NIST SPECIAL PUBLICATION 1800-23B

Energy Sector Asset Management For Electric Utilities, Oil & Gas Industry

Volume B: Approach, Architecture, and Security Characteristics

James McCarthy Glen Joy National Cybersecurity Center of Excellence Information Technology Laboratory

Lauren Acierto Jason Kuruvilla Titilayo Ogunyale Nikolas Urlaub John Wiltberger Devin Wynne The MITRE Corporation McLean, Virginia

September 2019

DRAFT

This publication is available free of charge from https://www.nccoe.nist.gov/projects/use-cases/energy-sector/asset-management

DISCLAIMER

Certain commercial entities, equipment, products, or materials may be identified by name or company logo or other insignia in order to acknowledge their participation in this collaboration or to describe an experimental procedure or concept adequately. Such identification is not intended to imply special status or relationship with NIST or recommendation or endorsement by NIST or NCCOE; neither is it intended to imply that the entities, equipment, products, or materials are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 1800-23B, Natl. Inst. Stand. Technol. Spec. Publ. 1800-23B, 47 pages, (September 2019), CODEN: NSPUE2

FEEDBACK

You can improve this guide by contributing feedback. As you review and adopt this solution for your own organization, we ask you and your colleagues to share your experience and advice with us.

Comments on this publication may be submitted to: <u>energy_nccoe@nist.gov</u>.

Public comment period: September 23, 2019 through November 25, 2019

All comments are subject to release under the Freedom of Information Act.

National Cybersecurity Center of Excellence National Institute of Standards and Technology 100 Bureau Drive Mailstop 2002 Gaithersburg, MD 20899 Email: <u>nccoe@nist.gov</u>

1 NATIONAL CYBERSECURITY CENTER OF EXCELLENCE

- 2 The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards
- 3 and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and
- 4 academic institutions work together to address businesses' most pressing cybersecurity issues. This
- 5 public-private partnership enables the creation of practical cybersecurity solutions for specific
- 6 industries, as well as for broad, cross-sector technology challenges. Through consortia under
- 7 Cooperative Research and Development Agreements (CRADAs), including technology partners—from
- 8 Fortune 50 market leaders to smaller companies specializing in information technology security—the
- 9 NCCoE applies standards and best practices to develop modular, easily adaptable example cybersecurity
- 10 solutions using commercially available technology. The NCCoE documents these example solutions in
- 11 the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework
- 12 and details the steps needed for another entity to re-create the example solution. The NCCoE was
- established in 2012 by NIST in partnership with the State of Maryland and Montgomery County,
- 14 Maryland.

To learn more about the NCCoE, visit <u>https://www.nccoe.nist.gov/.</u> To learn more about NIST, visit https://www.nist.gov.

17 NIST CYBERSECURITY PRACTICE GUIDES

- 18 NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity
- 19 challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the
- adoption of standards-based approaches to cybersecurity. They show members of the information
- 21 security community how to implement example solutions that help them align more easily with relevant
- standards and best practices, and provide users with the materials lists, configuration files, and other
- 23 information they need to implement a similar approach.
- 24 The documents in this series describe example implementations of cybersecurity practices that
- 25 businesses and other organizations may voluntarily adopt. These documents do not describe regulations
- 26 or mandatory practices, nor do they carry statutory authority.

27 ABSTRACT

- 28 Industrial control systems (ICS) compose a core part of our nation's critical infrastructure. Energy sector
- 29 companies rely on ICS to generate, transmit, and distribute power and to drill, produce, refine, and
- 30 transport oil and natural gas. Given the wide variety of ICS assets, such as programmable logic
- 31 controllers and intelligent electronic devices, that provide command and control information on
- 32 operational technology (OT) networks, it is essential to protect these devices to maintain continuity of
- 33 operations. These assets must be monitored and managed to reduce the risk of a cyber attack on ICS-
- 34 networked environments. Having an accurate OT asset inventory is a critical component of an overall
- 35 cybersecurity strategy.

- 36 The NCCoE at NIST is responding to the energy sector's request for an automated OT asset management
- 37 solution. To remain fully operational, energy sector entities should be able to effectively identify,
- 38 control, and monitor their OT assets. This document provides guidance on how to enhance OT asset
- 39 management practices by leveraging capabilities that may already exist in an energy organization's
- 40 operating environment as well as implementing new capabilities.

41 **KEYWORDS**

- 42 energy sector asset management; ESAM; ICS; industrial control system; malicious actor; monitoring;
- 43 operational technology; OT; SCADA; supervisory control and data acquisition

44 **ACKNOWLEDGMENTS**

45 We are grateful to the following individuals for their generous contributions of expertise and time.

Name	Organization				
Matt Cowell	Dragos, Inc.				
Tom VanNorman	Dragos, Inc.				
Andrew Dunham	Forescout Technologies, Inc.				
Tim Jones	Forescout Technologies, Inc.				
John Norsworthy	Forescout Technologies, Inc.				
Lindsey Hale	FoxGuard Solutions, Inc.				
Steve Boyd	KORE Wireless, Inc.				
Brian Hicks	KORE Wireless, Inc.				
Adam Cohn	Splunk Inc.				
Bill Wright	Splunk Inc.				
Ray Erlinger	TDi Technologies, Inc.				
Bill Johnson	TDi Technologies, Inc.				

Name	Organization
Samantha Pelletier	TDi Technologies, Inc.
Gabe Authier	Tripwire, Inc.
Steven Sletten	Tripwire, Inc.
Jim Wachhaus	Tripwire, Inc.

46 The Technology Partners/Collaborators who participated in this build submitted their capabilities in

- 47 response to a notice in the Federal Register. Respondents with relevant capabilities or product
- 48 components were invited to sign a Cooperative Research and Development Agreement (CRADA) with
- 49 NIST, allowing them to participate in a consortium to build this example solution. We worked with:

Technology Partner/Collaborator	Build Involvement
Dragos, Inc.	Dragos Platform v1.5
Forescout Technologies, Inc.	ForeScout CounterACT v8.0.1
FoxGuard Solutions, Inc.	FoxGuard Solutions Patch and Update Management Program v1
KORE Wireless Group, Inc.	KORE Wireless Cellular Connectivity with Cellular Gateway v2.0
<u>Splunk, Inc.</u>	Splunk Enterprise v7.1.3
TDi Technologies, Inc.	TDi Technologies ConsoleWorks v5.2-0u1
Tripwire, Inc.	Tripwire Industrial Visibility v3.2.1

50 **Contents**

51	1	Sun	nmary	, ,	1
52		1.1	Challe	nge	2
53		1.2	Solutio	on	2
54			1.2.1	Relevant Standards and Guidance	3
55		1.3	Benefi	ts	5
56	2	Hov	v to U	se This Guide	5
57		2.1	Турод	raphic Conventions	6
58	3	Арр	roach]	7
59		3.1	Audier	nce	8
60		3.2	Scope		8
61		3.3	Assum	ptions	9
62		3.4	Risk As	ssessment	10
63			3.4.1	Threats	11
64			3.4.2	Vulnerabilities	11
65			3.4.3	Risk	12
66			3.4.4	Security Control Map	13
67			3.4.5	National Initiative for Cybersecurity Education Workforce Framework	18
68		3.5	Techno	ologies	21
69	4	Arcl	hitect	ure	23
70		4.1	Archite	ecture Description	23
71			4.1.1	High-Level Architecture	23
72			4.1.2	Reference Architecture	25
73		4.2	Examp	le Solution	27
74			4.2.1	UMD Site Topology	27
75			4.2.2	Plano Site Topology	28
76			4.2.3	Enterprise Location Topology	29

77			4.2.4	Asset Management Dashboard
78	5	Fur	oction	al Test Plan
79		5.1	Test C	Cases
80			5.1.1	ESAM-1: New Device Attached
81			5.1.2	ESAM-2: Vulnerability Notification35
82			5.1.3	ESAM-3: Device Goes Offline
83			5.1.4	ESAM-4: Anomalous Device Communication37
84			5.1.5	ESAM-5: Remote Devices with Cellular Connectivity
85	6	Sec	urity	Characteristic Analysis39
86		6.1	Assun	nptions and Limitations
87 88		6.2	•	sis of the Reference Design's Support for Cybersecurity Framework Itegories40
89			6.2.1	ID.AM-1: Physical Devices and Systems Within the Organization Are Inventoried40
90 91			6.2.2	ID.RA-2: Threat and Vulnerability Information Is Received from Information-Sharing Forums and Sources41
92			6.2.3	PR.DS-2: Data in Transit Is Protected41
93 94			6.2.4	PR.MA-1: Maintenance and Repair of Organizational Assets Are Performed and Logged in a Timely Manner with Approved and Controlled Tools41
95 96			6.2.5	PR.MA-2: Remote Maintenance of Organizational Assets Is Approved, Logged, and Performed in a Manner that Prevents Unauthorized Access
97			6.2.6	PR.PT-4: Communications and Control Networks Are Protected42
98 99			6.2.7	DE.AE-1: A Baseline of Network Operations and Expected Data Flows for Users and Systems Is Established and Managed42
100 101			6.2.8	DE.AE-2: Detected Events Are Analyzed to Understand Attack Targets and Methods 42
102		6.3	Lesso	ns Learned
103	7	Fut	ure B	uild Considerations43
104	Ар	pen	dix A	List of Acronyms
105	Ap	pen	dix B	References

106 List of Figures

107	Figure 3-1 High-Level Topology	8
108	Figure 3-2 Asset Management Characteristics	9
109	Figure 4-1 High-Level Architecture	24
110	Figure 4-2 Reference Architecture	25
111	Figure 4-3 UMD In-Depth Topology	27
112	Figure 4-4 Plano In-Depth Topology	28
113	Figure 4-5 Enterprise In-Depth Topology	29
114	Figure 4-6 Asset Dashboard: Asset Characteristics	30
115	Figure 4-7 Asset Dashboard: Asset Communications	31
116	Figure 4-8 Asset Dashboard: Asset Details, UMD	32
117	Figure 4-9 Asset Dashboard: Asset Details, Plano	33

118 List of Tables

119	Table 3-1 Security Control Map
120	Table 3-2 NIST NICE Work Roles Mapped to the Cybersecurity Framework: ESAM
121	Table 3-3 Products and Technologies 21

122 **1** Summary

- 123 Industrial control systems (ICS) compose a core part of our nation's critical infrastructure [1]. Energy-
- sector companies rely on ICS to generate, transmit, and distribute power and to drill, produce, refine,
- and transport oil and natural gas. Given the wide variety of ICS assets, such as programmable logic
- 126 controllers (PLCs) and intelligent electronic devices (IEDs), which provide command and control
 127 information on operational technology (OT) networks, it is essential to protect these devices to maint.
- information on operational technology (OT) networks, it is essential to protect these devices to maintaincontinuity of operations. Having an accurate OT asset inventory is a critical component of an overall
- 129 cybersecurity strategy.
- 130 Energy companies own, operate, and maintain critical OT assets that possess unique requirements for
- availability and reliability. These assets must be monitored and managed to reduce the risk of cyber
- 132 attacks on ICS-networked environments. Key factors in strengthening OT asset management capabilities
- are determining which tools can collect asset information and what type of communications
- 134 infrastructure is required to transmit this information.
- 135 The National Cybersecurity Center of Excellence (NCCoE) at the National Institute of Standards and
- 136 Technology (NIST) is responding to the energy sector's request for an automated OT asset management
- solution. To remain fully operational, energy sector entities should be able to effectively identify,
- 138 control, and monitor all of their OT assets. This document provides guidance on how to enhance OT
- asset management practices, by leveraging capabilities that may already exist in an energy
- 140 organization's operating environment as well as implementing new capabilities.
- 141 The capabilities demonstrated in this guide were selected to address several key tenets of asset
- 142 management: 1) establish a baseline of known assets, 2) establish a dynamic asset management
- platform that can alert operators to changes in the baseline, and 3) capture as many attributes about
- 144 the assets as possible via the automated capabilities implemented.
- 145 In addition to these key tenets, this practice guide offers methods of asset management that address
- particular challenges in an OT environment, including the need to 1) account for geographically
- dispersed and remote assets, 2) have a consolidated view of the sum total of OT assets, and 3) be able
- to readily identify an asset's disposition, or level of criticality, in the overall operational environment.
- 149 The capabilities showcased in this guide may provide energy-sector entities with the means to establish
- a comprehensive OT asset management baseline that can be monitored over the life of the asset.
- 151 Implementation of these capabilities provides an automated inventory that can be viewed in near real
- time and can alert designated personnel to changes to the inventory. This will prove useful from both a
- 153 cybersecurity and operational perspective, as it can otherwise be difficult to quickly identify any
- anomalies due to a cyber attack or operational issues. This document concerns itself primarily with
- 155 cybersecurity; however, it is possible that other operational benefits may be realized.

