api/mm/v1/subscriber/{{subscriberId}}   

 

  
d. Modify the GET Gateway Subnets command to reflect the following. Executing this 

command will pull a list of the current subnets on the Gateway from the Micronets 
Manager:     

 
https://{{micronets-manager-linode-ip}}/sub/{{subscrib-
erId}}/api/mm/v1/dhcp/subnets   

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 210 

  
e. Modify the GET Gateway Devices in a subnet command to reflect the following. Execut-

ing this command will pull a list of the current devices in a subnet on the Gateway from 
the Micronets Manager:      

 
https://{{micronets-manager-linode-ip}}/sub/{{subscrib-
erId}}/api/mm/v1/dhcp/subnets/subnetId/devices   

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 211 

  
f. Modify the GET MM Users command to reflect the following. Executing this command 

will pull a list of the users associated with the subscriber ID from the Micronets  
Manager:     

 
https://{{micronets-manager-linode-ip}}/sub/{{subscrib-
erId}}/api/mm/v1/micronets/users    

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 212 

  
g. Modify the DELETE All Micronets command to reflect the following. Executing this  

command will delete all of the current micronets on the Gateway via the Micronets 
Manager:     

 
https://{{micronets-manager-linode-ip}}/sub/{{subscrib-
erId}}/api/mm/v1/subscriber/{{subscriberId}}/micronets   

 

 

 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 213 

  
  

h. Modify the DELETE Single Micronets command to reflect the following. Executing this 
command will delete a specific micronet on the Gateway via the Micronets Manager. 
This command is to be modified before executing to specify the <micronetID>, which 
can be retrieved by executing the GET Micronets command:     

https://{{micronets-manager-linode-ip}}/sub/{{subscriberId}}/api/mm/v1/sub-
scriber/{{subscriberId}}/micronets/<micronetID>  

Below is an example of this command: 
 
https://{{micronets-manager-linode-ip}}/sub/{{subscrib-
erId}}/api/mm/v1/subscriber/{{subscriberId}}/micronets/2453819029   

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 214 

  
i. Modify the DELETE Device from Micronet command to reflect the following. Executing 

this command will delete a specific device from a particular micronet on the Gateway 
via the Micronets Manager. This command is to be modified before executing to specify 
the <micronetID> and <deviceID>, which can be retrieved by executing the GET  
Micronets command:     

https://{{micronets-manager-linode-ip}}/sub/{{subscriberId}}/api/mm/v1/sub-
scriber/{{subscriberId}}/micronets/<micronetID> /devices/<deviceID> 

Below is an example of this command: 
 
https://{{micronets-manager-linode-ip}}/sub/{{subscrib-
erId}}/api/mm/v1/subscriber/{{subscriberId}}/micronets/2136369149/de-
vices/da34c7219c2c97f0e2c2838e66c725d137f3c097  

  

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 215 

  
j. Modify the DELETE Gateway Subnets command to reflect the following. Executing this 

command will delete all subnets on the Gateway via the Micronets Manager:    

 
https://{{micronets-manager-linode-ip}}/sub/{{subscrib-
erId}}/api/mm/v1/dhcp/subnets   

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 216 

4.2.8 Removing Micronets Proto-Pi from a Micronet 
Removing a Micronets Proto-Pi from a micronet will remove the network credentials from the  
device. For additional instructions not detailed in this documentation, please follow the link to the  
CableLabs documentation: https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/opera-
tion/pi-offboarding.md.  

4.2.8.1 Prerequisites 

To successfully complete this section, the following are required: 

 a Raspberry Pi with the Micronets Proto-Pi software installed and configured

 a device that is currently onboarded to the Micronets Gateway

4.2.8.2 Instructions
Power on the Micronets Proto-Pi device. 

Tap Settings: 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-15. 

https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/pi-offboarding.md
https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/pi-offboarding.md


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 217 

 

 Tap Reset: 

 

You should see output similar to the following: 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 218 

4.2.9 Removing an MSO Subscriber 
Removing a subscriber involves removing the subscriber from the MSO portal database, removing the 
subscriber's micronets, and removing the subscriberʼs Micronets Manager. For additional instructions 
not detailed in this documentation, please follow the link to the CableLabs documentation: 
https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/pi-offboarding.md. 

4.2.9.1 Prerequisites  
To successfully complete this section, be sure to have first completed both the product installation sec-
tion and the section that details adding the MSO portal.  

4.2.9.2 Instructions 
 Remove the subscriber from the MSO portal: 

curl -s -X DELETE https://nccoe-server1.micronets.net/micronets/mso-
portal/portal/v1/subscriber/subscriber-001 | json_pp 

 Verify that the subscriber is removed from the MSO portal by executing the following  
commands: 

 Check if the subscriber ID is present in the subscriber list: 

curl -s https://nccoe-server1.micronets.net/micronets/mso-
portal/portal/v1/subscriber/subscriber-001 | json_pp 

You should see output similar to the following: 

 

 Next, check if the user is present in the list of users in the MSO portal: 

curl -s https://nccoe-server1.micronets.net/micronets/mso-
portal/portal/v1/users | json_pp 

You should see output similar to the following: 

 

 Finally, check to see if there is a socket present for the subscriber ID: 

curl -s https://nccoe-server1.micronets.net/micronets/mso-
portal/portal/v1/socket/subscriber-001 | json_pp 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 

https://github.com/cablelabs/micronets/blob/nccoe-build-3/docs/operation/pi-offboarding.md


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 219 

You should see output similar to the following: 

 

Note: There could be scenarios where the commands above do not show empty lists. If that is 
the case, the subscriber has not been deleted properly. You can delete the subscriber entries in 
the MSO portal subtables by executing the following commands: 

 Delete the subscriber ID from the user list manually:  

curl -s -X DELETE https://nccoe-server1.micronets.net/micronets/mso-
portal/portal/v1/users/subscriber-001 | json_pp 

 Delete the subscriber ID from the socket list manually:  

curl -s -X DELETE https://nccoe-server1.micronets.net/micronets/mso-por-
tal/portal/v1/socket/subscriber-001  

 Remove all the micronets for the subscriber using: 

curl -s -X DELETE https://nccoe-server1.micronets.net/sub/subscriber-
001/api/mm/v1/subscriber/subscriber-001/micronets  

You should see output similar to the following: 

 

This will remove the micronets on the connected Micronets Gateway. If the gateway is not con-
nected to its peer Micronets Manager, the micronets can be deleted directly on the gateway us-
ing: 

curl -s -X DELETE http://localhost:5000/micronets/v1/gateway/micronets  

 You can verify that the micronets have been deleted by running: 

curl -s https://nccoe-server1.micronets.net/sub/subscriber-
001/api/mm/v1/subscriber/subscriber-001/micronets  

This should return an empty micronets list. 

 Remove the Micronets Manager docker container for a subscriber by running: 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 220 

/etc/micronets/micronets-manager.d/mm-container delete subscriber-001 

You will be prompted to remove the config file: 

 
Lastly, you will be prompted to provide sudo privileges:  

 
 Confirm the Micronets Manager for the subscriber is removed by executing the following  

command: 

curl -s https://nccoe-server1.micronets.net/sub/subscriber-
001/api/mm/v1/subscriber/subscriber-001 

 

5 Build 4 Product Installation Guides 
This section of the practice guide contains detailed instructions for installing and configuring the 
products used to implement Build 4. For additional details on Build 4’s logical and physical architectures, 
please refer to NIST SP 1800-15B. 

