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NATIONAL CYBERSECURITY CENTER OF EXCELLENCE 35 

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards 36 
and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and 37 
academic institutions work together to address businesses’ most pressing cybersecurity issues. This 38 
public-private partnership enables the creation of practical cybersecurity solutions for specific 39 
industries, as well as for broad, cross-sector technology challenges. Through consortia under 40 
Cooperative Research and Development Agreements (CRADAs), including technology partners—from 41 
Fortune 50 market leaders to smaller companies specializing in information technology security—the 42 
NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity 43 
solutions using commercially available technology. The NCCoE documents these example solutions in 44 
the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework 45 
and details the steps needed for another entity to re-create the example solution. The NCCoE was 46 
established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, 47 
Maryland. 48 

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit 49 
https://www.nist.gov. 50 

NIST CYBERSECURITY PRACTICE GUIDES 51 

NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity 52 
challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the 53 
adoption of standards-based approaches to cybersecurity. They show members of the information 54 
security community how to implement example solutions that help them align with relevant standards 55 
and best practices, and provide users with the materials lists, configuration files, and other information 56 
they need to implement a similar approach. 57 

The documents in this series describe example implementations of cybersecurity practices that 58 
businesses and other organizations may voluntarily adopt. These documents do not describe regulations 59 
or mandatory practices, nor do they carry statutory authority.  60 
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The terms “shall” and “shall not” indicate requirements to be followed strictly to conform to the 71 
publication and from which no deviation is permitted. The terms “should” and “should not” indicate that 72 
among several possibilities, one is recommended as particularly suitable without mentioning or 73 
excluding others, or that a certain course of action is preferred but not necessarily required, or that (in 74 
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terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or causal. 77 

CALL FOR PATENT CLAIMS 78 
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of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant 83 
unexpired U.S. or foreign patents. 84 
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b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring 89 
to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft 90 
publication either: 91 

1. under reasonable terms and conditions that are demonstrably free of any unfair discrimination; 92 
or  93 

2. without compensation and under reasonable terms and conditions that are demonstrably free 94 
of any unfair discrimination.  95 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its 96 
behalf) will include in any documents transferring ownership of patents subject to the assurance, provi-97 
sions sufficient to ensure that the commitments in the assurance are binding on the transferee, and that 98 
the transferee will similarly include appropriate provisions in the event of future transfers with the goal 99 
of binding each successor-in-interest.  100 

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of 101 
whether such provisions are included in the relevant transfer documents.  102 

Such statements should be addressed to: applied-crypto-pqc@nist.gov  103 
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1 Introduction 219 

In recent years, there has been a substantial amount of research on developing quantum computers — 220 
machines that exploit quantum mechanical phenomena to solve mathematical problems that are 221 
difficult or intractable for conventional computers. If large-scale quantum computers are ever built, they 222 
will be able to break many of the public-key cryptographic systems currently in use. This would seriously 223 
compromise the confidentiality and integrity of electronically accessible digital information on a global 224 
scale. NIST has led an effort to develop standards for cryptographic systems that are secure against both 225 
quantum and classical computers and can interoperate with existing communications protocols and 226 
networks. NIST’s National Cybersecurity Center of Excellence (NCCoE) has initiated a project intended to 227 
facilitate and accelerate migration from current quantum-vulnerable cryptography to sufficiently 228 
quantum-resistant cryptography. 229 

The question of when a cryptanalytically relevant quantum computer (CRQC) computer will be built is 230 
uncertain. While in the past it was less clear that large quantum computers were a physical possibility, 231 
many scientists now believe them to merely represent a solvable engineering challenge. Some engineers 232 
predict that within the next decade, sufficiently large quantum computers will be built to break 233 
essentially all public key schemes currently in use.  234 

It has taken almost two decades to deploy our current public key cryptography infrastructure, and 235 
historically, it has taken decades to replace cryptographic algorithms in use in our information systems 236 
after they have been determined to be vulnerable to cryptanalysis. Even now, intelligence organizations 237 
and criminal organizations are recording cryptographically protected information that is sensitive and 238 
has long-term value for future exploitation by quantum computers. Therefore, regardless of whether we 239 
can accurately estimate when quantum computing will be sufficiently mature to enable exploitation of 240 
current public-key cryptographic systems, we must begin now to prepare our information security 241 
systems to be able to resist quantum computing-based attacks.  242 

In 2021, the NCCoE formally initiated its Migration to Post-Quantum Cryptography (PQC) project [1] by 243 
issuing an open invitation to commercial and open-source software and hardware technology providers, 244 
including those experienced in creating cryptographic technologies, to participate in demonstrating 245 
technologies and tools that can provide organizations with insights and findings that support their 246 
migrations to PQC.  247 

Together with our project consortium members, this project takes a multi-step approach to providing 248 
practical demonstrations supporting timely migration from the current set of public-key cryptographic 249 
algorithms to replacement post-quantum cryptographic algorithms that are resistant to quantum 250 
computer-based attacks. The project will demonstrate technical actions which are consistent with the 251 
steps identified in the “Quantum-Readiness: Migration to Post-Quantum Cryptography” factsheet [2] 252 
created in partnership with the U.S. Department of Homeland Security’s Cybersecurity & Infrastructure 253 
Security Agency (CISA), the National Security Agency (NSA), and NIST: 254 

 Establish a Quantum-Readiness Roadmap 255 

 Prepare a Cryptographic Inventory 256 

 Discuss Quantum-Readiness Roadmaps with Technology Vendors 257 

https://csrc.nist.gov/news/2023/three-draft-fips-for-post-quantum-cryptography
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 Determine Supply Chain Quantum-Readiness 258 

2 Project Scope 259 

The Migration to PQC project includes an industry consortium who met in June 2022 for a kickoff 260 
meeting in which each consortium member presented their potential technology and areas of expertise 261 
as contributions to the overall project. The project established two workstreams focusing on specific 262 
aspects of the migration challenge: the Quantum-Vulnerable Cryptography Discovery Workstream and 263 
the Interoperability and Performance of PQC Algorithms Workstream. Interested consortium members 264 
engage in the development of the scope and outcome of each workstream. 265 