156 1.1 Challenge

157 Many energy-sector companies face challenges in managing their assets, particularly when those assets 158 are remote and geographically dispersed. Organizations may not have the tools to provide a current 159 account of their assets or may not be leveraging existing capabilities required to produce an adequate 160 inventory. Existing asset inventories may be static, onetime, or point-in-time snapshots of auditing 161 activities conducted previously without a way to see the current status of those assets. Adding to the challenge, asset inventories may be kept in documents or spreadsheets that may be difficult to manually 162 163 maintain and update, especially considering that inventories can change frequently. Without an 164 effective asset management solution, organizations that are unaware of any assets in their infrastructure may be unnecessarily exposed to cybersecurity risks. It is difficult to protect what cannot 165 166 be seen or is not known.

167 **1.2 Solution**

This NCCoE Cybersecurity Practice Guide demonstrates how energy organizations can use commercially
 available technologies that are consistent with cybersecurity standards, to address the challenge of
 establishing, enhancing, and automating their OT asset management.

- 171 This project demonstrates an OT asset management solution that consists of the following 172 characteristics:
- 173 the ability to discover assets connected to a network
- the ability to identify and capture as many asset attributes as possible to baseline assets, such as
 manufacturer, model, operating system (OS), internet protocol (IP) addresses, media access
 control (MAC) addresses, protocols, patch-level information, and firmware versions, along with
 physical and logical locations of the assets
- continuous identification, monitoring, and alerting of newly connected devices, disconnected devices, and their connections to other devices (IP based and serial)
- the ability to determine disposition of an asset, including the level of criticality (high, medium, or
 low) and its relation and communication to other assets within the OT network
- 182 the ability to alert on deviations from the expected operation of assets
- 183 Furthermore, this practice guide:
- maps security characteristics to standards, regulations, and best practices from NIST and other
 standards organizations
- 186 provides a detailed architecture and capabilities that address asset management
- 187 describes best practices and lessons learned
- 188 provides instructions for implementers and security engineers to re-create the reference design

is modular and uses products that are readily available and interoperable with existing energy
 infrastructures

191 1.2.1 Relevant Standards and Guidance

In developing our example implementation, we were influenced by standards and guidance from thefollowing sources, which can also provide an organization with relevant standards and best practices:

- American National Standards Institute (ANSI)/International Society of Automation (ISA) TR62443-2-3-2015, Security for industrial automation and control systems Part 2-3: Patch
 management in the IACS environment, 2015. <u>https://www.isa.org/store/isa-tr62443-2-3-2015,-</u>
 security-for-industrial-automation-and-control-systems-part-2-3-patch-management-in-the iacs-environment/40228386
- ANSI/ISA-62443-3-3 (99.03.03)-2013, Security for industrial automation and control systems Part
 3-3: System security requirements and security levels, 2013. <u>https://www.isa.org/store/ansi/isa-</u>
 <u>62443-3-3-990303-2013-security-for-industrial-automation-and-control-systems-part-3-3-</u>
 system-security-requirements-and-security-levels/116785
- ISA-62443-2-1-2009, Security for Industrial Automation and Control Systems: Establishing an Industrial Automation and Control Systems Security Program.
 <u>https://www.isa.org/store/ansi/isa%E2%80%9362443-2-1-990201%E2%80%932009-security-</u>
 <u>for-industrial-automation-and-control-systems-establishing-an-industrial-automation-and-</u>
 control-systems-security-program-/116731
- 208 Center for Internet Security (CIS), Critical Security Controls V6.0. <u>https://cisecurity.org/controls</u>
- Information Systems Audit and Control Association (ISACA), Control Objectives for Information and Related Technology 5, <u>https://www.isaca.org/cobit/pages/default.aspx</u>
- NIST, Cryptographic Standards and Guidelines. <u>https://csrc.nist.gov/Projects/Cryptographic-</u>
 <u>Standards-and-Guidelines</u>
- Department of Energy, *Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2), Version 1.1,* February 2014. <u>https://energy.gov/sites/prod/files/2014/02/f7/ES-C2M2-v1-1-</u>
 <u>Feb2014.pdf</u>
- NIST, Framework for Improving Critical Infrastructure Cybersecurity, Version 1.0, February 12, 2014. <u>https://www.nist.gov/sites/default/files/documents/cyberframework/cybersecurity-</u>
 <u>framework-021214.pdf</u>
- Internet Engineering Task Force (IETF) Request for Comments (RFC) 4254, *The Secure Shell (SSH) Connection Protocol*, January 2006. <u>https://www.ietf.org/rfc/rfc4254.txt</u>
- IETF RFC 5246, *The Transport Layer Security (TLS) Protocol Version 1.2*, August 2008.
 <u>https://tools.ietf.org/html/rfc5246</u>
- International Organization for Standardization (ISO) 55000:2014, Asset Management—
 Overview, Principles and Terminology, January 2014. <u>https://www.iso.org/standard/55088.html</u>

225 226	1	ISO 55001:2014, Asset Management—Management Systems—Requirements, January 2014. https://www.iso.org/standard/55089.html
227 228	1	ISO 55002:2014, Asset Management—Management Systems—Guidelines for the Application of ISO 55001, January 2014. <u>https://www.iso.org/standard/55090.html</u>
229 230 231	•	ISO/International Electrotechnical Commission (IEC) 19770-1:2017, Information Technology—IT Asset Management—Part 1: IT Asset Management Systems—Requirements, December 2017. https://www.iso.org/standard/68531.html
232 233	1	ISO/IEC 19770-5:2015, Information Technology—IT Asset Management—Part 5: Overview and Vocabulary, August 2015. <u>https://www.iso.org/standard/68291.html</u>
234 235 236	•	ISO/IEC 27001:2013, Information Technology—Security Techniques—Information Security Management Systems—Requirements, October 2013. https://www.iso.org/standard/54534.html
237 238 239	•	ISO/IEC 27019:2017, Information Technology—Security Techniques—Information Security Controls for the Energy Utility Industry, October 2017. <u>https://www.iso.org/standard/68091.html</u>
240 241	1	NIST Special Publication (SP) 800-40 Revision 3, <i>Guide to Enterprise Patch Management Technologies</i> , July 2013. <u>https://doi.org/10.6028/NIST.SP.800-40r3</u>
242 243	1	NIST SP 800-52 Revision 1, <i>Guidelines for the Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations</i> , April 2014. <u>https://doi.org/10.6028/NIST.SP.800-52r1</u>
244 245	1	NIST SP 800-53 Revision 4, <i>Security and Privacy Controls for Federal Information Systems and Organizations</i> , April 2013. <u>https://doi.org/10.6028/NIST.SP.800-53r4</u>
246 247	1	NIST SP 800-82 Revision 2, Guide to Industrial Control Systems (ICS) Security, May 2015. https://doi.org/10.6028/NIST.SP.800-82r2
248 249 250	•	NIST SP 800-160 Volume 1, Systems Security Engineering: Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems, November 2016. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v1.pdf
251 252	1	NIST SP 1800-5 (DRAFT), IT Asset Management, 2014. <u>https://nccoe.nist.gov/library/it-asset-</u> management-nist-sp-1800-5-practice-guide
253 254 255	•	NIST SP 1800-7 (DRAFT), Situational Awareness for Electric Utilities, 2017. https://nccoe.nist.gov/library/situational-awareness-electric-utilities-nist-sp-1800-7-practice- guide
256 257 258 259	•	North American Electric Reliability Corporation (NERC), <i>Reliability Standards for the Bulk Electric Systems of North America</i> , last updated June 5, 2019. <u>http://www.nerc.com/pa/Stand/Reliability%20Standards%20Complete%20Set/RSCompleteSet.pdf</u>

260 **1.3 Benefits**

261 This NCCoE practice guide can help your organization:

- reduce cybersecurity risk and potentially reduce the impact of safety and operational risks such as power disruption
- 264 develop and execute a strategy that provides continuous OT asset management and monitoring
- 265 respond faster to security alerts through automated cybersecurity event capabilities
- implement current cybersecurity standards and best practices, while maintaining the
 performance of energy infrastructures
- 268 strengthen awareness of remote and geographically dispersed OT assets
- 269 Other potential benefits include:
- additional data for organizations to address business needs such as budget planning and
 technology updates
- 272 improved situational awareness and strengthened cybersecurity posture

273 **2 How to Use This Guide**

- 274 This NIST Cybersecurity Practice Guide demonstrates a standards-based reference design and provides
- users with the information they need to replicate the energy sector asset management (ESAM) solution
- that focuses on OT assets and does not include software inventory. This reference design is modular and
- 277 can be deployed in whole or in part.
- 278 This guide contains three volumes:
- NIST SP 1800-23A: Executive Summary
- NIST SP 1800-23B: Approach, Architecture, and Security Characteristics what we built and why
 (you are here)
- 282 NIST SP 1800-23C: *How-To Guides* instructions for building the example solution
- 283 Depending on your role in your organization, you might use this guide in different ways:
- 284 Senior information technology (IT) executives, including chief information security and technology
- officers, will be interested in the *Executive Summary*, NIST SP 1800-23A, which describes the following
 topics:
- 287 challenges that enterprises face in OT asset management
- 288 example solution built at the NCCoE
- 289 benefits of adopting the example solution

290 Technology or security program managers who are concerned with how to identify, understand, assess, 291 and mitigate risk will be interested in this part of the guide, NIST SP 1800-23B, which describes what we 292 did and why. The following sections will be of particular interest:

- 293 Section 3.4, Risk Assessment, provides a description of the risk analysis we performed.
- 294 Section 3.4.4, Security Control Map, maps the security characteristics of this example solution to 295 cybersecurity standards and best practices.

296 You might share the *Executive Summary*, NIST SP 1800-23A, with your leadership team members to help 297 them understand the importance of adopting a standards-based solution to strengthen their OT asset 298 management practices by leveraging capabilities that may already exist within their operating 299 environment or by implementing new capabilities.