5.1 NIST SDN Controller/MUD Manager 

5.1.1 NIST SDN Controller/MUD Manager Overview 
This is a limited implementation that is intended to introduce a MUD manager build on top of an SDN 
controller. Build 4 implements all the abstractions in the MUD specification. At testing, this build uses 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 221 

strictly IPv4, and DHCP is the only standardized mechanism that it supports to associate MUD URLs with 
devices. 

Build 4 uses a MUD manager built on the OpenDaylight SDN controller. This build works with IoT devices 
that emit their MUD URLs through DHCP. The MUD manager works by snooping the traffic passing 
through the controller to detect the emission of a MUD URL. The MUD URL extracted by the MUD 
manager is then used to retrieve the MUD file and corresponding signature file associated with the MUD 
URL. The signature file is used to verify the legitimacy of the MUD file. The MUD manager then 
translates the access control entries in the MUD file into flow rules that are pushed to the switch. 

5.1.2 Configuration Overview 
The following subsections document the software, hardware, and network configurations for the Build 4 
SDN controller/MUD manager.  

5.1.2.1 Hardware Configuration  
This build requires installing the SDN controller/MUD manager on a server with at least two gigabytes of 
random access memory. This server must connect to at least one SDN-capable switch or router on the 
network, which is the MUD policy enforcement point. The MUD manager works with any OpenFlow 1.3-
enabled SDN switch. For this implementation, a Northbound Networks Zodiac WX wireless SDN access 
point was used as the SDN switch. 

5.1.2.2 Network Configuration  
The SDN controller/MUD manager instance was installed and configured on a dedicated machine 
leveraged for hosting virtual machines in the Build 4 lab environment. The SDN controller/MUD 
manager listens on port 6653 for Open vSwitch (OVS) inbound connections, which are initiated by the 
OVS instance running on the Northbound Networks access point. 

5.1.2.3 Software Configuration  
For this build, the SDN controller/MUD manager was installed on an Ubuntu 18.04.01 64-bit server.  

The SDN controller/MUD manager requires the following installations and components: 

 Java SE Development Kit 8 

 Apache Maven 3.5 or higher 

5.1.3 Preinstallation 
Build 4’s GitHub page provides documentation that was followed to complete this section: 
https://github.com/usnistgov/nist-mud. 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 

https://github.com/usnistgov/nist-mud


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 222 

 Install JDK 1.8: https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html. 

 Install Maven 3.5 or higher: https://maven.apache.org/download.cgi. 

5.1.4 Setup 
1. Execute the following command to clone the Git project: 

git clone https://github.com/usnistgov/nist-mud.git 

 

2. Copy the contents of nist-mud/maven/settings.xml to ~/.m2 by executing the commands 
below:  

cd nist-mud/maven/ 

mkdir ~/.m2 

cp settings.xml ~/.m2 

 

3. In the nist-mud directory, run the commands below: 

cd  

cd nist-mud/ 

mvn -e clean install -nsu -Dcheckstyle.skip -DskipTests -
Dmaven.javadoc.skip=true 

 

4. Open port 6653 on the controller stack for TCP access so the switches can connect by executing 
the command below: 

sudo ufw allow 6653/tcp 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/download.cgi


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 223 

 

5. OpenDaylight uses port 8181 for the REST API. That port should be opened if access to the REST 
API is desired from outside the controller machine. Open port 8181 by executing the command 
below: 

sudo ufw allow 8181 

 

6. Change to the bin directory by executing the command below: 
~/nist-mud/sdnmud-aggregator/karaf/target/assembly/bin 

7. Run the command below: 

./karaf clean 

 

8. At the Karaf prompt, install MUD capabilities using: 

feature:install features-sdnmud 

 

9. Check if the feature is running by using the command feature:list | grep sdnmud in Karaf. 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 224 

 

10. On the SDN controller/MUD manager host, run a script to configure the SDN controller and add 
bindings for the controller abstractions defined in the test MUD files. This script pushes configu-
ration information for the MUD manager application (sdnmud-config.json) as well as network 
configuration information for the managed local area network (LAN) (controllerclass-map-
ping.json). The latter file specifies bindings for the controller classes that are used in the MUD 
file as well as subnet information for classification of local addresses. These are scoped to a sin-
gle policy enforcement point, which is identified by a switch-id. By default, the switch ID is open-
flow:MAC-address where MAC-address is the MAC address of the switch interface that con-
nects to the SDN controller (in decimal). This must be unique per switch. Note too, that we iden-
tify whether a switch is wireless.  

 

Example Python script (configure.py):  

import requests 
import json 
import argparse 
import os 
 
if __name__=="__main__": 
    if os.environ.get("CONTROLLER_ADDR") is None: 
       print "Please set environment variable CONTROLLER_ADDR to the address of the 
opendaylight controller" 
 
    controller_addr = os.environ.get("CONTROLLER_ADDR") 
 
    headers= {"Content-Type":"application/json"} 
    for (configfile,suffix) in {  
 ("sdnmud-config.json", "sdnmud:sdnmud-config"), 
        ("controllerclass-mapping.json","nist-mud-controllerclass-
mapping:controllerclass-mapping") }: 
        data = json.load(open(configfile)) 
        print "configfile", configfile 
        print "suffix ", suffix 
        url = "http://" + controller_addr + ":8181/restconf/config/" + suffix 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 225 

        print "url ", url 
        r = requests.put(url, data=json.dumps(data), headers=headers , auth=('admin', 
'admin')) 
        print "response ", r 

Example controller class mapping (controllerclass-mapping.json):  

{ 
"controllerclass-mapping" :  { 
    "switch-id" : "openflow:123917682138002", 
    "controller" : [ 
     { 
          "uri" :  "urn:ietf:params:mud:dns", 
          "address-list" : [ "10.0.41.1" ] 
      }, 
     { 
          "uri" :  "urn:ietf:params:mud:dhcp", 
          "address-list" : [ "10.0.41.1" ] 
      }, 
        { 
          "uri" :  "https://controller.nist.local", 
  "address-list" : [ "10.0.41.225" ] 
 }, 
        { 
          "uri" :  "https://sensor.nist.local/nistmud1", 
  "address-list" : [ "10.0.41.225" ] 
 } 
   ], 
   "local-networks": [ "10.0.41.0/24" ], 
   "wireless" : true 
 } 
} 

Example SDN MUD configuration (sdnmud-config.json):  

{ 
 "sdnmud-config" : { 
        "ca-certs": "lib/security/cacerts", 
        "key-pass" : "changeit", 
        "trust-self-signed-cert" : true, 
        "mfg-id-rule-cache-timeout": 120, 
 "relaxed-acl" : false 
  } 
} 

5.2 MUD File Server  

5.2.1 MUD File Sever Overview 
The MUD file server is responsible for serving the MUD file and the corresponding signature file upon 
request from the MUD manager. For testing purposes, the MUD file server is run on 127.0.0.1 on the 
same machine as the MUD manager. This allows us to examine the logs to check if the MUD file has 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 226 

been retrieved. For testing purposes, host name verification for the TLS connection to the MUD file 
server is disabled in the configuration of the MUD manager.  