In the Interoperability and Performance Workstream outlined in this volume, a subset of consortium 266 
members contributed working implementations of pre-standardized PQC algorithms in a variety of 267 
scenarios, which included the Transport Layer Security (TLS) protocol, Secure Shell (SSH) protocol, and 268 
hardware security modules (HSMs). NIST’s NCCoE has begun the process of testing pre-standardized 269 
post-quantum implementations in a lab environment to ensure that PQC will work in practice before 270 
standards are complete and commercial implementations are finalized, in alignment with Office of 271 
Management and Budget (OMB) M-23-02 [3]. Where interoperability testing has already been ongoing 272 
in other venues, such as the X.509 certificate Internet Engineering Task Force (IETF) hackathon, we 273 
leverage and highlight the outcomes from our consortium members in those venues.  274 

Interoperability testing of NIST pre-standardized post-quantum cryptographic algorithms was identified 275 
as a core focus area to support the ability of technology vendors and standards bodies to migrate and 276 
develop new products that utilize PQC. Organizations that procure systems and software implementing 277 
PQC will be able to learn about the quantum-readiness of technologies they are already using and 278 
technologies they are procuring to protect their systems. Benchmarking performance metrics from tests 279 
in our lab will assist our consortium members and any technology vendor in optimizing their 280 
implementations as they move toward production-grade status. Understanding performance metrics of 281 
post-quantum-ready algorithms will play a crucial role in motivating technology providers to provide 282 
technologies that will enable organizations’ migrations, and will provide initial data on which post-283 
quantum cryptographic algorithm is best suited for specific use cases.  284 

The primary audience for this report is cryptographic protocol designers and technology 285 
developers/producers responsible for implementation of PQC standards. Secondarily, security 286 
architects, system administrators, and others responsible for monitoring the state of implementation of 287 
PQC standards in technology may also benefit from this report. 288 

The remainder of this document summarizes the outcomes from the Interoperability and Performance 289 
Workstream testing that have occurred thus far, in which we identified the challenging problems and 290 
bottlenecks that integrators will face when transitioning systems to post-quantum-ready algorithms. 291 
Each section details the test participants, methodologies, and lessons learned from each Interoperability 292 
and Performance work item. 293 

3 Testing Scope 294 

For the purposes of interoperability and performance testing, the collaborators agreed on a common 295 
scope that enabled them to test their implementations with standards that are commonly used and are 296 

https://github.com/IETF-Hackathon/pqc-certificates
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expected to or have started to migrate to quantum-safe algorithms. In summary, interoperability testing 297 
within this context enables: 298 

 identification of compatibility issues between quantum-ready algorithms; 299 

 resolution of compatibility issues in a controlled, non-production environment; and 300 

 reduction of time spent by individual organizations performing similar interoperability testing 301 
for their own migration efforts. 302 

3.1 Selected Post-Quantum Algorithms 303 

Workstream participants experimented with post-quantum algorithms listed below. 304 

 CRYSTALS-Kyber as the preferred post-quantum Key Encapsulation Mechanism (KEM)  305 

 CRYSTALS-Dilithium as the preferred post-quantum signature algorithm  306 

 Falcon as a post-quantum signature algorithm  307 

 SPHINCS+ as a post-quantum signature algorithm picked by NIST at the end of Round 3 308 

 Stateful hash-based signatures standardized in NIST Special Publication (SP) 800-208 [4] tested 309 
in the context of HSMs 310 

At the time of this testing, there were limited implementations and evaluations of the candidate KEMs 311 
still in the running in the fourth round of NIST’s Post-quantum Cryptography Standardization process. As 312 
a result, we did not include any Round 4 KEMs or new additional signatures in our experiments. NIST has 313 
also requested comments on the standardization of key establishment and digital signature schemes 314 
specified in: 315 

 FIPS 203, Module-Lattice-Based Key-Encapsulation Mechanism Standard 316 

 FIPS 204, Module-Lattice-Based Digital Signature Standard  317 

 FIPS 205, Stateless Hash-Based Digital Signature Standard 318 

3.2 Protocols, Standards, and Use-Cases 319 

The protocols, standards, and use-cases outlined in this section were selected to leverage existing work 320 
that was prioritized by the participating organizations. These included transport protocols TLS 1.3 321 
(Section 6), SSH (Section 5), and QUIC (Section 7). They also included X.509 certificates (Section 8), which 322 
are ubiquitously used for authentication. As many of the participating organizations were HSM 323 
manufacturers (Section 9), they also chose to perform interoperability testing of implemented quantum-324 
safe algorithms for HSM use-cases. 325 

Additionally, the collaborators explored the topic of stateful hash-based signatures in Appendix C. In 326 
contrast to traditional signature schemes where the input is hashed before signing, new quantum-ready 327 
signature schemes can sign arbitrary messages without a pre-hash requirement. In this analysis, we 328 
evaluated each approach and summarized the advantages and disadvantages for different use-cases and 329 
standards.  330 

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
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3.3 Out of Scope 331 

There are key protocols, standards, and use cases that are not addressed by the initial testing outlined in 332 
this document. They were deemed out of scope due to a prioritization effort to make the most efficient 333 
use of the resources available. In the bullets below, we offer additional details as to why specific 334 
transport protocols were not chosen. 335 

 TLS 1.2. There had been work on post-quantum TLS 1.2 [5][6], but retrofitting post-quantum al-336 
gorithms in TLS 1.2 introduces downgrade concerns where a man-in-the-middle can force the 337 
two parties to negotiate classical algorithms even though implementations can support and pre-338 
fer the PQC algorithms. These concerns are not new. They existed in TLS 1.2 because the data 339 
signed in a TLS 1.2 connection does not include the server public key. The IETF recently has been 340 
moving towards declaring TLS 1.2 frozen [7], so no new features are expected to make it into 341 
the protocol. Thus, we decided to not experiment with PQC and TLS 1.2.  342 

 IKEv2/IPsec VPNs. Quantum-safe Internet Key Exchange version 2 (IKEv2) and Internet Protocol 343 
Security (IPsec) VPNs have been tested in other efforts [8][9]. Because IKEv2/IPsec VPNs usually 344 
stay up for long periods of time and transfer large amounts of data, the performance impact of 345 
PQC is considered negligible, as it is amortized over the life of the tunnel.  346 

 Datagram Transport Layer Security (DTLS). DTLS 1.3 is a protocol similar to TLS 1.3 that runs 347 
over UDP. Other than wolfSSL, there were no other PQC DTLS implementations in the project, so 348 
we chose not to experiment with it. DTLS is expected to see similar effects to TLS 1.3, but further 349 
testing is necessary to confirm that. There have not been enough studies of PQC DTLS by the re-350 
search community.  351 

