NCCoE IoT Onboarding Project

Factory Provisioning Use-Case

Minerva.Sandelman.ca Sandelman Software Works

SEALSQ

Steve Clark

Security Technologist

sclark@sealsq.com

Sandelman Software Works

Michael Richardson
 Chief Scientist

April 17th, 2025

High Level Architecture

The Factory Provisioning Use Case

Objectives:

- Demystify manufacturer provisioning
- Simulate the pre-provisioned Secure Element scenario
- Advocate that the identity of devices be **provisioned by the manufacturer**
- Demonstrate online Certificate Management Service (CMS)
 - Using Trusted Certificate Authority (CA)
- Document one or more flows involving BRSKI and DPP that uses a pre-provisioned secure element

Different Approaches to Provisioning

- ♦ Key-Pair Generated on IoT Device
- Key-Pair Generated in Secure Element
- Key-Pair Loaded into IoT Device
- Key-Pair Pre-Provisioned onto Secure Element
- Private Key Derived from Shared Seed

- Device Board is Assembled
- Board is connected to "Bed of Nails" for setup and provisioning
- Diagnostic firmware is loaded
- Basic functionality is tested
- Keys and Certificates are loaded
 - > This step requires a secure facility
- Production firmware is loaded
- Final test of IoT device

https://en.wikipedia.org/wiki/Bed_of_nails_tester

Typical Model of IoT Device Production – with Pre-Provisioned SE

Device Board is Assembled

- > SE protects keys and certificates secure facility requirement is minimized
- Board is connected to "Bed of Nails" for setup and provisioning
- Diagnostic firmware is loaded
- Basic functionality is tested
- Production firmware is loaded
- Final test of IoT device

https://en.wikipedia.org/wiki/Bed_of_nails_tester

Why Secure Chips?

- Host Companion Crypto Co-Processor
 - Reduced requirements on the host processor (memory, speed, ...)
 Trusted Execution Environment (TEE)

 - Stored secrets are never exposed off the chip
- Hardware Based Security
 - Protect from side-channel, fault injection, probing, ...
- Secure Storage
 - Secure key (secure identity)
 - Secure certificate & configuration
- Crypto Agility
 - Optimized crypto algorithms
 - PQC Implementations
- Secure Communication
 - Support for TLS/DTLS
- Secure Platform
 - Secure Update
 - Secure Boot
- Certifications & Compliance
 - ➢ FIPS140-3
 - Common Criteria EAL5+
- Pre-Provisioning
 - Simplified manufacturing security

Solutions for a Resource-Constrained Environment

♦ TPM

- Wide range of cryptography supported
- PQC support in next release of specification
- Firmware update supported
- Most (all?) security use cases for constrained devices supported.
- Pre-provisioning
- Secure Element
 - Specialized secure devices
 - Usually a subset of TPM capabilities
 - Lower cost and size
 - Can support traditional crypto and PQC
 - Pre-provisioning varies by vendor

Solutions for a Resource-Constrained Environment

Secure PQC MCU

- Custom applications
- > Optimized crypto algorithms
- > Large crypto libraries available
- PQC Optimization
- Pre-Provisioning

♦ ASIC

- Customizable Ideal for specific use cases
- Traditional crypto IP
- > PQC IP
- Asynchronous TRNG
- > Certifiable
- Pre-Provisioning

The Demo

Implementation

- > Pre-provision a secure element with an immutable Identity
 - ➢ Key-Pair / Certificate
- > Install the secure element on an IoT edge device to establish the platform hardware root of trust and Identity

Technologies

- Raspberry Pi Platform
- VaultIC40X Secure Element from SealSQ
- INeS Certificate Management System API
- INeS-Hosted Certificate Authority

Overview Factory Provisioning Use-Case Demo

Links to the Demo

Get the Kit:

<u>https://www.digikey.com/en/products/detail/sealsq/VIC408-TLS-RPI-STK/25701053?s=N4IgTCBcDaIM4FMCGAbOBHEBdAvkA</u>

♦ Get the Source Code:

<u>https://github.com/sealsq/NCCoE-Factory</u>

Steve Clark Security Technologist sclark@sealsq.com