5.2.2 Configuration Overview 
The following subsections document the software, hardware, and network configurations for the MUD 
file server.  

5.2.2.1 Hardware Configuration  
The MUD file server was hosted on the same machine as the SDN controller.  

5.2.2.2 Network Configuration  
The MUD file server was hosted on the same machine as the SDN controller. To direct the MUD 
manager to retrieve the MUD files from the MUD file server, the host name of the two manufacturers 
that are present in the MUD URLs used for testing are both mapped to 127.0.0.1 in the /etc/hosts file 
of the Java Virtual Machine in which the MUD manager is running. This static configuration is read by 
the MUD manager when it starts. The name resolution information in the /etc/hosts file directs the 
MUD manager to retrieve the test MUD files from the MUD file server. 

5.2.2.3 Software Configuration 
In this build, serving MUD files requires Python 2.7 and the Python requests package. These may be 
installed using apt and pip. After creation of the MUD files by using mudmaker.org, the MUD files were 
signed, and the certificates used for signing were imported into the trust store of the Java Virtual 
Machine in which the MUD manager is running. 

5.2.3 Setup 

5.2.3.1 MUD File Creation 
This build also leveraged the MUD Maker online tool found at www.mudmaker.org. For detailed 
instructions on creating a MUD file using this online tool, please refer to Build 1’s MUD File Creation 
section. 

5.2.3.2 MUD File Signing 
1. Sign and import the desired MUD files. An example script (sign-and-import1.sh) can be found 

below. 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 

http://www.mudmaker.org/


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 227 

The shell script that was used in this build is shown below. This script generates a signature based on the 
private key of a DigiCert-issued certificate and imports the certificate into the trust store of the Java 
Virtual Machine. This is done for both MUD files.  

CACERT=DigiCertCA.crt 
MANUFACTURER_CRT=nccoe_mud_file_signing.crt 
MANUFACTURER_KEY=mudsign.key.pem  
MANUFACTURER_ALIAS=sensor.nist.local 
MANUFACTURER_SIGNATURE=mudfile-sensor.p7s 
MUDFILE=mudfile-sensor.json 
 
openssl cms -sign -signer $MANUFACTURER_CRT -inkey $MANUFACTURER_KEY -in $MUDFILE -
binary -noattr -outform DER -certfile $CACERT  -out $MANUFACTURER_SIGNATURE 
openssl cms -verify -binary  -in $MANUFACTURER_SIGNATURE  -signer $MANUFACTURER_CRT -
inform DER  -content $MUDFILE 
MANUFACTURER_ALIAS=otherman.nist.local 
MUDFILE=mudfile-otherman.json 
MANUFACTURER_SIGNATURE=mudfile-otherman.p7s 
openssl cms -sign -signer $MANUFACTURER_CRT -inkey $MANUFACTURER_KEY -in $MUDFILE -
binary -noattr -outform DER -certfile $CACERT  -out $MANUFACTURER_SIGNATURE 
openssl cms -verify -binary  -in $MANUFACTURER_SIGNATURE  -signer $MANUFACTURER_CRT -
inform DER  -content $MUDFILE 
 
sudo -E $JAVA_HOME/bin/keytool -delete -alias digicert -keystore 
$JAVA_HOME/jre/lib/security/cacerts -storepass changeit 
sudo -E $JAVA_HOME/bin/keytool -importcert -file $CACERT -alias digicert -keystore 
$JAVA_HOME/jre/lib/security/cacerts -storepass changeit 

5.2.3.3 MUD File Serving 
Run a script that serves desired MUD files and signatures. An example Python script (mudfile-
server.py) can be found below. 

1. Save a copy of the mudfile-server.py Python script onto the NIST SDN controller/MUD manager 
configured in Section 5.1: 

import BaseHTTPServer, SimpleHTTPServer 
import ssl 
import urlparse 
# Dummy manufacturer server for testing 
 
class MyHTTPRequestHandler(SimpleHTTPServer.SimpleHTTPRequestHandler): 
 
    def do_GET(self): 
        print ("DoGET " + self.path) 
        self.send_response(200) 
        if self.path == "/nistmud1" : 
           with  open("mudfile-sensor.json", mode="r") as f: 
                data = f.read() 
  print("Read " + str(len(data)) + " chars ") 
                self.send_header("Content-Length", len(data)) 
                self.end_headers() 
                self.wfile.write(data) 
        elif self.path == "/nistmud2" : 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 228 

           with  open("mudfile-otherman.json", mode="r") as f: 
                data = f.read() 
  print("Read " + str(len(data)) + " chars ") 
                self.send_header("Content-Length", len(data)) 
                self.end_headers() 
                self.wfile.write(data) 
        elif self.path == "/nistmud1/mudfile-sensor.p7s": 
           with open("mudfile-sensor.p7s",mode="r") as f: 
                data = f.read() 
  print("Read " + str(len(data)) + " chars ") 
                self.send_header("Content-Length", len(data)) 
                self.end_headers() 
                self.wfile.write(data) 
        elif self.path == "/nistmud2/mudfile-otherman.p7s": 
           with open("mudfile-otherman.p7s",mode="r") as f: 
                data = f.read() 
  print("Read " + str(len(data)) + " chars ") 
                self.send_header("Content-Length", len(data)) 
                self.end_headers() 
                self.wfile.write(data) 
        else: 
           print("UNKNOWN URL!!") 
           self.wfile.write(b'Hello, world!') 
 
httpd = BaseHTTPServer.HTTPServer(('0.0.0.0', 443), MyHTTPRequestHandler) 
httpd.socket = ssl.wrap_socket (httpd.socket, keyfile='./mudsigner.key',  
certfile='./mudsigner.crt', server_side=True) 
httpd.serve_forever() 
 

2. From the same directory as the previous step, execute the command below to start the MUD 
file server: 

sudo -E python mudfile-server.py 

 

5.3 Northbound Networks Zodiac WX Access Point  

5.3.1 Northbound Networks Zodiac WX Access Point Overview 
The Zodiac WX, in addition to being a wireless access point, includes the following logical components: 
an SDN switch, a NAT router, a DHCP server, and a DNS server. The Zodiac WX is powered by OpenWRT 
and Open vSwitch. Open vSwitch directly integrates into the wireless configuration. The Zodiac WX 
works with any standard OpenFlow-compatible controllers and requires no modifications because it 
appears to the controller as a standard OpenFlow switch.  

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 229 

5.3.2 Configuration Overview 
The following subsections document the network, software, and hardware configurations for the SDN-
capable Northbound Networks Zodiac WX.  

5.3.2.1 Network Configuration  
The access point is configured to have a static public address on the public side of the NAT. For purposes 
of testing, we use 203.0.113.x addresses on the public network. The public side of the NAT is given the 
address of 203.0.113.1. The DHCP server is set up to allocate addresses to wireless devices on the LAN. 
The SDN controller/MUD manager is connected to the public side of the NAT. The Open vSwitch 
configuration for the access point is given the address of the SDN controller, which is shown in the setup 
below. 