 Message Queuing Telemetry Transport (MQTT) is a message protocol used in the Internet of 352 
Things (IoT) space. Other than wolfSSL’s wolfMQTT, no other collaborators supported post-353 
quantum MQTT. Thus, we chose not to experiment with it. Note that MQTT uses TLS for tunnel 354 
establishment, so it is expected to see similar impact by the new algorithms as TLS. Depending 355 
on how quick and short MQTT transactions are, the impact of PQC may not be amortized as with 356 
web TLS connections or with IKEv2/IPsec or SSH tunnels, which transfer larger amounts of data.   357 

The participants also chose to exclude firmware signing and IoT uses, as collaborators were focusing on 358 
different technological uses of cryptography at the time.  359 

4 Collaborators and Their Contributions 360 

Organizations participating in this project workstream submitted their capabilities in response to an 361 
open call in the Federal Register for all sources of relevant security capabilities from academia and 362 
industry (vendors and integrators). The following respondents with relevant capabilities or product 363 
components (identified as “Technology Partners/Collaborators” herein) signed a Cooperative Research 364 
and Development Agreement (CRADA) to collaborate with NIST in a consortium to provide pre-365 
standardized post-quantum algorithm implementations. Note that not all respondents will have results 366 
published in this version of the report.  367 

Amazon Web Services (AWS) 368 

AWS research and engineering efforts focus on the continuation of providing cryptographic security for 369 
customers, while developing and testing new cryptographic systems that exceed current customers’ 370 
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demands and protect against projected future adversaries like quantum computing. AWS has invested in 371 
the migration to post-quantum cryptography by contributing to post-quantum key agreement and 372 
signature schemes to protect customer data, deploying the new algorithms to AWS services, 373 
contributing to quantum-safe standardization, and investigating solutions to migration challenges. 374 

Crypto4a 375 

Crypto4A Technologies Inc. is a Canadian cybersecurity technology company providing industry-leading, 376 
fifth-generation, quantum-safe, crypto-agile HSM, hardware security platforms (HSPs), and PQC 377 
migration solutions. Its products and solutions provide processing capabilities for classic and quantum-378 
safe cryptography that is built in — not bolted on. Crypto4A enables the cryptographic agility, mobility, 379 
and scalability demanded by enterprises and government agencies to secure their digital assets and 380 
infrastructure while adapting to changing markets, standards, and requirements. 381 

CryptoNext Security 382 

Founded in 2019 by Jean-Charles Faugère after over twenty years of academic research in quantum-383 
resistant cryptography, CryptoNext Security is a pioneer and leading software startup vendor in PQC 384 
technology and solutions, having its headquarters based in Paris. CryptoNext and its founders have been 385 
fully engaged in the NIST standardization PQC efforts and a participant to the initial 2016 PQC 386 
contenders and is pursuing with the current new calls. CryptoNext is a deeply involved member of 387 
various IETF PQC-related workgroups and interoperability trials. 388 

CryptoNext offers its Quantum Safe Library (C-QSL), a fully optimized PQC library for various 389 
environments, and its Quantum Safe Remediation suite (C-QSR), a multi-layer, natively crypto-agile, PQC 390 
standards-compliant and interoperable software suite of technology tools (C-QST) and application 391 
plugins (C-QSA) for a broad range of uses such as business applications, secure messaging, HSM, VPN 392 
encryptors, PKI, signature and certificate solutions, IoT, and blockchain. CryptoNext works with multiple 393 
global industries such as finance, defense, critical infrastructure, and government customers as industry 394 
hardware and software technology partners to support them in their post-quantum migration roadmap 395 
for long-term efficiency. 396 

Entrust 397 

Entrust keeps the world moving safely by enabling strong identities, secure payments, and protected 398 
data. Entrust offers an unmatched breadth of solutions that are critical to the future of secure 399 
enterprises, governments, the people they serve, and the data and transactions associated with them. 400 
The company is one of the world’s leading providers of high-assurance, PQ-ready network and data 401 
security solutions, and pioneered the application of encryption standards decades ago to release the 402 
world’s first public key infrastructure. 403 

Entrust is a participating member of the IETF. With NIST recently announcing draft standards for post-404 
quantum cryptography, Entrust has incorporated the proposed quantum-safe algorithms to help 405 
organizations prepare for the post-quantum world. The company is working with customers on PQ 406 
readiness planning and roadmaps, which includes taking inventory of cryptographic assets; building 407 
maturity and crypto agility into management of keys, certificates, and cryptography; and deploying post 408 
quantum-ready security infrastructures. 409 
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IBM 410 

IBM is one of the largest multinational technology companies with operations in over 170 countries and 411 
is known for its research and development, hardware and software products, servers, storage systems, 412 
and networking equipment. It also provides consulting, technology, and business services, such as cloud 413 
computing, data analytics, and artificial intelligence (AI). IBM's research and development efforts have 414 
contributed to numerous technological innovations, including the development of the first 415 
programmable computer and now technological breakthroughs in quantum computing.  416 

IBM has scientists and researchers around the globe who deeply believe in the power of the scientific 417 
method to invent what’s next for IBM, our clients, and the world. Security and cryptography have long 418 
been important areas of research. IBM researchers with their academic and industry partners developed 419 
three of the four post-quantum cryptographic algorithms to be standardized by NIST.  420 

IBM z16 enterprise server leverages hybrid key agreement schemes and dual signing schemes to protect 421 
its infrastructure, and relevant to the project it provides an HSM and software libraries which allow its 422 
clients to experiment with FIPS 203 (CRYSTALS Kyber) and FIPS 204 (CRYSTALS Dilithium), two of the 423 
primary post-quantum algorithms slated to be standardized. Also, the z16 has been instrumented to 424 
support tools which allow users of the cryptographic capabilities of the system to discover the use of 425 
vulnerable cryptography, which is an essential step in the migration to quantum-safe algorithms. 426 
Additional details about the z16 and the use of the tools for that environment can be found in this IBM 427 
Redbook. 428 

Information Security Corporation (ISC) 429 

Since 1989, Information Security Corporation (ISC) has specialized in the design and development of 430 
cybersecurity solutions for PKI credential management, confidentiality, authentication, and automated 431 
provisioning of relying applications. ISC has developed a variety of certificate lifecycle management 432 
applications and cryptographic web services employing classical as well as quantum-safe public key 433 
cryptography. 434 