300 IT professionals who want to implement an approach like this will find the whole practice guide useful. You can use the how-to portion of the guide, NIST SP 1800-23C, to replicate all or parts of the build 301 302 created in our lab. The how-to portion of the guide provides specific product installation, configuration, 303 and integration instructions for implementing the example solution. We do not re-create the product 304 manufacturers' documentation, which is generally widely available. Rather, we show how we integrated

- 305 the products together in our environment to create an example solution.
- 306 This guide assumes that IT professionals have experience implementing security products within the 307 enterprise. While we have used a suite of commercial products to address this challenge, this guide does
- 308 not endorse these particular products. Your organization can adopt this solution or one that adheres to
- 309
- these guidelines in whole, or you can use this guide as a starting point for tailoring and implementing 310 parts of the ESAM solution. Your organization's security experts should identify the products that will
- 311 best integrate with your existing tools and IT system infrastructure. We hope that you will seek products
- 312 that are congruent with applicable standards and best practices. Section 3.5, Technologies, lists the
- products we used and maps them to the cybersecurity controls provided by this reference solution. 313
- A NIST Cybersecurity Practice Guide does not describe "the" solution, but a possible solution. This is a 314
- 315 draft guide. We seek feedback on its contents and welcome your input. Comments, suggestions, and
- 316 success stories will improve subsequent versions of this guide. Please contribute your thoughts to
- 317 energy nccoe@nist.gov

2.1 Typographic Conventions 318

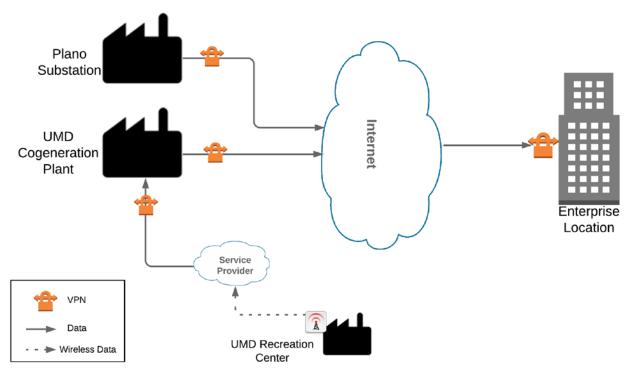
319 The following table presents typographic conventions used in this volume. Acronyms used in figures can

320 be found in Appendix A.

Typeface/Symbol	Meaning	Example
Italics	file names and path names; references to documents that are not hyperlinks; new terms; and placeholders	For language use and style guidance, see the NCCoE Style Guide.
Bold	names of menus, options, command buttons, and fields	Choose File > Edit .
Monospace	command-line input, onscreen computer output, sample code examples, and status codes	mkdir
Monospace Bold	command-line user input contrasted with computer output	service sshd start
<u>blue text</u>	link to other parts of the document, a web URL, or an email address	All publications from NIST's NCCoE are available at <u>https://www.nccoe.nist.gov</u> .

321 **3 Approach**

322 This practice guide highlights the approach the NCCoE used to develop the example implementation.


323 The approach includes a risk assessment and analysis, logical design, example build development,

- 324 testing, and security control mapping.
- 325 Based on discussions with cybersecurity practitioners in the energy sector, the NCCoE pursued the ESAM

Project to illustrate the broad set of capabilities available to manage OT assets. ICS infrastructures

- 327 consist of both IT and OT assets; however, this guide focuses primarily on OT devices due to their unique
- 328 challenges.
- 329 The NCCoE collaborated with its Community of Interest members and participating vendors to produce
- an example architecture and example implementation. Vendors provided technologies that met project
- 331 requirements and assisted in installing and configuring those technologies. This practice guide highlights
- the example architecture and example implementation, including supporting elements such as a
- functional test plan, security characteristic analysis, lessons learned, and future build considerations.
- 334 To reasonably replicate a live ICS environment, the project consists of three distinct geographic
- locations: 1) Plano, Texas; 2) College Park, Maryland; and 3) Rockville, Maryland. The Plano site is TDi
- 336 Technology's lab and represents a substation. The College Park site is the University of Maryland's
- 337 (UMD's) cogeneration plant. The Rockville site is the NCCoE' s energy lab and represents the enterprise
- location. The diagram in Figure 3-1 below visually represents the physical layout of the project.

340

Both the Plano substation and the UMD cogeneration plant are connected through the internet to the
 NCCoE energy lab as the enterprise location. Each site is connected via a multipoint, always-on virtual
 private network (VPN). This allows the NCCoE to aggregate data from multiple sites into a single

location, emulating multisite deployments found within the energy sector. The UMD site also consists of

a remote site connected via wireless technology. Each site is described in more detail in Section 4.

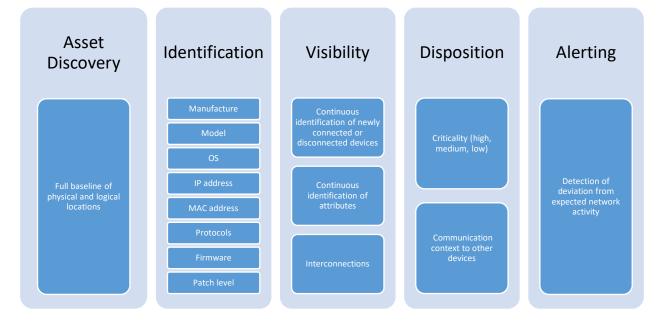
346 **3.1 Audience**

347 This guide is intended for individuals or entities responsible for cybersecurity of ICS and for those

348 interested in understanding an example architecture demonstrating asset management capabilities for

- OT. It may also be of interest to anyone in industry, academia, or government who seeks general
- 350 knowledge of an OT asset management solution for energy-sector organizations.

351 **3.2 Scope**


352 This document focuses on OT asset management, namely devices used to control, monitor, and

- 353 maintain generation, transmission, and distribution of various forms of energy. These devices include
- 354 PLCs, IEDs, engineering workstations, historians, and human-machine interfaces (HMIs). This document
- does not consider software inventories or other physical assets that may be used to support energy
- operations, such as buildings, trucks, and physical access control systems. The solution is designed to

deliver an automated OT asset inventory that provides asset information in real or near real time and

can alert personnel of any changes to the inventory. Additionally, we focus on OT asset management

- 359 from a cybersecurity perspective. Although operational benefits can be obtained from implementation
- of one or more of the components of this guide, we propose OT asset management as a fundamental
- and core aspect of properly maintaining an adequate cybersecurity posture.
- 362 This project addresses the following characteristics of asset management:
- **Asset Discovery:** establishment of a full baseline of physical and logical locations of assets
- Asset Identification: capture of asset attributes, such as manufacturer, model, OS, IP addresses,
 MAC addresses, protocols, patch-level information, and firmware versions
- Asset Visibility: continuous identification of newly connected or disconnected devices and IP
 (routable and non-routable) and serial connections to other devices
- Asset Disposition: the level of criticality (high, medium, or low) of a particular asset, its relation
 to other assets within the OT network, and its communication (including serial) with other
 devices
- 371 Alerting Capabilities: detection of a deviation from the expected operation of assets
- 372 Figure 3-2 Asset Management Characteristics

373

374 **3.3 Assumptions**

375 This project makes the following assumptions:

376	1.	The solution will scale to real-world operating environments.
377		Some level of an asset management capability already exists within an organization.
378		Although we differentiate between IT and OT asset inventories, there may be some overlap.
379 380	1	All OT assets within an organization's infrastructure, especially those considered critical, need to be identified, tracked, and managed.
381 382 383	ľ	OT networks are composed of numerous ICS devices (e.g., PLCs and IEDs) in addition to other vital components (e.g., engineering workstations, historians, and HMIs) that are typically installed on a Windows and/or Linux OS.

384 **3.4 Risk Assessment**

385 NIST SP 800-30 Revision 1, Guide for Conducting Risk Assessments, states that risk is "a measure of the 386 extent to which an entity is threatened by a potential circumstance or event, and typically a function of: 387 (i) the adverse impacts that would arise if the circumstance or event occurs and (ii) the likelihood of 388 occurrence" [2]. The guide further defines risk assessment as "the process of identifying, estimating, and 389 prioritizing risks to organizational operations (including mission, functions, image, reputation), 390 organizational assets, individuals, other organizations, and the Nation, resulting from the operation of 391 an information system. Part of risk management incorporates threat and vulnerability analyses, and 392 considers mitigations provided by security controls planned or in place." 393 The NCCoE recommends that any discussion of risk management, particularly at the enterprise-level, 394 begins with a comprehensive review of NIST SP 800-37 Revision 2, Risk Management Framework for

395 Information Systems and Organizations—publicly-available material [3]. The Risk Management

396 Framework guidance, as a whole, proved to be invaluable in giving us a baseline to assess risks, from

which we developed the project, the security characteristics of the build, and this guide [4].

398 The basis for our assessment of the risks associated with the challenges in asset management for OT is

derived from <u>NIST SP 800-82 Revision 2</u>, *Guide to Industrial Control Systems (ICS) Security*, <u>Section 3</u>.

- 400 There are certain risks inherent in OT that are not found or that occur rarely in traditional IT 401 environments, for example:
- the physical impact a cybersecurity incident could cause to an energy organization's OT assets
 and to the larger energy grid
- the risk associated with non-digital control components within an OT environment and their lack
 of visibility within the organization
- 406 The NIST Cybersecurity Framework control mapping and related security controls found in this guide are407 based on these underlying risk concerns.

408 **3.4.1** Threats

- 409 A threat is "any circumstance or event with the potential to adversely impact organizational operations"
- [5]. If an organization is not aware of its deployed OT assets, it is difficult to protect them and any otherassets that may contain known or unknown vulnerabilities. Such lack of awareness increases the risk of
- 412 exploitation of other networks, devices, and protocol-level vulnerabilities.
- The Cybersecurity and Infrastructure Security Agency (CISA) ICS-Computer Emergency Readiness Team (CERT) defines cyber-threat sources to ICS as "persons who attempt unauthorized access to a control system device and/or network using a data communications pathway" [6]. Specifically, CISA ICS-CERT alongside NIST SP 800-82, *Guide to Industrial Control Systems Security* [1], identifies various malicious actors who may pose threats to ICS infrastructure [6]. These include:
- 418 foreign intelligence services—national government organizations whose intelligence-gathering
 419 and espionage activities seek to harm U.S. interests
- 420 criminal groups—such as organized crime groups that seek to attack for monetary gain
- hackers-regarded as the most widely publicized; however, they often possess very little
 tradecraft to produce large-duration attacks
- terrorists-adversaries of the U.S. who are less equipped in their cyber capabilities and therefore
 pose only a limited cyber threat
- 425 At the asset level, CISA ICS-CERT provides alerts and advisories when vulnerabilities for various OT assets 426 are discovered that may pose a threat, if exploited, to ICS infrastructure [7].
- The vulnerabilities are enumerated in the Common Vulnerabilities and Exposures vulnerability naming
 standard from the MITRE Corporation [8] and are organized according to severity by high, medium, and
- 429 low, determined by the Common Vulnerability Scoring System standard from NIST. Common examples
- 430 of such vulnerabilities include hard-coded credentials, unchanged default passwords, and encryption
- 431 anomalies [9].

432 3.4.2 Vulnerabilities

- CISA ICS-CERT defines a vulnerability as a defect that may allow a malicious actor to gain unauthorized
 access or interfere with normal operations of systems [10]. A vulnerability may exist inherently within a
- 435 device or within the design, operation, and architecture of a system. This project does not address
- 436 securing specific asset-based vulnerabilities at the device level. The key vulnerability addressed then in
- 437 this guide is an organization not having visibility over its deployed assets.
- 438 NIST SP 800-82 categorizes ICS vulnerabilities into the following categories with examples [1]:
- Policy and Procedure–incomplete, inappropriate, or nonexistent security policy, including its
 documentation, implementation guides (e.g., procedures), and enforcement

441 442	•	Architecture and Design-design flaws, development flaws, poor administration, and connections with other systems and networks
443	1.1	Configuration and Maintenance-misconfiguration and poor maintenance
444	1.1	Physical–lack of or improper access control, malfunctioning equipment
445 446		Software Development-improper data validation, security capabilities not enabled, inadequate authentication privileges
447 448	-	Communication and Network–nonexistent authentication, insecure protocols, improper firewall configuration
449 450		dge of deployed assets is paramount in securing an organization's ICS infrastructure and ing risks associated with asset-based vulnerabilities. The knowledge of an asset's location and

451 baselining of its behavior enable detection of anomalous behavior via network monitoring that may be

- the result of a successfully exploited vulnerability. The ability to reliably detect changes in asset behavior
- and knowing an asset's attributes are key in responding to potential cybersecurity incidents.