5.3.2.2 Software Configuration  
At this implementation, no additional software configuration was required. 

5.3.2.3 Hardware Configuration  
At this implementation, no additional hardware configuration was required. 

5.3.3 Setup 
On the Zodiac WX, DNSmasq supports both DHCP and DNS. For testing purposes, it will be necessary to 
access several web servers (two update servers called www.nist.local and an unapproved server called 
www.antd.local). The following commands enable the Zodiac WX to resolve the web server host names 
to their IP addresses.  

1. Set up the access point to resolve the addresses for the web server host names by opening the 
file /etc/dnsmasq.conf on the access point.  

2. Add the following line to the dnsmasq.conf file: 

addn-hosts=/etc/hosts.nist.local 

 

3. The file /etc/hosts.nist.local has the host name to address mapping. The mapping used for 
our tests is shown below (Note that the host www.nist.local maps to two addresses on the 
public side).  

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 230 

4. On the Zodiac WX configuration web page in the System->Startup tab, indicate where (IP 
address and port) the Open vSwitch Daemon connects to the controller.  

 

5.4 DigiCert Certificates 
DigiCert’s CertCentral web-based platform allows provisioning and management of publicly trusted 
X.509 certificates for a variety of purposes. After establishing an account, clients can log in, request, 
renew, and revoke certificates by using only a browser. For Build 4, the Premium Certificate created in 
Build 1 was leveraged for signing the MUD files. To request and implement DigiCert certificates, follow 
the documentation in Build 1’s DigiCert Certificates section and subsequent sections.  

5.5 IoT Devices 

5.5.1 IoT Devices Overview 
This section provides configuration details for the Linux-based Raspberry Pis used in the build, which 
emit MUD URLs by using DHCP.  

5.5.2 Configuration Overview 
The devices used in this build were multiple Raspberry Pi development kits that were configured to act 
as IoT devices. The devices run Raspbian 9, a Linux-based operating system, and are configured to emit a 
MUD URL during a typical DHCP transaction. These devices were used to test interactions related to 
MUD capabilities.  

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 231 

5.5.2.1 Network Configuration  
The kits are connected to the network over a wireless connection. Their IP addresses are assigned 
dynamically by the DHCP server on the Zodiac WX access point. 

5.5.2.2 Software Configuration  
The Raspberry Pis are configured on Raspbian. They also utilized dhclient as their default DHCP clients to 
manually initiate a DHCP interaction. This DHCP client is provided with many Linux distributions and can 
be installed using a preferred package manager if not currently present. Dhclient uses a configuration 
file: /etc/dhclient.conf. This needs to be modified to include the MUD URL that the device will emit 
in its DHCP requests. (The modification details are provided in the setup information below.) 

5.5.2.3 Hardware Configuration  
Multiple Raspberry Pi 3 Model B devices were used.  

5.5.3 Setup 
Each Raspberry Pi used in this build was intended to represent a different class of device (manufacturer, 
other manufacturer, local networks, controller classes). The type of device was determined by the MUD 
URL being emitted by the device. If no MUD URL is emitted, the device is an unclassified local network 
device.  

1. On each Pi, changes were made to /etc/network/interfaces to add a line that allows the Pi 
to authenticate to the access point. The following line is added to the network interface as 
shown below: 

 wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf.northbound 

 

 The file (/etc/wpa_supplicant/wpa_supplicant.conf.northbound) is shown below: 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 232 

2. A dhclient configuration file can be altered (by adding information) to allow for emission of a 
MUD URL in the DHCP transaction. Modify the dhclient.conf file with the command: 

vi /etc/dhcp/dhclient.conf 

3. A send MUD URL line must be added as well as a mud-url in the request line. In this build, 
multiple MUD URLs were transmitted, depending on the type of the device. Example alterations 
made to dhclient configuration files can be seen below: 

send mud-url = "https://sensor.nist.local/nistmud1"; 

send mud-url = "https://otherman.nist.local/nistmud2"; 

 

4. To control the time at which the MUD URL is emitted, we manually reacquire the DHCP address 
rather than have the device acquire the MUD URL on boot. Emit the MUD URL and attain an IP 
address by sending the altered dhclient configuration file manually with the following 
commands: 

sudo rm /var/lib/dhcp/dhclient.leases 

sudo ifconfig wlan0 0.0.0.0 

sudo dhclient -v wlan0 -cf /etc/dhcp/dhclient.conf.toaster 

 

5.6 Update Server 

5.6.1 Update Server Overview 
This section provides configuration details for the Linux-based IoT development kit used in the build, 
which acts as an update server. This update server will attempt to access and be accessed by the IoT 
device, which, in this case, is one of the development kits built in the lab. The update server is a web 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 233 

server that hosts mock software update files to be served as software updates to our IoT device devkits. 
When the server receives an http request, it sends the corresponding update file. 

5.6.2 Configuration Overview 
The devkit runs Raspbian 9, a Linux-based operating system, and is configured to act as an update 
server. This host was used to test approved internet interactions related to MUD capabilities.   

5.6.2.1 Network Configuration  
The web server host has a static public IP address configuration and is connected to the access point on 
the wired interface. It is given an address on the 203.0.113 network.  

5.6.2.2 Software Configuration  
The Raspberry Pi is configured on Raspbian. The devkit also utilized a simple Python script to run an http 
server to test MUD capabilities.   

5.6.2.3 Hardware Configuration  
The hardware used for this devkit includes a Raspberry Pi 3 Model B.  

5.6.3 Setup 
The primary configuration needed for the web server device is done with the DNS mapping on the 
Zodiac WX access point to be discussed in the section related to setup of the Northbound Networks 
Zodiac WX Access Point The Raspberry Pi is required to run a simple http server.  

1. Copy the example Python script below onto the Raspberry Pi: 

Example Python script (httpserver.py):  

import SimpleHTTPServer 
import SocketServer 
import argparse 
if __name__ == "__main__": 
    parser = argparse.ArgumentParser() 
    parser.add_argument("-H", help="Host address", default="0.0.0.0") 
    parser.add_argument("-P", help="Port ", default="80") 
    args = parser.parse_args() 
    hostAddr = args.H 
    PORT = int(args.P) 
    Handler = SimpleHTTPServer.SimpleHTTPRequestHandler 
    httpd = SocketServer.TCPServer((hostAddr, PORT), Handler) 
    print "serving at port", PORT 
    httpd.serve_forever() 

2. From the same directory as the script copied in the previous step, execute the command below 
to start the http server: 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 234 

sudo python httpserver.py -P 443 

 

5.7 Unapproved Server 

5.7.1 Unapproved Server Overview 
This section provides configuration details for the Linux-based IoT development kit used in the build, 
which acts as an unapproved internet host. This host will attempt to access and to be accessed by an IoT 
device, which, in this case, is one of the MUD-capable devices on the network.  

The unapproved server is an internet host that is not explicitly authorized in the MUD file to 
communicate with the IoT device. When the IoT device attempts to connect to this server, the switch 
should not allow this traffic because it is not an approved internet service per the corresponding MUD 
file. Likewise, when the server attempts to connect to the IoT device, this traffic should be denied at the 
switch.  

5.7.2 Configuration Overview 
The devkit runs Raspbian 9, a Linux-based operating system, and is configured to act as an unapproved 
internet host. This host was used to test unapproved internet interactions related to MUD capabilities.   