ISC is a member of the OASIS PKCS#11 Technical Committee, several IETF working groups, and various 435 
National Information Assurance Partnership (NIAP) Technical Communities that focus on advancing the 436 
rapid adoption of standards-based PQC algorithms. ISC’s participation in the NCCoE PQC Migration 437 
Project includes providing expertise, historical perspective, and interoperability testing between ISC 438 
products and other consortium members’ certificates and HSM APIs to ensure that customers are able 439 
to transition to PQC algorithms as quickly as possible. 440 

Keyfactor 441 

Keyfactor brings digital trust to the hyper-connected world with identity and authentication for every 442 
machine, workload, human, and connected thing. By modernizing PKI, automating machine identities, 443 
and protecting critical software and product supply chains with secure digital signing and cryptography, 444 
Keyfactor helps organizations establish digital trust – then maintain it. 445 

Keyfactor is committed to making quantum-ready PKI, signing, and cryptography solutions available to 446 
the world, founding and actively supporting widely adopted open-source projects, including EJBCA, 447 
SignServer, and the FIPS 140-validated Bouncy Castle Cryptography APIs. As a participating member of 448 

https://www.redbooks.ibm.com/abstracts/sg248525.html
https://www.redbooks.ibm.com/abstracts/sg248525.html
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4616
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X9 and the IETF PQC Hackathon, Keyfactor has been following the evolution of NIST PQC standards and 449 
has incorporated the proposed algorithms into the Bouncy Castle APIs, which serves as the engine 450 
behind their commercial PKI, signing, and certificate management solutions. With quantum-ready 451 
solutions and expertise, Keyfactor is working with customers to protect their business and remain 452 
resilient in the post-quantum world. 453 

Kudelski IoT 454 

Kudelski IoT is the Internet of Things division of Kudelski Group and provides end-to-end IoT solutions, 455 
IoT product design, and full-lifecycle services to IoT semiconductor and device manufacturers, 456 
ecosystem creators, and end-user companies. These solutions and services leverage the group’s 30+ 457 
years of innovation in digital business model creation; hardware, software, and ecosystem design and 458 
testing; state-of-the-art security lifecycle management technologies and services; and managed 459 
operation of complex systems. 460 

Kudelski IoT is investing in quantum-resistant technology and the migration to PQC, with a broad 461 
products and services portfolio and active research contributions. Kudelski IoT is expanding its Security 462 
IP portfolio, adding quantum-resistant algorithms, with optimized performance and minimized resource 463 
impacts. These algorithms are designed to be upgradable and are also resilient against side-channel and 464 
fault attacks. The expansion also involves extending its key management system (keySTREAM) to 465 
facilitate quantum-resistant device lifecycle management, supporting customers throughout the 466 
migration to post-quantum solutions.  467 

Kudelski IoT has two specialized laboratories that are highly engaged in evaluating the security 468 
robustness of algorithms, including quantum-resistant cryptography, by conducting attacks. 469 

Microsoft 470 

Microsoft is committed to providing secure and trustworthy products and services to its customers. As 471 
such, Microsoft has been investing in PQC research, development, experimentation, and collaboration 472 
since 2014, playing a role in the emergence of PQC and public standards. In particular, Microsoft 473 
submitted four algorithms in NIST’s standardization effort. Microsoft is proud to participate in the Open 474 
Quantum Safe project, where they help develop the liboqs library used in this project and by many PQC 475 
industry vendors. Microsoft established the Quantum Safe Program, aiming to accelerate and advance 476 
all quantum-safe efforts across the company from both technical and business perspectives. 477 

PQShield 478 

PQShield is a cybersecurity company specializing in PQC, that aims to deliver security and privacy in an 479 
increasingly digital world, protecting today’s technology from tomorrow’s attacks. PQShield was the first 480 
company to develop quantum-safe technology on microchips, in applications, and in the cloud, and it is 481 
focusing on empowering organizations, industries, and nations with the ultimate quantum-resistant 482 
cryptography solutions in software, hardware, and research IP. 483 

PQShield began as a spin-off from the University of Oxford, and has grown to become a world-class 484 
collaboration of leading engineers and researchers. With teams in Europe, Japan, the US, and the UK, it 485 
is the industry hub of expertise in PQC. PQShield employees are also contributors to the NIST post-486 
quantum cryptography standardization project, with researchers and advisory boards co-authoring the 487 
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standards announced by NIST. It’s contributed multiple cryptographic extensions to RISC-V, the open 488 
standard instruction set architecture (ISA) that is gaining traction from proprietary competitors such as 489 
ARM and Intel, and is also working with many other organizations such as the World Economic Forum, 490 
IETF, ETSI, Groupe Special Mobile Association (GSMA), NCCoE, and GlobalPlatform, to advise and define 491 
their positions. 492 

PQShield is committed to helping modernize the cryptographic components and supply chain that keep 493 
organizations safe. 494 

Samsung SDS  495 

Samsung SDS provides cloud and digital logistics services. Samsung SDS builds optimized cloud 496 
environments with Samsung Cloud Platform and provides all-in-one management service as well as SaaS 497 
solutions proven successful in many use cases. One of their core capabilities for delivering their service is 498 
cybersecurity, and cryptographic technology plays a fundamental role to enhance security. To this end, 499 
Samsung SDS is engaged in various cryptographic research and development activities, including the 500 
design, implementation, and architecting of cryptographic techniques, including post-quantum 501 
cryptography. 502 

Thales 503 

Thales is the worldwide leader in data security, providing everything an organization needs to protect 504 
and manage its data, identities, and intellectual property – through encryption, advanced key 505 
management, tokenization, and authentication and access management. Whether it’s securing the 506 
cloud, digital payments, blockchain, or IoT, security professionals around the globe rely on Thales to 507 
confidently accelerate their organization’s digital transformation.  508 

Thales has been actively involved in PQC R&D and various standardization efforts since at least 2013. 509 
Thales co-authored the Falcon digital signature algorithm, which was selected by NIST as a candidate for 510 
PQC standardization in July 2022. The company is engaged in multiple research projects in the United 511 
States, France (RISQ), and across Europe, and is also financing numerous doctoral theses on the subject. 512 
Additionally, Thales Trusted Cyber Technologies and the NSA signed a CRADA for evaluating the NIST-513 
selected PQC algorithms when operating on an HSM.  514 