454 **3.4.3** Risk

- 455 Information-system-related security risks are those risks that arise from loss of confidentiality, integrity,
- 456 or availability of information or information systems and that reflect potential adverse impacts to
- 457 organizational operations (including mission, functions, image, or reputation), organizational assets,
- 458 individuals, other organizations, and the nation. For the energy sector, a primary risk concern to OT is a
- 459 lack of awareness of the devices running on the infrastructure. If OT assets cannot be properly
- accounted for, they cannot be protected. The following are tactical risks associated with lack of an OT
- 461 asset management solution:
- 462 Iack of knowledge of an existing asset
- 463 Iack of knowledge of the asset's physical and logical location
- 464 lack of a near-real-time comprehensive asset inventory
- 465 lack of knowledge of asset vulnerabilities and available patches
- 466 lack of data visualization and analysis capabilities that help dispatchers and a security analyst
 467 view device security events

DRAFT

468 3.4.4 Security Control Map

- 469 The NIST Cybersecurity Framework security Functions, Categories, and Subcategories that the reference design supports were
- 470 identified through a risk analysis [11]. Table 3-1 below maps NIST SP 800-53 Rev. 4 Security and Privacy Controls [12], along with
- 471 industry security references, to the NIST Cybersecurity Framework Subcategories addressed in this practice guide.
- 472 Table 3-1 Security Control Map

	Informative References							
Function	Category	Subcategory	CIS CSC 2016	ISA 62443- 2-1:2009	ISA 62443- 3- 3:2013	ISO/IEC 27001: 2013	NIST SP 800-53 Rev. 4	NERC CIP Standards
IDENTIFY (ID)	Asset Management (ID.AM): The data, personnel, devices, systems, and facilities that enable the organization to achieve business purposes are identified and managed consistent with their relative importance to business objectives and the organization's risk strategy.	ID.AM-1: Physical devices and systems within the organization are inventoried.	1	4.2.3.4	SR 7.8	A.8.1.1, A.8.1.2	CM-8 PM-5	CIP-002- 5.1a:R1, R2 CIP-010- 2:R1, R2

		Informa	ative Refe	erences				
Function	Category	Subcategory	CIS CSC 2016	ISA 62443- 2-1:2009	ISA 62443- 3- 3:2013	ISO/IEC 27001: 2013	NIST SP 800-53 Rev. 4	NERC CIP Standards
	Risk Assessment (ID.RA): The organization understands the cybersecurity risk to organizational operations (including mission, functions, image, or reputation), organizational assets, and individuals.	ID.RA-2: Threat and vulnerability information is received from information-sharing forums and sources.	4	4.2.3, 4.2.3.9, 4.2.3.12	A.6.14	A.6.1.4	SI-5, PM-15, PM-16	n/a
PROTECT (PR)	PROTECT Data Security (PR.DS): Information and	PR.DS-2: Data-in- transit is protected.	13, 14	n/a	SR 3.1, SR 3.8, SR 4.1, SR 4.2	A.8.2.3, A.13.1.1, A.13.2.1, A.13.2.3, A.14.1.2, A.14.1.3	SC-8, SC- 11, SC- 12	CIP-005- 5:R2 Part 2.2 CIP-011- 2:R1 Part 1.2
		PR.DS-6: Integrity-checking mechanisms are used to verify software, firmware, and information integrity.	2,3	n/a	SR 3.1, SR 3.3, SR 3.4, SR 3.8	A.12.2.1, A.12.5.1, A.14.1.2, A.14.1.3, A.14.2.4	SC-16, SI-7	CIP-010- 2:R1, R2, R3

	Informative References							
Function	Category	Subcategory	CIS CSC 2016	ISA 62443- 2-1:2009	ISA 62443- 3- 3:2013	ISO/IEC 27001: 2013	NIST SP 800-53 Rev. 4	NERC CIP Standards
	Maintenance (PR.MA): Maintenance and repair of industrial control and information	PR.MA-1: Maintenance and repair of organizational assets are performed and logged in a timely manner, with approved and controlled tools.	n/a	4.3.3.3.7	n/a	A.11.1.2, A.11.2.4, A.11.2.5, A.11.2.6	MA-3,	CIP-10- 2:R1
	system components are performed consistent with policies and procedures.	PR.MA-2: Remote maintenance of organizational assets is approved, logged, and performed in a manner that prevents unauthorized access.	3, 5	4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8	n/a	A.11.2.4, A.15.1.1, A.15.2.1	MA-4	CIP-010- 2:R1

	Informative References							
Function	Category	Subcategory	CIS CSC 2016	ISA 62443- 2-1:2009	ISA 62443- 3- 3:2013	ISO/IEC 27001: 2013	NIST SP 800-53 Rev. 4	NERC CIP Standards
	Protective Technology (PR.PT): Technical security solutions are managed to ensure the security and resilience of systems and assets, consistent with related policies, procedures, and agreements.	PR.PT-4: Communications and control networks are protected.	8, 12, 15	n/a	SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6	A.13.1.1, A.13.2.1, A.14.1.3	AC-4, AC-17, AC-18, CP-8, SC- 7, SC-19, SC-20, SC-21, SC-22, SC-23, SC-24, SC-25, SC-29, SC-32, SC-36, SC-37, SC-38, SC-39, SC-39, SC-40, SC-41, SC-43	CIP-005- 5:R1 Part 1.2
DETECT (DE)	Anomalies and Events (DE.AE): Anomalous activity is detected in a timely manner, and the	DE.AE-1: A baseline of network operations and expected data flows for users and systems is	1, 4, 6, 12, 13, 15, 16	4.4.3.3	n/a	A.12.1.1, A.12.1.2, A.13.1.1, A.13.1.2	CA-3,	CIP-010- 2:R1

	Informative References							
Function	Category	Subcategory	CIS CSC 2016	ISA 62443- 2-1:2009	ISA 62443- 3- 3:2013	ISO/IEC 27001: 2013	NIST SP 800-53 Rev. 4	NERC CIP Standards
	potential impact of events is understood.	established and managed.						
		DE.AE-3: Event data is aggregated and correlated from multiple sources and sensors.	1, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16	n/a	SR 6.1	A.12.4.1, A.16.1.7	AU-6, CA-7, IR- 4, IR-5, IR-8, SI-4	CIP-008- 5:R1.4 CIP-010- 2:R1

473 3.4.5 National Initiative for Cybersecurity Education Workforce Framework

This guide details the work roles needed to perform the tasks necessary to implement the cybersecurity

475 Functions and Subcategories detailed in the reference design. The work roles are based on the <u>National</u>

- 476 <u>Initiative for Cybersecurity Education</u> (NICE) Workforce Framework [13].
- 477 Table 3-2 maps the Cybersecurity Framework Categories implemented in the reference design to the
- 478 NICE work roles. Note that the work roles defined may apply to more than one NIST Cybersecurity
- 479 Framework Category.
- 480 For more information about NICE and other work roles, the NIST SP 800-181, *NICE Cybersecurity*
- 481 Workforce Framework, is available at <u>https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-</u>
- 482 <u>181.pdf.</u>
- 483 Table 3-2 NIST NICE Work Roles Mapped to the Cybersecurity Framework: ESAM

Work Role ID	Work Role	Work Role Description	Category	Specialty Area	Cybersecurity Framework Subcategory Mapping
OM- STS- 001	Technical Support Specialist	Provides technical support to customers who need assistance utilizing client-level hardware and software in accordance with established or approved organizational process components (i.e., Master Incident Management Plan, when applicable).	Operate and Maintain	Customer Service and Technical Support	ID.AM-1
PR- VAM -001	Vulner- ability Assess- ment Analyst	Performs assessments of systems and networks within the network environment or enclave and identifies where those systems/networks deviate from acceptable configurations, enclave policy, or local policy. Measures effectiveness of defense-in-depth architecture against known vulnerabilities.	Protect and Defend	Vulnerability Assessment Management	ID.RA-2
OM- DTA- 002	Infor- mation Systems	Examines data from multiple disparate sources, with the goal of providing security and privacy	Operate and Maintain	Data Administration	PR.DS-2

Work Role ID	Work Role	Work Role Description	Category	Specialty Area	Cybersecurity Framework Subcategory Mapping
	Security Developer	insight. Designs and implements custom algorithms, workflow processes, and layouts for complex, enterprise-scale data sets used for modeling, data mining, and research purposes.			
PR- CDA- 001	Cyber Defense Analyst	Uses data collected from a variety of cyber defense tools (e.g., IDS alerts, firewalls, network traffic logs) to analyze events that occur within their environments, to mitigate threats.	Protect and Defend	Cyber Defense Analysis	PR.DS-2
OM- DTA- 001	Database Admin- istrator	Administers databases and data management systems that allow secure storage, query, protection, and utilization of data.	Operate and Maintain	Data Administration	PR.DS-6
OM- ADM -001	System Admin- istrator	Responsible for setting up and maintaining a system or specific components of a system (e.g., installing, configuring, and updating hardware and software; establishing and managing user accounts; overseeing or conducting backup and recovery tasks; implementing operational and technical security controls; and adhering to organizational security policies and procedures).	Operate and Maintain	Systems Administration	PR.MA-1
SP- TRD- 001	Research & Develop-	Conducts software and systems engineering and software systems research to develop new capabilities, ensuring cybersecurity is fully integrated.	Securely Provision	Technology R&D	PR.MA-2

Work Role ID	Work Role	Work Role Description	Category	Specialty Area	Cybersecurity Framework Subcategory Mapping
	ment Specialist	Conducts comprehensive technology research to evaluate potential vulnerabilities in cyber space systems.			
SP- ARC- 002	Security Architect	Ensures stakeholder security requirements necessary to protect the organization's mission and business processes are adequately addressed in all aspects of enterprise architecture, including reference models, segment and solution architectures, and the resulting systems supporting those missions and business processes.	Securely Provision	Systems Architecture	PR.PT-4
SP- ARC- 001	Enterprise Architect	Develops and maintains business, systems, and information processes to support enterprise mission needs; develops IT rules and requirements that describe baseline and target architectures.	Securely Provision	Systems Architecture	DE.AE-1
CO- OPS- 001	Cyber Operator	Conducts collection, processing, and geo-location of systems to exploit, locate, and track targets of interest. Performs network navigation and tactical forensic analysis and, when directed, executes on-net operations.	Collect and Operate	Cyber Operations	DE.AE-3

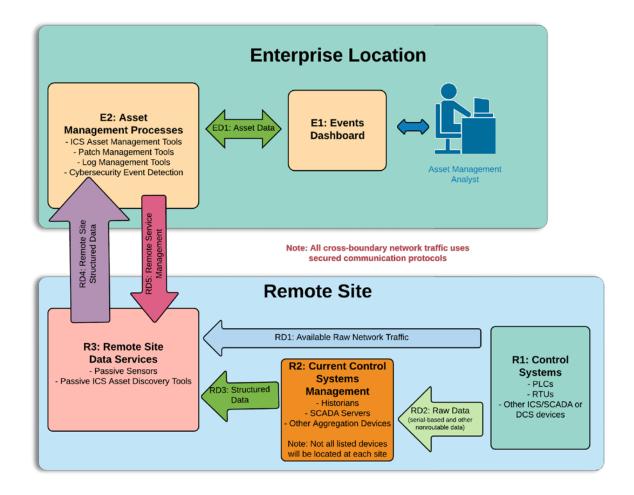
484 **3.5 Technologies**

- Table 3-3 lists all of the technologies and their role in this project and provides a mapping among the
- 486 generic application term, the specific product used, and the security control(s) that the product
- 487 provides. Refer to Table 3-1 for an explanation of the NIST Cybersecurity Framework Subcategory codes.
- 488 Table 3-3 Products and Technologies