5.7.2.1 Network Configuration  
The web host has a static public IP address configuration and is connected to the access point on the 
wired interface. It is given an address on the 203.0.113 network.  

5.7.2.2 Software Configuration  
The Raspberry Pi is configured on Raspbian. The devkit also utilized a simple Python script to run an http 
server to test MUD capabilities.   

5.7.2.3 Hardware Configuration  
The hardware used for this devkit includes a Raspberry Pi 3 Model B.  

5.7.3 Setup 
The primary configuration needed for the web server device is accomplished by the DNS mapping on the 
Zodiac WX access point to be discussed in the section related to setup of the Northbound Networks 
Zodiac WX Access Point. The Raspberry Pi is required to run a simple http server.  

1. Copy the example Python script below onto the Raspberry Pi: 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 235 

Example Python script (httpserver.py):  

import SimpleHTTPServer 
import SocketServer 
import argparse 
if __name__ == "__main__": 
    parser = argparse.ArgumentParser() 
    parser.add_argument("-H", help="Host address", default="0.0.0.0") 
    parser.add_argument("-P", help="Port ", default="80") 
    args = parser.parse_args() 
    hostAddr = args.H 
    PORT = int(args.P) 
    Handler = SimpleHTTPServer.SimpleHTTPRequestHandler 
    httpd = SocketServer.TCPServer((hostAddr, PORT), Handler) 
    print "serving at port", PORT 
    httpd.serve_forever() 

2. From the same directory as the script copied in the previous step, execute the command below 
to start the http server: 
sudo python httpserver.py -P 443 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



 NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 236 

Appendix A List of Acronyms 
AAA Authentication, Authorization, and Accounting 
ACL Access Control List 
API Application Programming Interface 
CMS Cryptographic Message Syntax 
COA Change of Authorization 
CRADA Cooperative Research and Development Agreement 
DB Database 
DDoS Distributed Denial of Service 
Devkit Development Kit 
DHCP Dynamic Host Configuration Protocol 
DNS Domain Name System 
GCA Global Cyber Alliance 
HTTP Hypertext Transfer Protocol  
HTTPS Hypertext Transfer Protocol Secure 
IOS Cisco’s Internetwork Operating System 
IoT Internet of Things 
IP Internet Protocol 
IPv4 Internet Protocol Version 4 
IPv6 Internet Protocol Version 6 
IT Information Technology 
JSON JavaScript Object Notation 
LAN Local Area Network 
LED Light-Emitting Diode 
LLDP Link Layer Discovery Protocol (IEEE 802.1AB) 
MAB MAC Authentication Bypass 
MAC Media Access Control 
MQTT Message Queuing Telemetry Transport  
MUD Manufacturer Usage Description 
NAS Network Access Server 
NAT Network Address Translation 
NCCoE National Cybersecurity Center of Excellence 
NIST National Institute of Standards and Technology 
OS Operating System 
PoE Power over Ethernet 
RADIUS Remote Authentication Dial-In User Service 
REST Representational State Transfer 
RFC Request for Comments 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 237 

SDN Software-Defined Networking 
SP Special Publication 
SSH Secure Shell 
SSL Secure Sockets Layer 
TCP Transmission Control Protocol 
TCP/IP Transmission Control Protocol/Internet Protocol  
TLS Transport Layer Security 
UDP User Datagram Protocol 
UI User Interface 
URL Uniform Resource Locator 
Vi Visual 
VLAN Virtual Local Area Network 
VNC Virtual Network Computing 
WAN Wide Area Network 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



 NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 238 

Appendix B Glossary 
 

Audit Independent review and examination of records and activities to assess the 
adequacy of system controls to ensure compliance with established policies 
and operational procedures (NIST SP 800-12 Rev. 1). 
 

Best Practice A procedure that has been shown by research and experience to produce 
optimal results and that is established or proposed as a standard suitable for 
widespread adoption (Merriam-Webster) 

Botnet The word “botnet” is formed from the words “robot” and “network.” 
Cybercriminals use special Trojan viruses to breach the security of several 
usersʼ computers, take control of each computer, and organize all of the 
infected machines into a network of “bots” that the criminal can remotely 
manage. (https://usa.kaspersky.com/resource-center/threats/botnet-attacks) 

Control A measure that is modifying risk (Note: Controls include any process, policy, 
device, practice, or other actions that modify risk) (NISTIR 8053). 
 

Denial of Service The prevention of authorized access to a system resource or the delaying of 
system operations and functions (NIST SP 800-82 Rev. 2). 

Distributed Denial 
of Service (DDoS) 

A denial of service technique that uses numerous hosts to perform the attack 
(NISTIR 7711). 

Managed Devices Personal computers, laptops, mobile devices, virtual machines, and 
infrastructure components require management agents, allowing information 
technology staff to discover, maintain, and control these devices. Those with 
broken or missing agents cannot be seen or managed by agent-based security 
products. 
 

Manufacturer 
Usage Description 
(MUD) 

A component-based architecture specified in Request for Comments (RFC) 
8250 that is designed to provide a means for end devices to signal to the 
network what sort of access and network functionality they require to properly 
function 
 

Mapping Depiction of how data from one information source maps to data from another 
information source 

Mitigate To make less severe or painful or to cause to become less harsh or hostile 
(Merriam-Webster). 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 

https://usa.kaspersky.com/resource-center/threats/botnet-attacks


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 239 

MUD-Capable An IoT device that is capable of emitting a MUD uniform resource locator (URL) 
in compliance with the MUD specification 
 

Network Address 
Translation (NAT) 

A function by which internet protocol (IP) addresses within a packet are 
replaced with different IP addresses. This function is most commonly 
performed by either routers or firewalls. It enables private IP networks 
that use unregistered IP addresses to connect to the internet. NAT operates on 
a router, usually connecting two networks together, and translates the private 
(not globally unique) addresses in the internal network into legal addresses 
before packets are forwarded to another network. 

Non-MUD-Capable An IoT device that is not capable of emitting a MUD URL in compliance with 
the MUD specification (RFC 8250). 

Policy Statements, rules, or assertions that specify the correct or expected behavior 
of an entity. For example, an authorization policy might specify the correct 
access control rules for a software component (NIST SP 800-95 and NISTIR 
7621 Rev. 1). 

Policy Enforcement 
Point 

A network device on which policy decisions are carried out or enforced 

Risk The net negative impact of the exercise of a vulnerability, considering both the 
probability and the impact of occurrence. Risk management is the process of 
identifying risk, assessing risk, and taking steps to reduce risk to an acceptable 
level (NIST SP 800-30). 

Router A computer that is a gateway between two networks at open systems 
interconnection layer 3 and that relays and directs data packets through that 
internetwork. The most common form of router operates on IP packets (NIST 
SP 800-82 Rev. 2). 
 

Security Control A safeguard or countermeasure prescribed for an information system or an 
organization, which is designed to protect the confidentiality, integrity, and 
availability of its information and to meet a set of defined security 
requirements (NIST SP 800-53 Rev. 4). 

Server A computer or device on a network that manages network resources. 
Examples are file servers (to store files), print servers (to manage one or more 
printers), network servers (to manage network traffic), and database servers 
(to process database queries) (NIST SP 800-47). 