Thales Digital Identity and Security (DIS) (a global business area) and Thales Trusted Cyber Technologies 515 
(TCT) (a U.S.-based business area exclusively serving the U.S. Federal Government) are both participants 516 
in the NCCoE’s Migration to PQC Project. Thales has already submitted the products below to the NCCoE 517 
lab to help develop practices to ease migration from current algorithms to replacement post-quantum 518 
algorithms: 519 

 Thales Luna 7 Hardware Security Module (HSM) 520 

 Thales TCT Luna T-Series HSM (for the U.S. Government) 521 

 Thales CipherTrust Manager for key management 522 

 Thales High Speed Encryptors (HSEs) for network encryption 523 

Implementing both quantum-vulnerable classical public key algorithms and PQC algorithms, the Thales 524 
products contributed to the NCCoE PQC project provide the unique capability to be identified as 525 
quantum-vulnerable while also providing platforms for PQC interoperability testing. Thales has long 526 
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been an advocate for crypto agility, facilitating it across its product lines. Existing customer product 527 
deployments and Thales contributions to the NCCoE lab can be field-updated with NIST-selected PQC 528 
algorithms as they mature through the standardization process. Thales has actively prototyped NIST PQC 529 
algorithm finalists within its products and is now focusing on the selected PQC algorithms. In keeping 530 
with crypto agility, Thales is now accelerating to practical proof of concepts with customers, notably for 531 
hybrid algorithms in digital signatures and key exchange mechanisms.  532 

At Thales, we recognize organizations must adopt a strong post-quantum crypto-agile strategy. In 533 
preparation for the transition, Thales encourages organizations to practice crypto agility now, to help 534 
your organization evolve and avoid expensive security retrofitting in the future as quantum computing 535 
becomes more established. This design principle facilitates changes to the cryptography even after 536 
deployment and allows you to prepare for the transition to quantum-safe solutions once the NIST 537 
standardization process is completed. To this end, Thales already offers crypto-agile HSMs, key 538 
management, and network encryption solutions that you can take advantage of today. 539 

Utimaco 540 

Utimaco is a global platform provider of trusted cybersecurity and compliance solutions and services 541 
with headquarters in Aachen (Germany) and Campbell, California (USA). Utimaco develops on-premise 542 
and cloud-based HSMs, and solutions for key management, data protection, and identity management, 543 
as well as data intelligence solutions for regulated critical infrastructures and public warning systems. 544 
Utimaco is one of the world’s leading manufacturers in its key market segments.  545 

500+ employees around the globe create innovative solutions and services to protect data, identities, 546 
and communication networks with responsibility for global customers and citizens. Customers and 547 
partners in many different industries value the reliability and long-term investment security of 548 
Utimaco‘s high-security products and solutions. 549 

Quantum resistance is one of Utimaco´s strategic focus areas. Utimaco´s GP-HSM series “u.trust anchor” 550 
and “CryptoServer” provide a trustworthy use of PQC-algorithms and PQC-keys in a secure environment. 551 
Hence, Utimaco supports post-quantum relevant use cases either directly or in hybrid mode, to enable a 552 
smooth migration of their customers into the post-quantum era.   553 

Utimaco is active in various standardization committees like the European Telecommunications 554 
Standards Institute (ETSI), Organization for the Advancement of Structured Information Standards 555 
(OASIS) PKCS#11, GSM Association (GSMA), and Accredited Standards Committee (ASC) X9. 556 

wolfSSL  557 

wolfSSL focuses on providing lightweight and embedded security solutions with an emphasis on speed, 558 
size, portability, features, and standards compliance. With its SSL/TLS products and crypto library, 559 
wolfSSL is supporting high-security designs in automotive, avionics, and other industries. In avionics, 560 
wolfSSL supports Radio Technical Commission for Aeronautics Software Considerations in Airborne 561 
Systems and Equipment Certification. In automotive, wolfSSL supports MISRA-C capabilities. For 562 
government consumers, wolfSSL has a valid FIPS 140-2 certificate. wolfSSL supports industry standards 563 
up to the current TLS 1.3 and DTLS 1.3, offers a simple API and an OpenSSL compatibility layer, is backed 564 
by the wolfCrypt cryptography library, and provides 24x7 support and much more. wolfSSL’s products 565 
are open source, giving customers the ability to examine them. 566 

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3389
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The organizations listed above have contributed technologies described in Table 1. Here, we provide the 567 
type of component, product name, and the function the technology will serve in the demonstration.  568 

Table 1 Products and Technologies 569 

Component Product Function 

Quantum-ready 
Algorithm Imple-
mentation 

CryptoNext Quantum 
Safe Library (C-QSL) 

A fully optimized post-quantum library that provides:  
• NIST-selected post quantum ready algorithms se-

curity levels, side-channel protection, and deter-
ministic Random Bit Generator;  

• Top performance with optimized implementation 
for most common CPU/operating system platforms 
and tuning for constrained hardware such as IoT;  

• Full crypto-agility with the most comprehensive set 
of PQC algorithms, as well as a full set of language 
wrappers; and  

• Evolutionary support for US/EU standards and cer-
tifications. 

Quantum-ready 
Protocol Imple-
mentation 

CryptoNext Quantum 
Safe Crypto Services 
(C-QSC) 

A set of PQC enabled, optimized, crypto-agile and hy-
bridization-capable implementations of protocols and 
crypto-objects, including: 
• Communication protocols such as IKE (IPSec), TLS, 

and Secure/Multipurpose Internet Mail Extensions 
(S/MIME); 

• Programming interfaces such as PKCS#11 libraries; 
• X.509 post-quantum certificates; and  
• Identity management. 

Quantum-ready 
Tools and Applica-
tion Plugins Im-
plementation 

CryptoNext Quantum 
Safe Tools (C-QST) and 
Application Plugins (C-
QSA) 

A set of crypto-agile, pure PQ and PQ hybridization-ca-
pable, user-transparent, quantum safe integration 
tools and application plugins for: 
• Cryptography toolkits 
• Network infrastructure: IPSec VPN, SSL VPN, SSH  
• Security infrastructure: PKI, HSM, blockchain 
• Proxies/connectors  
• Messaging tools 
• Web application servers and clients 
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Component Product Function 

Quantum-ready 
Algorithm Imple-
mentation 

(Microsoft) Open 
Quantum Safe (OQS) 
project 

An open-source project that aims to support the devel-
opment and prototyping of quantum-resistant cryptog-
raphy. OQS consists of two main lines of work: liboqs, 
an open-source C library for quantum-resistant crypto-
graphic algorithms, and prototype integrations into 
protocols (TLS and SSH) and applications, including the 
widely used OpenSSL library. These tools support re-
search by Microsoft and others. 