Capability	Product	Project Role	Cybersecurity Framework Subcategories	
Asset discovery and monitoring	Dragos Platform v1.5	Passive asset discovery, threat detection, and incident response for ICS networks	ID.AM-1, DE.AE-1, DE.AE- 2	
Data collection and inventory tool	ForeScout CounterACT v8.0.1	CounterACT appliance collects data from one location and reports back to the CounterACT Enterprise Manager on the enterprise network.	ID.AM-1, DE.AE-1, DE.AE- 2	
Asset identification,	FoxGuard Solutions	Patch availability reporting is an ICS security patch management report that consolidates patch sources into one source.		
analysis, and baselining	Patch and Update Management Program v1	Vulnerability Notification Report is curated specific to your asset list, putting critical security vulnerability data at your fingertips for your assets.	ID.RA-2	

Capability	Product	Project Role	Cybersecurity Framework Subcategories
		ICS Update Tool consumes monthly security-patch- availability reports and translates them into a dashboard of business analytics. This visualization of patch data provides near- real-time decision-making.	
Secure remote access	KORE Wireless, Inc. Cellular Connectivity with Cellular Gateway v2.0	Provide a secure bridge from remote devices via one or more long-term evolution (LTE) networks to the application server on the ICS network that gathers the data from the remote asset.	PR.DS-2, PR.MA-1
Analyzing and visualizing machine data	Splunk Enterprise v7.1.3	Provides capabilities for data collection, indexing, searching, reporting, analysis, alerting, monitoring, and visualization.	DE.AE-1, DE.AE-2
Data Collection, monitoring, and analysis	TDi Technologies, Inc. ConsoleWorks v5.2-0u1	Provides data collection and interfacing with serial conversion devices. Also provides analysis and reporting.	ID.AM-1, PR.DS-2
Anomaly detection	Tripwire Industrial Visibility v3.2.1	Passively scans the industrial control environments at two locations. Tripwire Industrial Visibility builds a baseline of assets and network traffic between those assets then alerts on anomalous traffic.	ID.AM-1, DE.AE-1, DE.AE- 2

489 4 Architecture


490 The project architecture focuses on the key capabilities of asset management: asset discovery,

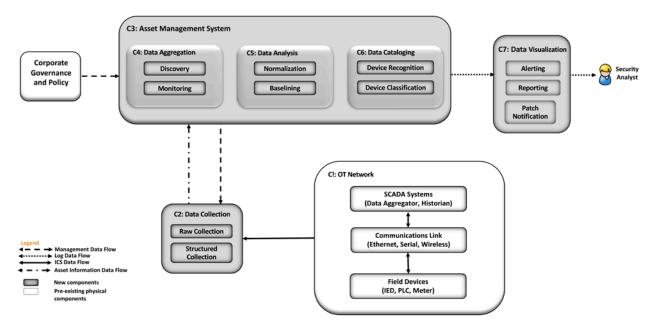
- identification, visibility, disposition, and alerting capabilities. When combined, these capabilities allow
- an organization to have a more robust understanding, not only of its device inventory and architecture
- but also of the current state of its devices and automated alerts for anomalous behavior of its assets.
- 494 This section presents a high-level architecture, a reference design, detailed topologies, and a
- 495 visualization dashboard for implementing such a solution. The high-level architecture is a generic
- 496 representation of the reference design. The reference design includes a broad set of capabilities
- 497 available in the marketplace, to illustrate the ESAM capabilities noted above, that an organization may
- implement. Each topology depicts the physical architecture of the example solution. The asset
- 499 management dashboard displays the network connectivity between devices and a list of known assets
- 500 within the network. The NCCoE understands that an organization may not need all of the capabilities. An
- organization may choose to implement a subset of the capabilities, depending on its risk management
 decisions.

503 4.1 Architecture Description

- 504 4.1.1 High-Level Architecture
- 505 The ESAM solution is designed to address the Cybersecurity Framework Functions, Categories, and
- 506 Subcategories described in Table 3-1 and is depicted in Figure 3-1.

507 Figure 4-1 High-Level Architecture

508


- 509 Figure 4-1 depicts the high-level architecture for monitoring ICS assets, including those located in
- 510 remote sites. While one remote site is depicted, the architecture allows inclusion of multiple remote
- sites. This allows a repeatable and standard framework of deployment and strategy for multiple remotes
- 512 sites, which can be tailored to individual site needs.
- 513 The high-level architecture (Figure 4-1) above is best described starting at the remote site control
- 514 systems. Information at this level appears as raw ICS-based data (including serial communications), ICS-
- 515 based network traffic (Distributed Network Protocol 3, Modbus, EtherIP, etc.), or raw networking data
- 516 (Transmission Control Protocol [TCP]/User Datagram Protocol, internet control message protocol
- 517 [ICMP], address resolution protocol [ARP], etc.). Serial communications are encapsulated in network
- 518 protocols. All of this data is collected and stored by the remote site data servers (R3) object. These
- sensors are collecting ICS network traffic and raw IP networking data from the control systems (R1) and
- 520 current control systems management (R2). Data collected by the remote site data servers (R3) is sent

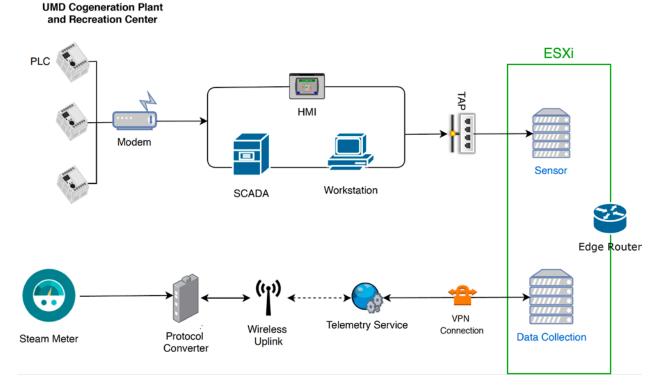
- 521 through a VPN tunnel to listening servers in the enterprise location. Once data arrives from the remote
- 522 site at the enterprise-data-collection server, it is ingested into the assets management processes (E2).
- 523 These tools aggregate the remote site structured data (RD4) from multiple sites, to build a holistic
- 524 picture of the health and setup of the network. Next, both events and asset data from the asset
- 525 management processes (E2) tools are sent directly to the events dashboard (E1). In the events
- 526 dashboard (E1), events are displayed in an easily digestible format for an analyst.
- 527 In the event of needed configuration of remote site data servers (R3), remote service management
- 528 connections can be established between the asset management processes (E2) and the remote site data
- 529 servers (R3). This traffic is routed through the aforementioned VPN tunnel and is terminated inside the
- 530 remote site data servers (R3). This allows configuration solely in the remote site data servers (R3),
- 531 utilizing the established VPN tunnel for security, without allowing access to either the current control
- 532 systems management (R2) or control systems (R3) devices.

533 4.1.2 Reference Architecture

534 The reference architecture shown in Figure 4-2 depicts the detailed ESAM design, including relationships

- among the included capabilities.
- 536 Figure 4-2 Reference Architecture

537

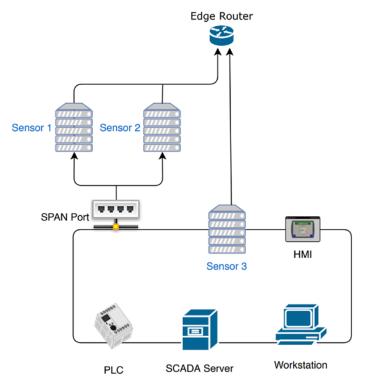

- 538 As indicated by the legend, different lines represent different types of data flowing into the various
- components. ICS data is depicted with solid lines. Management data flow is depicted with the dashed
- 540 line. Asset information is depicted with a dot-dash line. Log data is depicted with a dotted line. Each of
- 541 the clear shapes represents a preexisting or optional component. The OT network consists of devices

- 542 composed of ICS-based data, ICS network traffic, or raw networking data. The example implementation
- 543 includes the ICS devices in both the UMD cogeneration plant as well as TDi's lab in Plano, Texas, in the
- 544 Reference Design OT Network categorization group.
- 545 Another component that utilizes the ESAM solution is corporate governance and policy. Corporate
- 546 governance and policy may guide different aspects of the ESAM solution, such as how long records will
- 547 be maintained, how to classify devices, and how often reports are run. Each organization's governance
- 548 and policy will be determined by organizational risk tolerance and management decisions.
- The components of the ESAM reference design, Figure 4-2, come together to form the assetmanagement system. Each capability is described below:
- The data collection capability captures the data from the in-place OT network. Data can be
 collected in raw packet capture form as well as any structured form that may come from tools
 or devices within the OT network. This capability can be configured through normal remote
 management channels, to ensure the most precise and policy-informed data ingestion needed
 for the organization.
- The data aggregation component ingests data from the data collection capability and utilizes
 both the discovery capability and monitoring capability. The monitoring capability tracks
 network activity collected from the OT network. After a training period, the discovery capability
 identifies new devices when new IP addresses and MAC addresses are communicating on the
 network.
- The data analysis capability utilizes both a normalization capability to bring in traffic from
 multiple sites into a single picture and a baselining capability to establish an informed standard
 of how an asset's network traffic should behave under normal operations.
- 564 The device cataloging capability simultaneously uses information from the data collection 565 component. The device recognition capability identifies different types of devices within the 566 system. Devices are identified by MAC address to determine the manufacturer or by deep-567 packet inspection to determine the model, serial number, or both of a device if the raw ICS 568 protocol contains such information. Figure 4-4 below depicts the option for determining the 569 serial and model number of a device, when scanning is technically feasible. The organization should verify compliance with relevant regulations before deploying this aspect of the solution. 570 571 Next, the device classification capability can determine the level of criticality for devices, both 572 automatically as well as manually if requested.
- The data visualization capability displays data from components of the asset management
 system. Here, the alerting capability notifies analysts of incidents, including deviations to normal
 behaviors. This component also includes the reporting capability to generate timely reports
 needed in operations of the organization. One key feature of the reporting capability is the
 ability to report when a cybersecurity patch is available.

578 4.2 Example Solution

579 4.2.1 UMD Site Topology

580 Figure 4-3 UMD In-Depth Topology

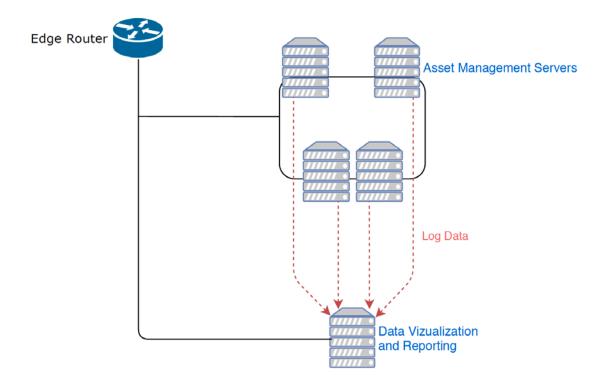


581

582 UMD's cogeneration plant was utilized as one of the remote sites for the project. At the site, the control 583 system network consists of PLCs, networking equipment, operator workstations, HMIs, and Supervisory 584 Control and Data Acquisition (SCADA) servers. The control system network is fitted with network test 585 access points (TAPs) to collect network traffic from the ICS network. This traffic feeds into a port on the 586 ESXi server that is mapped to a virtual Switched Port Analyzer (SPAN) switch. Each sensor monitors traffic on the SPAN switch. The sensor collects the raw data, processes network packets, performs deep-587 588 packet inspection, and forwards structured data through the edge router to an asset management 589 server, as shown above in Figure 4-3.