Shall A requirement that must be met unless a justification of why it cannot be met 
is given and accepted (NISTIR 5153). 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 240 

 
Should This term is used to indicate an important recommendation. Ignoring the 

recommendation could result in undesirable results (NIST SP 800-108). 
 

Threat Any circumstance or event with the potential to adversely impact 
organizational operations (including mission, functions, image, or reputation), 
organizational assets, or individuals through an information system via 
unauthorized access, destruction, disclosure, modification of information, 
and/or denial of service. Also, the potential for a threat source to successfully 
exploit a particular information system vulnerability (Federal Information 
Processing Standards 200). 
 

Threat Signaling Real-time signaling of DDoS-related telemetry and threat-handling requests 
and data between elements concerned with DDoS attack detection, 
classification, traceback, and mitigation 
(https://joinup.ec.europa.eu/collection/rolling-plan-ict-
standardisation/cybersecurity-network-and-information-security). 

Traffic Filter An entry in an access control list that is installed on the router or switch to 
enforce access controls on the network 

Uniform Resource 
Locator (URL) 

A reference to a web resource that specifies its location on a computer 
network and a mechanism for retrieving it. A typical URL could have the form 
http://www.example.com/index.html, which indicates a protocol (hypertext 
transfer protocol [http]), a host name (www.example.com), and a file name 
(index.html). Also sometimes referred to as a web address. 

Update New, improved, or fixed software, which replaces older versions of the same 
software. For example, updating an OS brings it up-to-date with the latest 
drivers, system utilities, and security software. Updates are often provided by 
the software publisher free of charge 
(https://www.computerhope.com/jargon/u/update.htm). 

Update Server A server that provides patches and other software updates to Internet of 
Things devices 

Virtual Local Area 
Network (VLAN) 

A broadcast domain that is partitioned and isolated within a network at the 
data link layer. A single physical local area network (LAN) can be logically 
partitioned into multiple, independent VLANs; a group of devices on one or 
more physical LANs can be configured to communicate within the same VLAN 
as if they were attached to the same physical LAN. 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 

https://joinup.ec.europa.eu/collection/rolling-plan-ict-standardisation/cybersecurity-network-and-information-security
https://joinup.ec.europa.eu/collection/rolling-plan-ict-standardisation/cybersecurity-network-and-information-security
https://www.computerhope.com/jargon/u/update.htm


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 241 

Vulnerability Weakness in an information system, system security procedures, internal 
controls, or implementation that could be exploited or triggered by a threat 
source (NIST SP 800-37 Rev. 2). 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 



 NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 242 

Appendix C Bibliography 
Apache HTTP Server Project documentation, Version 2.4. Compiling and Installing Apache [Website]. 
Available: https://httpd.apache.org/docs/current/install.html.  

Apache HTTP Server Project documentation, Version 2.4. Apache SSL/TLS Encryption [Website]. 
Available: https://httpd.apache.org/docs/current/ssl/ssl_howto.html.  

Cisco. Cisco Developer MUD Manager GitHub page [Website]. Available: 
https://github.com/CiscoDevNet/MUD-Manager/tree/1.0#dependancies. 

DigiCert. Advanced CertCentral Getting Started Guide, Version 9.2 [Website]. Available: 
https://docs.digicert.com/get-started/.  

DigiCert. CertCentral Client Certificate Guide, Version 1.9 [Website]. Available: 
https://docs.digicert.com/manage-certificates/client-certificates-guide/.  

DigiCert. Order your SSL/TLS certificates [Website]. Available: https://docs.digicert.com/manage-
certificates/order-your-ssltls-certificates/. 

DigiCert. SSL Certificate Support [Website]. Available: https://www.digicert.com/security-certificate-
support/.  

Forescout. (2018, Feb.) ForeScout CounterAct Device Profile Library Configuration Guide [Website]. 
Available: https://www.Forescout.com/wp-
content/uploads/2018/04/CounterACT_Device_Profile_Library.pdf.  

Forescout. ForeScout CounterAct® Installation Guide, Version 8.0.1 [Website]. Available: 
https://docs.forescout.com/bundle/Installation_Guide_8.0.1/resource/Installation_Guide_8.0.1.pdf   

Forescout. (2018, Feb.) ForeScout CounterAct IoT Posture Assessment Library Configuration Guide 
[Website]. Available: https://www.Forescout.com/wp-
content/uploads/2018/04/CounterACT_IoT_Posture_Assessment_Library-1.pdf.  

Forescout. ForeScout CounterAct eyeExtend Connect Module, Version 1.7 [Website]. Available: 
https://docs.forescout.com/bundle/connect-module-1-7-rn/page/connect-module-1-7-rn.About-
eyeExtend-Connect-Module-1.7.html  

Forescout. (2018, Feb.) ForeScout CounterAct Windows Applications Configuration Guide [Website]. 
Available: https://www.Forescout.com/wp-
content/uploads/2018/04/CounterACT_Windows_Applications.pdf.  

Forescout. (2018, Feb.) ForeScout CounterAct Windows Vulnerability DB Configuration Guide [Website]. 
Available: https://www.Forescout.com/wp-
content/uploads/2018/04/CounterACT_Windows_Vulnerability_DB_18.0.2.pdf.  

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 

https://httpd.apache.org/docs/current/install.html
https://httpd.apache.org/docs/current/ssl/ssl_howto.html
https://github.com/CiscoDevNet/MUD-Manager/tree/1.0#dependancies
https://docs.digicert.com/get-started/
https://docs.digicert.com/manage-certificates/client-certificates-guide/
https://docs.digicert.com/manage-certificates/order-your-ssltls-certificates/
https://docs.digicert.com/manage-certificates/order-your-ssltls-certificates/
https://www.digicert.com/security-certificate-support/
https://www.digicert.com/security-certificate-support/
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Device_Profile_Library.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Device_Profile_Library.pdf
https://docs.forescout.com/bundle/Installation_Guide_8.0.1/resource/Installation_Guide_8.0.1.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_IoT_Posture_Assessment_Library-1.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_IoT_Posture_Assessment_Library-1.pdf
https://docs.forescout.com/bundle/connect-module-1-7-rn/page/connect-module-1-7-rn.About-eyeExtend-Connect-Module-1.7.html
https://docs.forescout.com/bundle/connect-module-1-7-rn/page/connect-module-1-7-rn.About-eyeExtend-Connect-Module-1.7.html
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Applications.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Applications.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Vulnerability_DB_18.0.2.pdf
https://www.forescout.com/wp-content/uploads/2018/04/CounterACT_Windows_Vulnerability_DB_18.0.2.pdf


NIST SP 1800-15C: Securing Small-Business and Home Internet of Things Devices 243 

Forescout. HPS NIC Vendor DB Configuration Guide, Version 1.2.4 [Website]. Available:  
https://www.Forescout.com/wp-content/uploads/2018/04/HPS_NIC_Vendor_DB_1.2.4.pdf.  

IETF Request for Comments (RFC) 8520. (2019, Mar.) “Manufacturer Usage Description Specification” 
[Online]. Available: https://tools.ietf.org/html/rfc8520. 

Welcome to MUD File maker! [Website]. Available: https://www.mudmaker.org/. 