Quantum-ready 
Algorithm Imple-
mentation 

aws-lc A software library implementing cryptographic algo-
rithms for AWS use-cases. 

Quantum-ready 
Algorithm Imple-
mentation 

(AWS) s2n-tls A software library implementing the TLS protocol for 
AWS use-cases. 

Quantum-ready 
Algorithm Imple-
mentation 

(AWS) s2n-quic A software library implementing the QUIC protocol for 
AWS use-cases. 

Quantum-ready 
Algorithm Imple-
mentation 

AWS SSH implementa-
tion 

A software library implementing the SSH protocol for 
AWS use-cases.  

Quantum-ready 
Algorithm Imple-
mentation 

(crypto4A) QxHSM™  
 

An HSM built around Crypto4A’s FIPS Level 3+ QASM™ 
cryptographic module that provides built-in quantum-
safe cryptographic agility. The QxHSM comes in an 
easy-to-deploy network-attached blade form factor 
that can accommodates a variety of deployment topol-
ogies, be it a single instance (development or root pur-
poses) to multiple instances arranged in either local 
and/or geo-distributed clusters. The QxHSM can be 
called via multiple application programming interface 
(API) standards such as Representational State Transfer 
(REST), PKCS#11, Key Management Interoperability 
Protocol (KMIP), Java Cryptography Extension (JCE), 
and Cryptography API Next Generation (CNG). 

Quantum-ready 
Algorithm Imple-
mentation 

(crypto4A) QxEDGE™ 
 

A fully integrated and hyper-converged HSP that com-
bines Crypto4A’S FIPS Level 3+ QASM quantum-safe 
crypto-agile cryptographic module with both general-
purpose processing engines and confidential compute 
engines to deliver highly integrated cybersecurity solu-
tions for a diverse set of cybersecurity use cases. Each 
internal server gets access to their cryptographic ser-
vices and individual isolated key stores provided by the 
QASM. The QxEDGE comes in a 19-inch rack 1U server 
form factor with redundant power supplies.  
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Component Product Function 

Quantum-ready 
Protocol Imple-
mentation 

(Samsung SDS) s-pqc-
tls 

A software library that provides the functionality of hy-
brid key exchanges with classic and PQC cryptography 
algorithms in the TLS protocol version 1.3 for Java ap-
plications, which supports the Java Secure Socket Ex-
tension (JSSE) standard API to integrate with existing 
applications. 

Quantum-ready 
Protocol Imple-
mentation 

wolfSSL A software library that implements TLS and DTLS 1.3 
supporting quantum-safe symmetric and asymmetric 
ciphers to be standardized by NIST. 

Quantum-ready 
Protocol Imple-
mentation 

(wolfSSL) wolfSSH A software library that implements SSHv2 supporting 
ecdh-nistp256-kyber-512r3-sha256-d00@openquan-
tumsafe.org for your post-quantum key exchange 
needs.  

Quantum-ready 
Protocol Imple-
mentation 

(wolfSSL) wolfMQTT A software library that implements MQTT up to version 
5 and runs on top of wolfSSL, thus leveraging its sup-
port for quantum-safe TLS 1.3.  

Quantum-ready 
Protocol Imple-
mentation 

(wolfSSL) NGINX A version of NGINX, a high-performance, high-concur-
rency web server compiled with the wolfSSL crypto-
graphic library.  

Quantum-ready 
Protocol Imple-
mentation 

(wolfSSL) cURL A version of cURL, a command-line tool and library 
for transferring data with URLs compiled with the 
wolfSSL cryptographic library. 

Quantum-ready 
Algorithm Imple-
mentation 
 

Thales Luna A/S790 
Network HSM 
 

Helps organizations prepare for a post-quantum future 
in the following ways: 

• With a customizable Functionality Module (FM) 
available today that provides several quantum-
resistant algorithms for you to utilize for proto-
typing; 

• Using several Thales technology partners that 
have created their own FM variants that imple-
ment these algorithms within their own PQC 
applications; 

• Alternatively, create your own FM implement-
ing any of the available quantum-resistant al-
gorithms. 

Quantum-ready 
Algorithm Imple-
mentation 

Thales TCT Luna T-
5000 Network HSM 
 

A dedicated crypto processor designed to protect cryp-
tographic keys. HSMs serve as the trust anchors to pro-
tect an organization’s cryptographic infrastructure by 
securely managing, processing, and storing crypto-
graphic keys inside a hardened, tamper-resistant de-
vice. The Luna T-Series HSM is FIPS 140-2 L3 validated 
and CNSS approved. It is the root of trust to numerous 
partner integrations utilizing asymmetric keys that are 

https://www.nginx.com/
https://curl.se/
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4090
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Component Product Function 
at risk to the quantum threat. Thales TCT has released 
firmware for the Luna T-Series HSM that includes pre-
standard implementations of NIST-selected PQC algo-
rithms to facilitate PQC interoperability testing. 

Quantum-ready 
Protocol Imple-
mentation 
 

Thales CipherTrust 
Manager & Connectors 
 

Industry-leading enterprise key management solution 
enabling organizations to centrally manage encryption 
keys, provide granular access control, and configure se-
curity policies. CipherTrust Manager is the central man-
agement point for the CipherTrust Data Security Plat-
form. It manages key lifecycle tasks including genera-
tion, rotation, destruction, import, and export, pro-
vides role-based access control to keys and policies, 
supports robust auditing and reporting, and offers de-
veloper-friendly REST API. 
CipherTrust Manager is available in both virtual and 
physical appliances that integrates with FIPS 140-2 
compliant Thales Luna or third-party HSMs for securely 
storing keys with a root of trust. These appliances can 
be deployed on-premises in physical or virtualized in-
frastructures and in public cloud environments to effi-
ciently address compliance requirements, regulatory 
mandates, and industry best practices for data security. 
With a unified management console, it makes it easy to 
set policies, discover and classify data, and protect sen-
sitive data wherever it resides using the CipherTrust 
Data Security Platform products. 