- 590 The UMD site topology also consists of a steam-meter asset in the solution. The steam meter utilizes 591 highway addressable remote transducer (HART) communication protocol and is in a building separate 592 from the cogeneration plant. The steam meter is wired to a protocol converter that converts HART
- 593 communications to Ethernet. The wireless uplink is a cellular connection device providing wireless

- 594 connectivity to the telemetry service provider. A VPN connection links the data collection server to the
- telemetry service provider, which allows data to be read from the steam meter.
- 596 Following collection of data from both the control system network and the steam meter to the VMware
- 597 ESXi servers, the data is then sent through a VPN tunnel out of the edge router to the enterprise
- 598 location. A description of the enterprise location is found in Section 4.2.3
- 599 4.2.2 Plano Site Topology
- 600 Figure 4-4 Plano In-Depth Topology


601

602 The lab in Plano, Texas, depicted in Figure 4-4, represents a second site and is set up to collect 603 information from a variety of devices communicating on a network. The Plano site consist of PLCs, HMIs, 604 SCADA servers, and workstations. Sensor 1 and Sensor 2 passively monitor devices via a SPAN port. Both 605 sensors are collecting data. Sensor 3 has a network interface located on the control network, to 606 demonstrate the ability to actively scan devices if desired. Actively scanning devices requires scripts to 607 interrogate devices by using a method supported by the device. Methods may include using login 608 credentials or combinations of commands to retrieve data from the device. Typically, similar devices 609 from the same manufacturer can utilize similar scripts. Otherwise, most device types require unique 610 scripts. Most devices can be scanned to retrieve the model number, serial number, and more. All three 611 sensors transfer their data, via the edge router, through a VPN to the enterprise location.

612 4.2.3 Enterprise Location Topology

613 Figure 4-5 Enterprise In-Depth Topology

Enterprise Location

614

- The enterprise location in the NCCoE Lab (Rockville, Maryland), depicted in Figure 4-5, represents a
- 616 central operations center for an organization. Data from both the Plano and UMD sites is sent to the
- 617 enterprise location, for processing through the asset management servers.
- The asset management servers aggregate the data, analyze the data, and catalog the details about the
- assets currently on the network, incorporating both remote sites. Portions of this data are logged and
- 620 forwarded to the data visualization and reporting server. First, alerts on new baselines and baseline
- 621 deviations are forwarded via syslog. Alerts on asset changes, including new assets, changes in IP and
- 622 MAC addresses, and offline assets, are forwarded via syslog along with identified threats to those assets.
- 623 Last, a comma-separated value (CSV) asset report is automatically forwarded on a regular basis to
- 624 maintain an updated and near-real-time asset inventory.

625 4.2.4 Asset Management Dashboard

- 626 Note: IP addresses shown in the figures below have been sanitized.
- 627 Figure 4-6 Asset Dashboard: Asset Characteristics

	ts Reports	Alerts Dashboards						>	Search & Reporting
ICS Asset In	nformatio	n						Edit	Export •
Alerts			1	New Assets		Baseline De	eviations		
	•	126		•	4		1	12	
							-		
UMD Steam Met	ter								
Steam meter Gaug	ige								
				18,000					
Base Asset Report	rt_ctd			1.000 	28.000 20.000 18,333				
asset_id *	site_id \$	name_ ≎	lp_ ≎	mac_ 0	30.000 18,333	vendor_ \$	criticality_ \$	risk_jevel ‡	is_ghost ≎
asset_id * 4	site_id \$ Plano	10.172.6.25	10.172.6.25	mac_ 0 00:30:A7:0C:5D:4B	20000 18,333 type_\$ Endpoint	SCHWEITZER ENGINEERING	Low	Normal	False
asset_id * 4 5	site_id ¢ Plano UMD	10.172.6.25 OWS2	10.172.6.25	mac_ 0 00:30:A7:00:50:48 80:E0:48:55:5A:08	3000 B,333 type_* Endpoint SCADACLient	SCHWEITZER ENGINEERING	Low Medium	Normal Moderate	False
asset_ld * 4 5 9	site_id ‡ Plano UMD Plano	10.172.6.25 OWS2 icsdemo	10.172.6.25 192.168.0.126 10.172.6.10	mac 0 00:30:A7:00:50:48 80:E0:40:50:54:54:88 44:1E:A1:57:86:8E	2000 B,333 type_* Endpoint SCADACLient Endpoint	SCHWEITZER ENGINEERING - Hewlett-Packard Company	Low Medium Low	Normal Moderate Critical	False False False
asset_id * 4 5 9	site_id ¢ Plano UMD Plano UMD	10.172.6.25 OWS2 icsdemo 68:99:CD:28:C4:B0	10.172.6.25	mac * 00:30:A7:0C:5D:4B 8C:EC:48:5E:5A:C8 44:1E:A1:5F:86:BE 68:99:CD:28:C4:B0	B,333 type_= Endpoint SCADAClient Endpoint	SCHWEITZER ENGINEERING - Hewlett-Packard Company Cisco	Low Medium Low Low	Normal Moderate Critical Normal	False False False False
asset_id * 4 5 9 12 22	site_id ¢ Plano UMD Plano UMD Plano	10.172.6.25 OW52 icsdemo 68:99:CD:28:C4:B0 HP-2910a1-48G	10.172.6.25 192.168.0.126 10.172.6.10	mac_ * 00:30:A7:0C:50:48 8C:EC:48:55:5A:C8 44:1E:A1:57:86:8E 68:99:C0:28:C4:80 78:AC:C0:1E:05:00	Succe B,333 Sype_ 0 Endpoint SCADACLient Endpoint Endpoint Networking	SCHWEITZER ENGINEERING - Hewlett-Packard Company Cisco Hewlett-Packard Company	Low Medium Low Low Medium	Normal Moderate Critical Normal Normal	False False False False False
asset_id * 4 5 9	site_id ¢ Plano UMD Plano UMD Plano	10.172.6.25 OWS2 icsdemo 68:99:CD:28:C4:B0	10.172.6.25 192.168.0.126 10.172.6.10	mac * 00:30:A7:0C:5D:4B 8C:EC:48:5E:5A:C8 44:1E:A1:5F:86:BE 68:99:CD:28:C4:B0	B,333 type_= Endpoint SCADAClient Endpoint	SCHWEITZER ENGINEERING - Hewlett-Packard Company Cisco	Low Medium Low Low	Normal Moderate Critical Normal	False False False False
asset_id * 4 5 9 12 22 25	site_Id \$ Plano UMD Plano UMD Plano UMD	10.172.6.25 OWS2 icsdemo 68:99:CD:28:C4:B0 HP-2910a1-48G NETWORK-SHARE	10.172.6.25 192.168.0.126 10.172.6.10 - -	mac_ 0 00:30:A7:0C:50:48 8C:EC:48:55:5A:C8 44:1E:A1:5F:86:8E 68:99:C0:28:C4:80 78:AC:C0:1E:05:D0 00:10:75:43:86:CF	8,333 NyPe_ © Endpoint SCADACLient Endpoint Networking Endpoint	SCHWEITZER ENGINEERING - Hewlett-Packard Company Cisco Hewlett-Packard Company Segate Technology LLC	Low Medium Low Medium Low	Normal Moderate Critical Normal Normal Minor	False False False False False

628

629 Figure 4-6 showcases how the asset management dashboard displays a list of known assets within the

630 network. At the top of the dashboard, the total amount of alerts, number of new assets, and number of

baseline deviations detected from both the Plano and UMD locations are listed. The gauge displays the

632 meter reading from the Yokogawa steam meter at UMD. Information collected on each asset (including

633 IP address, MAC address, asset type, criticality, and risk level) is displayed in the table.

634 Figure 4-7 Asset Dashboard: Asset Communications

	communic								E	dit 🔻	More Info 🔻	Add to	Dashboar
from /	e from tiv baseline d Apr 1 through Jun 1, 4 events (4/1/19 12:0)		2:00:00.00	0 AM)						oL	o ▼ 11.	0 II	~ 6
46,344 r	esults 100 per	page 👻						< Pre	v <u>1</u> 2 3	4	56	78	Next
shost ‡	src ≑	smac \$	dhost ‡	dst ≑	dmac ‡	Туре \$	Port \$	Comms ¢	msg \$				
CITECT	192.168.0.123	54:bf:64:7b:02:3a	N/A	192,168.0.124	00:20:4a:21:19:30	Endpoint: Other	None	Network	ARP : Request fo	or ipv4	address 19	2.168.0.13	23
N/A	192.168.0.124	00:20:4a:21:19:30	CITECT	192.168.0.123	54:bf:64:7b:02:3a	SCADA Server: CITECT,GE,Modbus,Rockwell	None	Network	ARP : Response f address 00:20:4a			92.168.0.1	23 with a
CITECT	192.168.0.123	54:bf:64:7b:02:3a	N/A	192.168.0.124	N/A	Broadcast / Multicast	UDP / 3702	Other	UDP from any por	rt to po	ort 3702		
CITECT	192.168.0.123	54:bf:64:7b:02:3a	N/A	192.168.0.124	00:20:4a:21:19:30	Endpoint: Other	None	Network	ARP : Request fo	or ipv4	address 19	2.168.0.12	3
N/A	192.168.0.124	00:20:4a:21:19:30	CITECT	192.168.0.123	54:bf:64:7b:02:3a	SCADA Server: CITECT,GE,Modbus,Rockwell	None	Network	ARP : Response 1 address 00:20:4a			92.168.0.1	23 with
CITECT	192.168.0.123	54:bf:64:7b:02:3a	N/A	192.168.0.124	00:20:4a:21:19:30	Endpoint: Other	None	Network	ARP : Request fo	or ipv4	address 19	2.168.0.12	23
N/A	192.168.0.124	00:20:4a:21:19:30	CITECT	192.168.0.123	54:bf:64:7b:02:3a	SCADA Server: CITECT,GE,Modbus,Rockwell	None	Network	ARP : Response 1 address 00:20:4a			92.168.0.1	23 with
CITECT	192.168.0.123	54:bf:64:7b:02:3a	N/A	192.168.0.124	N/A	Broadcast / Multicast	UDP / 3702	Other	UDP from any por	rt to po	rt 3702		
CITECT	192.168.0.123	54:bf:64:7b:02:3a	N/A	192.168.0.124	00:20:4a:21:19:30	Endpoint: Other	None	Network	ARP : Request fo	or ipv4	address 19	2.168.0.1	23
N/A	192.168.0.124	00:20:4a:21:19:30	CITECT	192.168.0.123	54:bf:64:7b:02:3a	SCADA Server: CITECT,GE,Modbus,Rockwell	None	Network	ARP : Response f address 00:20:4a			92.168.0.1	23 with
CITECT	192.168.0.123	54:bf:64:7b:02:3a	N/A	192.168.0.124	N/A	Broadcast / Multicast	UDP / 3702	Other	UDP from any por	rt to po	rt 3702		

635

636 Figure 4-7 showcases the asset management dashboard visualization of network connectivity among

637 devices. The visualization shows the interconnection among known assets, listing types of

638 communications and messages.

639 Figure 4-8 Asset Dashboard: Asset Details, UMD

	_	S WITH DEVIC	e and Platform						Edit 🔻	More Info • A	dd to Dashboard
Last 30 days ▼ ✓ 67 events (8/13/19 12:00:00.000 AM to 9/12/19 11:27:09.000 AM) ● Job ▼ III ■ ○ →									e e c		
29 results	100	per page 🔻									
asset_id ‡	site_id ‡	name_ ‡	ip_ \$	mac_ ‡	type_ \$	vendor_ \$	criticality_ \$	risk_level	is_ghost ‡	Device \$	Platform \$
31	5	192.168.0.123	192.168.0.123	00:60:78:00:54:9E	PLC	POWER MEASUREMENT LTD.	High	Minor	False	CHP GT1 Meter Gas Turbine 1	GE 90-70 (firmware unknown)
30	5	192.168.0.124	192.168.0.124	00:60:78:00:54:9F	PLC	POWER MEASUREMENT LTD.	High	Minor	False	CHP BPSTG Meter Back Presure Steam Turbine	Potentially Woodward ProTech 203 not 100%
29	5	192.168.0.125	192.168.0.125	00:20:4A:09:F1:D4	Endpoint	PRONET GMBH	Low	Normal	False	Mowatt Substation Ethernet to RS-485	Lantronix Converter
28	5	192.168.0.126	192.168.0.126	00:20:4A:21:17:83	Endpoint	PRONET GMBH	Low	Minor	False	CHP Ethernet to RS-485 Converter	Lantronix Converter
25	5	NETWORK-SHARE	192.168.0.127	00:10:75:43:B6:CF	Endpoint	Segate Technology LLC	Low	Minor	False	Network Accessible Storage, not 100%	Windows ME
5	5	OWS2	192.168.0.128	8C:EC:4B:5E:5A:C8	SCADAClient	<u></u>	Medium	Moderate	False	CHP Station 2 Center	Windows 7
33	5	192.168.0.130	192.168.0.130	00:20:4A:21:18:C9	Endpoint	PRONET GMBH	Low	Normal	False	Mowatt Substation Ethernet to RS-485	Lantronix Converter

640

- 641 Figure 4-8 showcases more detailed information about assets at the UMD location. The asset
- 642 information is supplemented with known data about the devices.