 This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-15. 

https://www.forescout.com/wp-content/uploads/2018/04/HPS_NIC_Vendor_DB_1.2.4.pdf
https://tools.ietf.org/html/rfc8520
https://www.mudmaker.org/

	1 Introduction 
	1.1 How to Use this Guide
	1.2 Build Overview
	1.2.1 Usage Scenarios 
	1.2.2 Reference Architecture Overview 
	1.2.2.1 Support for MUD
	1.2.2.2 Support for Updates
	1.2.2.3 Support for Threat Signaling
	1.2.2.4 Build-Specific Features

	1.2.3 Physical Architecture Overview

	1.3 Typographic Conventions

	2 Build 1 Product Installation Guides
	2.1 Cisco MUD Manager
	2.1.1 Cisco MUD Manager Overview
	2.1.2 Cisco MUD Manager Configurations 
	2.1.2.1 Hardware Configuration
	2.1.2.2 Network Configuration
	2.1.2.3 Software Configuration

	2.1.3 Setup
	2.1.3.1 Preinstallation 
	2.1.3.2 MUD Manager Installation
	2.1.3.3 MUD Manager Configuration 
	2.1.3.4 FreeRADIUS Installation
	2.1.3.5 FreeRADIUS Configuration 
	2.1.3.6 Start MUD Manager and FreeRADIUS Server


	2.2 MUD File Server
	2.2.1 MUD File Server Overview
	2.2.2 Configuration Overview 
	2.2.2.1 Network Configuration
	2.2.2.2 Software Configuration
	2.2.2.3 Hardware Configuration

	2.2.3 Setup
	2.2.3.1 Apache Web Server 
	2.2.3.2 MUD File Creation and Signing
	2.2.3.2.1 MUD File Creation
	2.2.3.2.2 MUD File Signature Creation and Verification



	2.3 Cisco Switch–Catalyst 3850-S
	2.3.1 Cisco 3850-S Catalyst Switch Overview
	2.3.2 Configuration Overview
	2.3.2.1 Network Configuration 
	2.3.2.2 Software Configuration
	2.3.2.3 Hardware Configuration

	2.3.3 Setup

	2.4 DigiCert Certificates
	2.4.1 DigiCert CertCentral® Overview
	2.4.2 Configuration Overview
	2.4.3 Setup
	2.4.3.1 TLS Certificate
	2.4.3.2 Premium Certificate


	2.5 IoT Devices
	2.5.1 Molex PoE Gateway and Light Engine
	2.5.1.1 Configuration Overview
	2.5.1.1.1 Network Configuration
	2.5.1.1.2 Software Configuration
	2.5.1.1.3 Hardware Configuration

	2.5.1.2 Setup
	2.5.1.2.1 DHCP Client Configuration 


	2.5.2 IoT Development Kits–Linux Based
	2.5.2.1 Configuration Overview
	2.5.2.1.1 Network Configuration
	2.5.2.1.2 Software Configuration
	2.5.2.1.3 Hardware Configuration

	2.5.2.2 Setup
	2.5.2.2.1 DHCP Client Configuration 
	2.5.2.2.2 IoT Application for Testing


	2.5.3 IoT Development Kit–u-blox C027-G35
	2.5.3.1 Configuration Overview
	2.5.3.1.1 Network Configuration
	2.5.3.1.2 Software Configuration
	2.5.3.1.3 Hardware Configuration

	2.5.3.2 Setup
	2.5.3.2.1 DHCP Client Configuration 
	2.5.3.2.2 IoT Application for Testing


	2.5.4 IoT Devices–Non-MUD-Capable
	2.5.4.1 Configuration Overview
	2.5.4.1.1 Network Configuration
	2.5.4.1.2 Software Configuration
	2.5.4.1.3 Hardware Configuration

	2.5.4.2 Setup
	2.5.4.2.1 DHCP Client Configuration



	2.6 Update Server
	2.6.1 Update Server Overview
	2.6.2 Configuration Overview
	2.6.2.1 Network Configuration
	2.6.2.2 Software Configuration
	2.6.2.3 Hardware Configuration

	2.6.3 Setup

	2.7 Unapproved Server
	2.7.1  Unapproved Server Overview
	2.7.2  Configuration Overview
	2.7.2.1 Network Configuration
	2.7.2.2 Software Configuration
	2.7.2.3 Hardware Configuration

	2.7.3 Setup
	2.7.3.1 Apache Web Server


	2.8 MQTT Broker Server
	2.8.1 MQTT Broker Server Overview
	2.8.2 Configuration Overview
	2.8.2.1 Network Configuration
	2.8.2.2 Software Configuration
	2.8.2.3 Hardware Configuration

	2.8.3 Setup
	2.8.3.1 Mosquitto Setup


	2.9 Forescout–IoT Device Discovery 
	2.9.1 Forescout Overview
	2.9.2 Configuration Overview
	2.9.2.1 Network Configuration
	2.9.2.2 Software Configuration
	2.9.2.3 Hardware Configuration

	2.9.3 Setup
	2.9.3.1 Forescout Appliance Setup
	2.9.3.2 Enterprise Manager Setup



	3 Build 2 Product Installation Guides
	3.1 Yikes! MUD Manager
	3.1.1 Yikes! MUD Manager Overview
	3.1.2 Configuration Overview
	3.1.3 Setup

	3.2 MUD File Server
	3.2.1 MUD File Server Overview

	3.3 Yikes! DHCP Server
	3.3.1 Yikes! DHCP Server Overview
	3.3.2 Configuration Overview
	3.3.3 Setup

	3.4 Yikes! Router
	3.4.1 Yikes! Router Overview
	3.4.2 Configuration Overview
	3.4.2.1 Network Configuration 
	3.4.2.2 Software Configuration 
	3.4.2.3 Hardware Configuration 

	3.4.3 Setup

	3.5 DigiCert Certificates
	3.6 IoT Devices
	3.6.1 IoT Development Kits—Linux Based
	3.6.1.1 Configuration Overview
	3.6.1.1.1 Network Configuration 
	3.6.1.1.2 Software Configuration 
	3.6.1.1.3 Hardware Configuration 

	3.6.1.2 Setup
	3.6.1.2.1 DHCP Client Configuration



	3.7 Update Server
	3.8 Unapproved Server
	3.9 Yikes! IoT Device Discovery, Categorization, and Traffic Policy Enforcement (Yikes! Cloud and Yikes! Mobile Application)
	3.9.1 Yikes! IoT Device Discovery, Categorization, and Traffic Policy Enforcement Overview
	3.9.2 Configuration Overview
	3.9.2.1 Network Configuration 
	3.9.2.2 Software Configuration 
	3.9.2.3 Hardware Configuration 

	3.9.3 Setup
	3.9.3.1 Yikes! Router and Account Cloud Registration
	3.9.3.2 Yikes! MUD-Capable IoT Device Discovery
	3.9.3.3 Yikes! Alerts
	3.9.3.4 Yikes! Device Categories and Setting Rules
	3.9.3.5 Yikes! Network Rules 


	3.10 GCA Quad9 Threat Signaling in Yikes! Router 
	3.10.1  GCA Quad9 Threat Signaling in Yikes! Router Overview
	3.10.2  Configuration Overview
	3.10.3  Setup