Quantum-ready 
Algorithm Imple-
mentation 

Thales CN Series Net-
work Encryptors  

The Thales High Speed Encryptors (HSE) are widely de-
ployed, FIPS-validated network encryption solutions 
that encrypt critical network communications and em-
ploy quantum-vulnerable classical public key algo-
rithms. The current release includes pre-standard im-
plementations of the NIST-selected PQC algorithms. 
Thales HSE can be deployed in the NCCoE lab and iden-
tified as quantum-vulnerable. Then a firmware upgrade 
to the most recent version could be applied and the 
encryptors configured to operate using PQC. 

Quantum-ready 
Algorithm Imple-
mentation 

(Entrust) PQ-enabled 
nShield HSM 

PQ-enabled nShield HSM supports testing and imple-
menting PQC in a secure HSM. 

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4208
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Component Product Function 

Quantum-ready 
Algorithm Imple-
mentation 

(Entrust) PKIaaS PQ 
Beta, Quantum-safe 
Java Toolkit 

PKIaaS for Post Quantum Beta is a cloud-based “PKI as 
a Service” that supports both composite and pure 
quantum certificate authority (CA) hierarchies. In com-
bination with the Quantum-safe Java Toolkit, this gives 
the ability to test multi-certificates or composite certifi-
cates with applications. 

Quantum-ready 
Algorithm Imple-
mentation 
 

(PQShield) PQCryp-
toLib  

A generic software library with a C/C++ interface of 
FIPS 140-3-ready, post-quantum and classical crypto-
graphic algorithms. It can be used to design your own 
software development kit (SDK), or be implemented as 
part of PQShield’s SDK, PQSDK. PQCryptoLib is de-
signed to provide post-quantum security using multiple 
algorithms, including those supported by NIST. The 
goal of PQCryptoLib is to help organizations transition 
to quantum-resistant cryptographic schemes by provid-
ing support for classical and hybrid key derivation, as 
well as providing an implementation within the TLS key 
schedule. 

Quantum-ready 
Algorithm Imple-
mentation 
 

(PQShield) PQSDK Easy-to-use software implementations of both post-
quantum and classical cryptographic primitives. It con-
sists of an integration of PQShield’s PQCryptoLib library 
with popular high-level cryptography libraries. PQSDK 
enables you to experiment with deployments of PQC 
and to prototype your post-quantum TLS solutions (in-
cluding TLS X.509) and PKI management before pro-
gressing to full deployment. 

Quantum-ready 
algorithm imple-
mentation 

ISC CDKpqc  A linkable library providing classical and NIST-selected 
quantum-safe algorithms. 

Quantum-ready 
Certificate Au-
thority 

ISC CertAgent A PQC-enabled X.509 CA. 

Quantum-ready 
Encryption Appli-
cation 

ISC SecretAgent A PQC-enabled file encryption and digital signature util-
ity. 

Quantum-ready 
Algorithm Imple-
mentation 

(Kudelski IoT) KSE A hardware Security Enclaves Portfolio that provides a 
full range of security and cryptographic services, in-
cluding quantum-resistant cryptography and classical 
cryptography, to  SoC vendors targeting a high level of 
robustness and stringent certification schemes with rig-
orous requirements. The current implementation of 
quantum-resistant cryptography is upgradable to facili-
tate adaptation to evolving standards and security 
countermeasures that have to be completed. 
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Component Product Function 

Quantum-ready 
Algorithm Imple-
mentation 

(Kudelski IoT) Lab Ser-
vices 

Kudelski IoT is deeply involved in assessing the security 
robustness of algorithms. This includes the evaluation 
of quantum-resistant cryptography through the execu-
tion of attacks and the analysis of performance data re-
lated to the implementation of quantum-resistant algo-
rithms, key management, and other aspects. 

Quantum-ready 
Algorithm Imple-
mentation 

(Kudelski IoT) key-
STREAM 

The Kudelski IoT Device Security Lifecycle and keys 
Management platform for IoT devices. keySTREAM en-
ables provisioning and management of security creden-
tials directly from the cloud to the chipset for the fol-
lowing use-cases: personalization, in-field late provi-
sioning, and in-field credential management. key-
STREAM supports asset provisioning for running cer-
tain quantum-resistant cryptographic algorithms and is 
set to undergo an upgrade to cover NIST’s range of 
quantum-resistant cryptographic algorithms. 

Quantum-ready 
Algorithm Imple-
mentation 
 

(Keyfactor) Legion of 
the Bouncy Castle 
Cryptography APIs 

(In partnership with the Legion of the Bouncy Castle 
Inc.) The Bouncy Castle libraries (for Java, Kotlin, and 
C#) now include support for both classical and quan-
tum-safe algorithms (upcoming NIST standards in-
cluded), together with support for protocols such as 
TLS/DTLS, CMS, Time-Stamp Protocol, OpenPGP, and a 
variety of protocols around X.509 certificate manage-
ment. 

Quantum-ready 
Algorithm Imple-
mentation 
 

(Utimaco) u.trust an-
chor 

Utimaco’s next-generation HSM is designed with a leap 
forward in security and innovation. u.trust Anchor 
brings together robust encryption and secure key man-
agement, with unprecedented processing power and 
capabilities within tamper-proof hardware for seamless 
integrations. Inspired by cloud technology, u.trust An-
chor is designed for containerized HSMs. It supports 
important features like load balancing, high availability, 
customization of firmware, and total control of each 
containerized HSM based on business requirements. 
The customer migration journey is assisted with a soft-
ware-simulator as well as a full SDK for firmware en-
hancements. 

5 Secure Shell (SSH) 570 

5.1 Interoperability and Performance Discussion 571 

SSH is a widely used protocol for management, configuration, and secure file transfers. The PQC SSH 572 
testing prioritized protecting against harvest-now-decrypt-later attacks. We tested a set of PQC key 573 
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exchange methods to identify gaps and issues. Protecting SSH authentication is considered less urgent 574 
since attacks require an active quantum computer during session establishment.  575 

As there is no ratified post-quantum SSH Request for Comments (RFC), we decided to code to version 01 576 
of the current draft [10] which was submitted to the IETF (and has not been picked up for 577 
standardization). This draft specifies how to combine elliptic curve cryptography with Kyber, NIST’s 578 
Round 3 key exchange mechanism, to provide hybrid quantum-safe key exchange methods in SSH. All 579 
NCCoE collaborator components implemented the conventions in the draft specification. Some 580 
implementations included a subset of the methods at the time of testing.  581 

The collaborator components used for testing SSH were: 582 

 OQS OpenSSH v8 583 

 wolfSSH (June 2023) 584 

 AWS SSH implementation (also used for Secure File Transfer Protocol [SFTP] in AWS Transfer 585 
Family) 586 