Plano	Detailed report for	r Patch info			Edit 🕶	More Info • Add to Dashboard	
outputs to /	/opt/splunk/var/run/splunk/csv						
Year to d	Jate 💌						
33 events	s (1/1/19 12:00:00.000 AM to 9/12	2/19 11:24:06.000 AM)			0	Job ▼ II II O >> ĕ .	
2 results	100 per page 🔻						
Asset Id				Operating System	Serial_Number		
¢	IP \$	Mac ≎	Vendor \$	¢	\$	Version \$	
75	10.0.0.11	00:60:2E:00:40:FF	CYCLADES CORPORATION		SG113IR0BH	W.15.14.0014	
61	10.0.0.12	68:05:CA:36:38:65	Intel Corporate	Windows 10		10.0.17134	
59	10.0.0.13	00:30:A7:0A:54:79	SCHWEITZER ENGINEERING	- 44	1141920246	SEL-3622-R204-V2-Z010006-D201705	
77	10.0.0.14	00:04:BF:B1:7B:D2	VersaLogic Corp.	-	14291	2.0.34	
81	10.0.0.15	00:30:A7:0A:57:22	SCHWEITZER ENGINEERING	-	1141920245	SEL-3620-R204-V2-Z010006-D201705	
107	10.0.0.16	00:0A:DC:14:42:60,00:0A:DC:14:42:62	RuggedCom Inc.	-		4.1.1	
93	10.0.0.17	00:D0:4F:00:18:15	BITRONICS, INC.	12	924455	02.15.1	
108	10.0.18	00:0A:DC:3A:69:80,00:0A:DC:3A:69:82	RuggedCom Inc.	-7		v2.15.1	
109	10.0.0.19	00:30:A7:17:49:69	SCHWEITZER ENGINEERING	85	1173460197	SEL-451-5-R321-V0-Z024012- D20171008	
57	10.0.20	00:30:A7:12:DF:95	SCHWEITZER ENGINEERING	-7	1163641270 SEL-3530-4-R136-V1-Z00100 D20161026		
40	10.0.0.21	00:30:A7:12:BC:FB	SCHWEITZER ENGINEERING	19		SEL-700G-R110-V0-Z005002-D201608	
69	10.0.0.22	00:30:A7:17:38:27	SCHWEITZER	-	1173400079	SEL-3610-R205-V0-Z011006-D201710	

643 Figure 4-9 Asset Dashboard: Asset Details, Plano

644

- Figure 4-9 showcases more detailed information about assets at the Plano location. The asset
- 646 information is supplemented via automated scripts and manual entry. This report is normalized and 647 then analyzed for patch patifications
- 647 then analyzed for patch notifications.

648 **5 Functional Test Plan**

649 **5.1 Test Cases**

- 650 The below test cases demonstrate integration of capabilities for use in the project. For reference,
- 651 components of Figure 4-1 High-Level Architecture and Figure 4-2 Reference Architecture are included

652 with their corresponding identifier tags in parenthesis.

653 5.1.1 ESAM-1: New Device Attached

Description	 Device attached to the network that has not appeared previously.
	 ESAM solution will identify and alert on the new device.

Procedure	 Connect laptop to UMD-based Remote Site Data Server (R3) network.
	 Request Dynamic Host Configuration Protocol for device, and generate minimal network traffic.
	 Monitor Events Dashboard (E1) for identification of new device.
Architectural Requirements	 Raw network traffic appears on network at remote site.
	 New device generates known network traffic with new connection (ARP/Reverse Address Resolution Protocol [RARP]), High-bandwidth Digital Content Protection, TCP connections, etc.).
	 Network traffic is captured by sensors at Remote Site Data Servers (R3).
	 Servers pass alerted data to enterprise location Asset Management Processes (E2).
	 Alerts are aggregated and displayed to user in the Events Dashboard (E1).
Capabilities Requirements	 Network data collection via TAPs and SPAN ports on network device.
	 Routing of network data through Asset Management (C3) sensors.
	 Data Collection (C2) utilizing discovery and normalization processes for remote site asset information data flow.
	 Alerting and analytics based on asset information data flow structured by the data collection capability presented to the analyst.
Expected Results	Events Dashboard (E1) will notify analyst via alerts for new devices.
Actual Results	New device is created on network.
	 Baseline monitoring system recognizes new device on network.
	 Alert is created on Events Dashboard (E1).
Overall Result	PASS

Description	 New vulnerability is released, affecting devices within the Control Systems (R1).
	 ESAM solution can recognize affected devices and alert analysts to:
	 potential vulnerable devices
	current status of devices
	 any potential patching for devices
Procedure	 Utilizing established asset list contained within the Asset Management Process (E2), create sanitized device list.
	 Import device list to the Patch Management Tools inside the Asset Management Process (E2) for structuring.
	 Submit structured device list to the Patch Management service.
	 Ingest returned Patch Management report to Events Dashboard (E1) for alerting a reporting to analyst.
Architectural Requirements	 Assets cataloged within the Asset Management Process (E2), including vendor, device type, firmware version, and other pertinent information.
	 Deliver device list with above information to the Patch Management tools.
	 Deliver structured device list to the Patch Management service.
	 Ingest report from the Patch Management service to Events Dashboard (E1).
Capabilities Requirements	 Data Cataloging (C6) components track asset-specific information.
	 Vulnerability reports are compared with data included in submitted structured reports based on Data Cataloging (C6) information.
Expected Results	Analyst will receive reported information in Events Dashboard and will be able to identify potentially vulnerable devices.

654 5.1.2 ESAM-2: Vulnerability Notification

Actual Results	 Device list is created and normalized.
	 List is delivered to vendor for analysis.
	 Vendor-delivered results added to dashboard.
	 Events Dashboard notifies analyst of potentially vulnerable devices.
Overall Result	PASS

655 5.1.3 ESAM-3: Device Goes Offline

Description	 Device previously attached to the network no longer appears on the network.
	 ESAM solution will identify and alert on the loss of device.
Procedure	Option 1:
	 Determine control system device on Plano lab network that we can disconnect for test purposes.
	Disconnect device from network.
	 Monitor Events Dashboard (E1) for changes and alerts.
	 Option 2:
	 Determine which network TAP to disconnect from UMD network to the Remote Site Data Server (R3) network.
	 Disconnect selected TAP from network.
	 Monitor Events Dashboard (E1) for changes and alerts.
Architectural Requirements	 Established baselines generated from network and control system monitoring determine normalized system behavior.
	 Lack of communication from a device triggers an anomaly in the Asset Management Process (E2).
	 Events Dashboard (E1) is notified of anomalous activity and notifies analyst via an alert.
Capabilities Requirements	 Network and Serial TAPs capture data from OT Network (C1).

	 Asset Management System (C3) sensors monitor data to feed Data Collection (C2) capability.
	 Security incident and event management (SIEM) utilizes alerts from anomalous activity being transferred from data collection capabilities and presents them to the analyst.
Expected Results	Events Dashboard (E1) will notify analyst via alerts for loss of connection to device(s).
Actual Results	 Device is taken offline on control network.
	 Baseline monitoring system recognizes device is no longer online.
	 Alert is created on Events Dashboard.
Overall Result	PASS

656 5.1.4 ESAM-4: Anomalous Device Communication

Description	 Device begins communicating in ways that are not established in known baselines. ESAM solution alerts to newly formed traffic patterns or device behaviors that do not correlate to determined device interaction baselines.
Procedure	 Utilizing devices within Plano network, begin communication with a device outside the established baseline.
	 Monitor Events Dashboard (E1) for newly created alerts signifying the departure from established baseline traffic and activity.
Architectural Requirements	 Established baselines generated from network and control system monitoring determine normalized system behavior.
	 Recognition of network anomaly and non-normal ICS activity (function codes, configuration changes, timing of commands, etc.) generate alerts in the Asset Management Processes (E2).
	 The Events Dashboard (E1) is notified of anomalous activity and notifies analyst via an alert.
Capabilities Requirements	 Network data collection via TAPs and SPAN ports on network device.

	 Routing of network data through Asset Management (C3) sensors.
	 Data Collection (C2) utilizing discovery and normalization processes for remote site asset information data flow.
	 Alerting and analytics based on asset information data flow structured by the data collection capability presented to the analyst.
Expected Results	Events Dashboard (E1) will notify analyst via alerts for anomalous device activity.
Actual Results	 Two devices start communicating in a way unseen before. Monitoring picks up new device communications, creates an alert. Events Dashboard delivers alert to analyst.
Overall Result	PASS

657 5.1.5 ESAM-5: Remote Devices with Cellular Connectivity

Description	 Devices located in areas without access to Ethernet-based networking for connection to outside internet.
	 Utilizing cellular networks, these devices gain connectivity through specialized cellular modems not requiring a physical networking infrastructure.
Procedure	 Selected location will not be connected to main build network via normal Ethernet-based connections.
	 Utilizing cellular-based networking, devices will connect to a VPN that has an upstream gateway connected through a cellular modem.
	 These devices will be ingested into the build at the UMD Remote Site Data Servers (R3) then further cataloged through standard channels into the Events Dashboard (E1).
Architectural Requirements	 Cellular-based modem inside a subset of the Remote Site Data Servers (R3) that can be used to capture both Raw Network Traffic (RD1) and Structured Data (RD3).

	 VPN connectivity through cellular-based modem to a VPN concentrator, delivering data to the on-site Remote Site Data Servers (R3). The previous test cases apply once data from remote sites reach Remote Site Data Servers (R3). 	
Capabilities Requirements	 Communication links over cellular connections for the TAP capabilities. Routing of network data through Asset Management System (C3) sensors. Data Collection (C2) utilizing discovery and normalization processes for remote site asset information data flow. 	
	 Alerting and analytics based on asset information data flow structured by the data collection capability presented to the analyst. 	
Expected Results	Devices in cellular-based remote sites will also show in the Events Dashboard (E1).	
Actual Results	 Devices in location devoid of direct internet connection are connected to cellular-based modem. Cellular modem carries device communications to Asset Management servers. Device monitoring appears in Events Dashboard. 	
Overall Result	PASS	

658 6 Security Characteristic Analysis

659 The purpose of the security characteristic analysis is to understand the extent to which the project 660 meets its objective of demonstrating asset management for OT. A key aspect of our security evaluation 661 involved assessing how well the reference design addresses the security characteristics it was intended 662 to support. The Cybersecurity Framework Subcategories were used to provide structure to the security 663 assessment, by consulting the specific sections of each standard cited in reference to a Subcategory [14]. 664 The cited sections provide validation points that the example solution would be expected to exhibit. 665 Using the Cybersecurity Framework Subcategories as a basis for organizing our analysis allowed us to 666 systematically consider how well the reference design supports the intended security characteristics.