	4 Build 3 Product Installation Guides
	4.1 Product Installation
	4.1.1 DigiCert Certificates
	4.1.2 MUD Manager
	4.1.2.1 MUD Manager Overview
	4.1.2.2 Configuration Overview
	4.1.2.2.1 Network Configuration
	4.1.2.2.2 Software Configuration
	4.1.2.2.3 Hardware Configuration

	4.1.2.3 Setup
	4.1.2.3.1 Install and Set Up Dependencies
	4.1.2.3.2 Installing MUD Manager
	4.1.2.3.3 Operation 


	4.1.3 MUD File Server
	4.1.3.1 MUD File Server Overview
	4.1.3.2 Configuration Overview
	4.1.3.2.1 Network Configuration
	4.1.3.2.2 Software Configuration
	4.1.3.2.3 Hardware Configuration

	4.1.3.3 Setup
	4.1.3.3.1 NGINX Web Server
	4.1.3.3.2 MUD File Creation and Signing


	4.1.4 Micronets Gateway
	4.1.4.1 Micronets Gateway Overview
	4.1.4.2 Configuration Overview
	4.1.4.2.1 Network Configuration
	4.1.4.2.2 Software Configuration
	4.1.4.2.3 Hardware Configuration

	4.1.4.3 Setup
	4.1.4.3.1 Install Dependencies
	4.1.4.3.2 Install Micronets Packages


	4.1.5 IoT Devices
	4.1.5.1 IoT Devices Overview
	4.1.5.2 Configuration Overview
	4.1.5.2.1 Network Configuration
	4.1.5.2.2 Software Configuration
	4.1.5.2.3 Hardware Configuration

	4.1.5.3 Setup
	4.1.5.3.1 Install Dependencies
	4.1.5.3.2 Install Micronets Proto-Pi
	4.1.5.3.3 Operation


	4.1.6 Update Server
	4.1.7 Unapproved Server
	4.1.8 CableLabs MUD Registry
	4.1.8.1 CableLabs MUD Registry Overview
	4.1.8.2 Configuration Overview
	4.1.8.2.1 Network Configuration
	4.1.8.2.2 Software Configuration
	4.1.8.2.3 Hardware Configuration

	4.1.8.3 Setup
	4.1.8.3.1 Install and Configure MUD Registry


	4.1.9 CableLabs Micronets Manager for SDN Control
	4.1.9.1 CableLabs Micronets Manager Overview
	4.1.9.2 Configuration Overview
	4.1.9.2.1 Network Configuration
	4.1.9.2.2 Software Configuration
	4.1.9.2.3 Hardware Configuration

	4.1.9.3 Setup
	4.1.9.3.1 Install Dependencies
	4.1.9.3.2 Install and Configure the Micronets Manager


	4.1.10  Micronets Websocket Proxy
	4.1.10.1  Micronets Websocket Proxy Overview
	4.1.10.2  Configuration Overview
	4.1.10.2.1 Network Configuration
	4.1.10.2.2 Software Configuration
	4.1.10.2.3 Hardware Configuration

	4.1.10.3  Setup

	4.1.11  Micronets iPhone Application for Device Onboarding 
	4.1.11.1  Micronets iPhone Application Overview
	4.1.11.2  Configuration Overview
	4.1.11.2.1 Network Configuration
	4.1.11.2.2 Software Configuration
	4.1.11.2.3 Hardware Configuration

	4.1.11.3  Setup
	4.1.11.3.1  Install Dependencies
	4.1.11.3.2  Build Micronets iPhone Application 


	4.1.12  MSO Portal Bootstrapping Interface to the Onboarding Manager
	4.1.12.1  MSO Portal Overview
	4.1.12.2  Configuration Overview
	4.1.12.2.1 Network Configuration
	4.1.12.2.2 Software Configuration
	4.1.12.2.3 Hardware Configuration

	4.1.12.3  Setup
	4.1.12.3.1 Install Dependencies 
	4.1.12.3.2 Install and Configure MSO Portal 



	4.2 Product Integration and Operation  
	4.2.1 Adding an MSO Subscriber 
	4.2.1.1 Prerequisites 
	4.2.1.2 Instructions

	4.2.2 Associating the Micronets Gateway with a Subscriber
	4.2.2.1 Prerequisites
	4.2.2.2 Instructions

	4.2.3 Integrating Micronets Proto-Pi Device
	4.2.3.1 Prerequisites 
	4.2.3.2 Instructions

	4.2.4 Updating MUD Registry 
	4.2.4.1 Prerequisites 
	4.2.4.2 Instructions

	4.2.5 Integrating the Micronets iPhone App with MSO Portal 
	4.2.5.1 Prerequisites 
	4.2.5.2 Instructions

	4.2.6 Onboarding Micronets Proto-Pi to a Micronet
	4.2.6.1 Prerequisites 
	4.2.6.2 Instructions

	4.2.7 Interacting with Micronets Manager
	4.2.7.1 Prerequisites 
	4.2.7.2 Instructions

	4.2.8 Removing Micronets Proto-Pi from a Micronet
	4.2.8.1 Prerequisites
	4.2.8.2 Instructions:

	4.2.9 Removing an MSO Subscriber
	4.2.9.1 Prerequisites 
	4.2.9.2 Instructions



	5 Build 4 Product Installation Guides
	5.1 NIST SDN Controller/MUD Manager
	5.1.1 NIST SDN Controller/MUD Manager Overview
	5.1.2 Configuration Overview
	5.1.2.1 Hardware Configuration 
	5.1.2.2 Network Configuration 
	5.1.2.3 Software Configuration 

	5.1.3 Preinstallation
	5.1.4 Setup

	5.2 MUD File Server 
	5.2.1 MUD File Sever Overview
	5.2.2 Configuration Overview
	5.2.2.1 Hardware Configuration 
	5.2.2.2 Network Configuration 
	5.2.2.3 Software Configuration

	5.2.3 Setup
	5.2.3.1 MUD File Creation
	5.2.3.2 MUD File Signing
	5.2.3.3 MUD File Serving


	5.3 Northbound Networks Zodiac WX Access Point 
	5.3.1 Northbound Networks Zodiac WX Access Point Overview
	5.3.2 Configuration Overview
	5.3.2.1 Network Configuration 
	5.3.2.2 Software Configuration 
	5.3.2.3 Hardware Configuration 

	5.3.3 Setup

	5.4 DigiCert Certificates
	5.5 IoT Devices
	5.5.1 IoT Devices Overview
	5.5.2 Configuration Overview
	5.5.2.1 Network Configuration 
	5.5.2.2 Software Configuration 
	5.5.2.3 Hardware Configuration 

	5.5.3 Setup

	5.6 Update Server
	5.6.1 Update Server Overview
	5.6.2 Configuration Overview
	5.6.2.1 Network Configuration 
	5.6.2.2 Software Configuration 
	5.6.2.3 Hardware Configuration 

	5.6.3 Setup

	5.7 Unapproved Server
	5.7.1 Unapproved Server Overview
	5.7.2 Configuration Overview
	5.7.2.1 Network Configuration 
	5.7.2.2 Software Configuration 
	5.7.2.3 Hardware Configuration 

	5.7.3 Setup
	Appendix A List of Acronyms
	Appendix B Glossary
	Appendix C Bibliography



	Word Bookmarks
	RTF5f546f633432343535363830