667 6.1 Assumptions and Limitations

- 668 The security characteristic analysis has the following limitations:
- 669 It is neither a comprehensive test of all security components nor a red-team exercise.
- 670 It cannot identify all weaknesses.
- It does not include the lab infrastructure. It is assumed that devices are hardened. Testing these
 devices would reveal only weaknesses in implementation that would not be relevant to those
 adopting this reference architecture.

6.2 Analysis of the Reference Design's Support for Cybersecurity 675 Framework Subcategories

- 676 This section analyzes the example implementation in terms of the specific Subcategories of the
- 677 Cybersecurity Framework that they support. This enables an understanding of how the example
- 678 implementation achieved the goals of the design when compared against a standardized framework.
- This section identifies the security benefits provided by each component of the example implementation
- and how those components support specific cybersecurity activities, as specified in terms of
- 681 Cybersecurity Framework Subcategories.

6.2.1 ID.AM-1: Physical Devices and Systems Within the Organization AreInventoried

The ESAM reference design employs multiple applications that keep inventory of devices. Using passive
 analysis of network communications as well as device polling, the design captures relevant data about
 each asset within the scope of the build, to give an asset owner insight into what devices are deployed.

- 687 The reference design notifies on device installation, updates, and removals, helping maintain an up-to-
- 688 date, complete, accurate, and readily available inventory of system components. These processes are
- automated, allowing an organization to have a central repository for inventory of assets as well as for
- 690 specifying roles played by those assets.
- 691 Some devices may prove difficult to inventory. If a device utilizes communications not initially monitored
- by the ESAM reference design, the device will not be captured in the inventory. The ESAM reference
- 693 design employs an optional active scanning process that can resolve this situation.

694 6.2.2 ID.RA-2: Threat and Vulnerability Information Is Received from Information-695 Sharing Forums and Sources

The ESAM reference design implements a patch and vulnerability intelligence solution through vendor provided reporting. Utilizing asset lists described above, patch and vulnerability information is provided
 by the vendor product, to relay system security alerts and advisories to analysts.

The reference design allows an organization to be aware of potential vulnerabilities that may be
applicable in the network and to the organization's assets. The design informs an organization whether
assets within its inventory have updates available, if any assets have vulnerabilities, and the criticality of
those patches or vulnerabilities. This information is broken out into a per-device format, helping form a

703 more informed decision on updates.

704 6.2.3 PR.DS-2: Data in Transit Is Protected

The ESAM reference design has multiple remote connections stemming from multiple remote sites. Data
 is constantly being transmitted across these connections, so protection of these connections is vital. The
 reference design utilizes VPN connections for all connections going out of an edge-network device.

- The VPN connecting the three physically remote sites—namely the enterprise site; UMD; and Plano,
- Texas—utilizes an always-on, multipoint VPN connection. This connection is using TLS 1.2 and certificate
 authentication to ensure maximum security as well as maximum reliability.

6.2.4 PR.MA-1: Maintenance and Repair of Organizational Assets Are Performed and Logged in a Timely Manner with Approved and Controlled Tools

- 713 The ESAM reference design does not specifically track maintenance scheduling or approvals; however,
- predictive and preventive maintenance is supported by elements contained in the design. Patch and
- vulnerability information provided by vendors, combined with information from other sources, can be
- vised by the organization to make informed cybersecurity-maintenance decisions.
- 717 This information supports any process that builds maintenance scheduling, allowing an organization to
- 718 determine what assets should be included in preventive or predictive maintenance times. Although
- 719 mainly software focused, asset information may include model numbers for devices, allowing an
- 720 organization to locate and replace specific devices if needed.

6.2.5 PR.MA-2: Remote Maintenance of Organizational Assets Is Approved, Logged, and Performed in a Manner that Prevents Unauthorized Access

- 723 The ESAM reference design utilizes connections within the project to allow authenticated remote access
- to a system. This authentication is predicated on access to the enterprise network, forcing a potential

- user to first gain access to the asset management network before being able to remotely managedevices.
- 727 These connections are then wrapped within the established VPN tunnel, protecting systems from replay
- 728 attacks or other attacks that require open, repeatable authentication techniques to gain access to a
- system. This allows a more secure remote management path for devices when manual configuration is
- 730 required.

731 6.2.6 PR.PT-4: Communications and Control Networks Are Protected

- 732 The ESAM reference design is designed to protect critical devices located within the OT network. For the
- architecture, any connection pulling data from the control networks utilizes a one-way data connection
- (currently in the form of a SPAN port or a network TAP) to ensure no externally routable connectivity.
- The active scanning device listed within the architecture is an optional aspect of the design and would
- require an organization to verify compliance with relevant regulations, before deploying this aspect of the solution.
- 6.2.7 DE.AE-1: A Baseline of Network Operations and Expected Data Flows for
 Users and Systems Is Established and Managed
- 740 The ESAM reference design utilizes passive and active scanning tools to scan the industrial control
- 741 environments at the two remote locations. These tools build a baseline of assets and network traffic
- 542 between those assets using machine learning, alerting to any anomalous behavior.

6.2.8 DE.AE-2: Detected Events Are Analyzed to Understand Attack Targets and Methods

- 745 The ESAM reference design utilizes discovery and monitoring tools to detect malicious activity from an
- race stablished baseline of network activity. Any deviation from established baselines will notify
- 747 organizational analysts to activity not recognized as normal behavior. The analyst will be informed what
- 748 triggered the alert, allowing them to better respond to the incident.
- Along with anomaly detection capabilities, the reference design employs alerting and reporting
- capabilities based on known attack tactics and techniques. Recognition of these threats also elicits an
- alert that is reported to the analyst.

752 6.3 Lessons Learned

- 753 Identifying and replicating the infrastructure(s) likely found in an OT operating environment is a
- challenge. The NCCoE ESAM Team did not limit this build to a lab environment. The team was able to
- 755 demonstrate effective OT asset management in existing, real-world energy-sector environments with
- the support of collaborators who offered their infrastructure, resources, personnel, and assets.

- 757 While numerous automated capabilities are used to capture and maintain asset information, a
- rts significant manual effort will likely be needed to identify assets, especially those that are remote and
- not connected to an existing network infrastructure. Further, given the variety of assets deployed, we
- 760 experienced instances where serial communication devices required conversion to IP-based
- communication protocols. It is critical to establish the necessary communication infrastructure to ensure
- these devices become part of the main, automated inventory that this project showcases.
- While the technology we used is not complex, working through coordination and deployment of the
 supporting infrastructure and asset management technologies will be a rather large undertaking for any
 company looking to adopt this solution or any component of it. We highly recommend that executive
- 765 company looking to adopt this solution of any component of it. We nightly recommend that executive
- 766 management support be in place, whether the OT asset management solution is deployed to a specific
- site or across the entire enterprise.

768 **7 Future Build Considerations**

769 The Industrial Internet of Things, or IIoT, refers to the application of instrumentation and connected 770 sensors and other devices to machinery and vehicles in the transport, energy, and industrial sectors. For 771 the energy sector in particular, distributed energy resources (DERs), such as solar photovoltaic panels 772 and wind turbines, introduce information exchanges between a utility's distribution control system and 773 the DERs, to manage the flow of energy in the distribution grid. Moreover, the rate at which these IIoT 774 devices are deployed in the energy sector is projected to increase and could introduce asset 775 management and cybersecurity challenges for the sector. Expanding the architecture to include IIoT 776 devices and using IIoT-generated data for near-real-time asset management could ensure secure 777 deployment of these assets and may be explored in a future project.

778

	•
ANSI	American National Standards Institute
ARP	Address Resolution Protocol
CERT	Computer Emergency Readiness Team
CIS	Center for Internet Security
CISA	Cybersecurity and Infrastructure Security Agency
CSV	Comma-Separated Value
DER	Distributed Energy Resource(s)
ESAM	Energy Sector Asset Management
HART	Highway Addressable Remote Transducer
НМІ	Human-Machine Interface
ICMP	Internet Control Message Protocol
ICS	Industrial Control System(s)
IEC	International Electrotechnical Commission
IED	Intelligent Electronic Device
IETF	Internet Engineering Task Force
ΙΙοΤ	Industrial Internet of Things
IP	Internet Protocol
ISA	International Society of Automation
ISACA	Information Systems Audit and Control Association
ISO	International Organization for Standardization
LTE	Long-Term Evolution
MAC	Media Access Control
NCCoE	National Cybersecurity Center of Excellence
NICE	National Initiative for Cybersecurity Education
NIST	National Institute of Standards and Technology
OS	Operating System
ОТ	Operational Technology
PLC	Programmable Logic Controller
RARP	Reverse Address Resolution Protocol
RFC	Request for Comments
SCADA	Supervisory Control and Data Acquisition

Appendix A List of Acronyms

SIEM	Security Information and Event Management
SP	Special Publication
SPAN	Switched Port Analyzer
ТАР	Test Access Points
ТСР	Transmission Control Protocol
TLS	Transport Layer Security
UDP	User Datagram Protocol
UMD	University of Maryland
VPN	Virtual Private Network

779 Appendix B References

- [1] K. Stouffer et al., *Guide to Industrial Control Systems (ICS) Security*, National Institute of
 Standards and Technology (NIST) Special Publication (SP) 800-82 Revision 2, NIST, Gaithersburg,
 Md., May 2015. Available: <u>https://doi.org/10.6028/NIST.SP.800-82r2.</u>
- Joint Task Force Transformation Initiative, *Guide for Conducting Risk Assessments*, NIST SP 800 30 Revision 1, NIST, Gaithersburg, Md., Sept. 2012. Available:
 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf.
- Joint Task Force, *Risk Management Framework for Information Systems and Organizations*, NIST
 SP 800-37 Revision 2, NIST, Gaithersburg, Md., Dec. 2018. Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf.
- [4] NIST. *Risk Management Framework: Quick Start Guides*. [Online]. Available:
 https://csrc.nist.gov/projects/risk-management/risk-management-framework-quick-start guides.
- Joint Task Force Transformation Initiative, *Guide for Conducting Risk Assessments*, NIST SP 800 30 Revision 1, NIST, Gaithersburg, Md., Sept. 2012. Available:
 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf.
- 795 [6] Cybersecurity and Infrastructure Security Agency (CISA) Industrial Control Systems Cyber
 796 Emergency Response Team (ICS-CERT). Cyber Threat Source Descriptions. [Online].Available:
 797 https://www.us-cert.gov/ics/content/cyber-threat-source-descriptions.
- 798[7]CISA ICS-CERT. National Cyber Awareness System. Alerts. [Online]. Available: https://www.us-799cert.gov/ncas/alerts.
- 800 [8] MITRE. Common Vulnerabilities and Exposures. [Online]. Available: <u>https://cve.mitre.org/.</u>
- 801 [9] NIST. National Vulnerability Database. Common Vulnerability Scoring System. [Online].
 802 Available: <u>https://nvd.nist.gov/vuln-metrics/cvss.</u>
- 803 [10] CISA ICS-CERT. National Cyber Awareness System. Report Incidents, Phishing, Malware, or
 804 Vulnerabilities. [Online]. Available: <u>https://www.us-cert.gov/report.</u>
- 805 [11] NIST, Framework for Improving Critical Infrastructure Cybersecurity, Version 1.1, Apr. 16, 2018.
 806 Available: <u>https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf.</u>
- 807 [12] Joint Task Force Transformation Initiative, Security and Privacy Controls for Federal Information
 808 Systems and Organizations NIST SP 800-53 Revision 4, NIST, Gaithersburg, Md., Apr. 2013.
 809 Available: <u>https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf.</u>

- 810 [13] W. Newhouse et al., National Initiative for Cybersecurity Education (NICE) Cybersecurity
 811 Workforce Framework, NIST SP 800-181, NIST, Gaithersburg, Md., Aug. 2017. Available:
 812 https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-181.pdf.
- 813 [14] NIST, Framework for Improving Critical Infrastructure Cybersecurity, Version 1.1, Apr. 16, 2018.
 814 Available: <u>https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf.</u>