OQS OpenSSH and wolfSSH were run on Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-72-generic x86_64) with 587 
an IntelI XI(R) Gold 6126 CPU @ 2.60 GHz (2 Core) and 32 GB RAM. The AWS SSH implementation was run 588 
in Amazon Linux 2 on Intel Xeon Platinum 8175M CPU @ 2.50 GHz with 32 GB RAM.  589 

5.2 Interoperability Testing 590 

5.2.1 PQC Hybrid Key Exchange Test Profile 591 

SSH Testing Profile 1 included the following algorithm parameters: 592 

 Kyber-512, Kyber-768, Kyber-1024 593 

 P256+Kyber-512, x25519+Kyber-512, P384+Kyber-768, P521+Kyber-1024 594 

For each test profile, and for each algorithm supported by both the client and the server, we tested 595 
successful SSH connections. Table 2 contains the results of interoperability testing. Key exchange 596 
methods not supported by a component at the time of the testing are depicted as “N/A”. Table 2  597 
shows that all supported algorithm implementations interoperated between the components. 598 

Table 2 Profile 1 interoperability test results for PQC key exchange in SSH with NCCoE collaborator 599 
components 600 

Algorithm 
Parameters Client 

Server: 
OQS-

OpenSSH 

Server: 
wolfSSH 

Server: 
AWS 

Kyber-512 
OQS-OpenSSH Success N/A N/A 
wolfSSH N/A N/A N/A 
AWS N/A N/A N/A 

Kyber-768 
OQS-OpenSSH Success N/A N/A 
wolfSSH N/A N/A N/A 
s2n-tls N/A N/A N/A 

https://github.com/open-quantum-safe/openssh
https://github.com/wolfSSL/wolfssh
https://aws.amazon.com/blogs/security/post-quantum-hybrid-sftp-file-transfers-using-aws-transfer-family/
https://aws.amazon.com/blogs/security/post-quantum-hybrid-sftp-file-transfers-using-aws-transfer-family/
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Algorithm 
Parameters Client 

Server: 
OQS-

OpenSSH 

Server: 
wolfSSH 

Server: 
AWS 

Kyber-1024 
OQS-OpenSSH Success N/A N/A 
wolfSSH N/A N/A N/A 
AWS N/A N/A N/A 

P256-Kyber-512 
OQS-OpenSSH Success Success Success 
wolfSSH Success Success Success 
AWS Success Success Success 

X25519-Kyber-
512 

OQS-OpenSSH N/A N/A N/A 
wolfSSH N/A N/A N/A 
AWS N/A N/A Success 

P384-Kyber-768 
OQS-OpenSSH Success N/A Success 
wolfSSH N/A N/A N/A 
AWS Success N/A Success 

P521-Kyber-1024 
OQS-OpenSSH Success N/A Success 
wolfSSH N/A N/A N/A 
AWS Success N/A Success 

5.2.2 PQC Hybrid Key Exchange and Authentication Test Profiles 601 

In terms of PQC SSH authentication, we decided to generate two testing profiles, one that would 602 
support the CNSA Suite 2.0 for key exchange and authentication, and one that includes other algorithm 603 
combinations. 604 

Profile 2 used Kyber-1024 and Dilithium-4 at level 5, notably excluding hybrids and complying with CNSA 605 
2.0 in the long-term. At the time of the initial testing, only OQS OpenSSH had support for PQC 606 
authentication, so we deferred further testing until additional collaborator components had support. 607 

Profile 3 was a profile to test PQC and PQC-hybrid KEMs and authentication algorithm combinations. 608 
Given that only OQS OpenSSH supported PQC authentication for SSH at the time of the initial testing, we 609 
deferred further testing until additional collaborator components had support. 610 

5.3 Performance Testing 611 

Contrary to TLS 1.3, which was designed to start encryption after one round-trip, SSH as a protocol 612 
includes multiple round-trip message exchanges before bringing up the tunnel and exchanging data. 613 
That means that most PQC algorithms will not have a significant impact on the overall handshake time, 614 
as most of it is spent on the round-trip messages. Even sending more data for authentication will not 615 
affect SSH significantly, especially since most SSH connections transfer sizable amounts of data. 616 

Sikeridis et al. evaluated the impact of PQC algorithms to SSH in 2020 [11]. Their study confirmed that 617 
Kyber-512, Kyber-768, and Dilithium-4 would have single-digit percentage impact on an SSH handshake 618 
at the 50th and 95th percentiles. This confirms the intuition that PQC algorithms will not impact SSH 619 
significantly, so we decided against duplicating work and further assessing the performance of PQC SSH 620 
for the purposes of this testing. 621 

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
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5.4 Lessons Learned 622 

While collaborators were performing interoperability testing for Profile 1, they had to work through 623 
some issues with their implementation components. Below we summarize the lessons learned: 624 

 When working on early implementations of a standard which is not yet ratified, sometimes im-625 
plementations have to revisit the version of the standard they implement and make changes as 626 
the standard evolves to comply with it. For example, one collaborator’s SSH component was fol-627 
lowing an early version of the PQC-hybrid key exchange. After we switched to using the meth-628 
ods in a subsequent draft, the collaborator components could not interoperate. This issue would 629 
not occur when implementers start from a ratified, stable specification. 630 

 Implementers could sometimes interpret draft specification details differently. An example is 631 
key encoding in the PQC SSH draft [10]. The draft originally did not specify the exact key encod-632 
ings and representations or was slightly ambiguous, so SSH implementers took different ap-633 
proaches for encoding the keys. Writing prescriptive and clear specifications can limit such is-634 
sues. 635 

 Using new SSH names, like ecdh-nistp256-kyber-512-sha256, in our implementations is 636 
prone to introducing interoperability issues for implementations that do not get updated at the 637 
same time. Someone supporting ecdh-nistp256-kyber-512-sha256 in the -00 version of 638 
an early draft specification may not interoperate with an implementation of the -05 version. 639 
Backwards compatibility is important because switching to a new draft could mean the early 640 
adopters may no longer be able to use PQC SSH.  641 

The solution we picked was to use temporary names which are expected to change in the final 642 
ratified draft. Every time there is a backwards compatibility breaking change to a method in the 643 
draft specification, we introduce a new temporary name specific to the time or the version of 644 
the algorithm used. For example, in the first version of the draft which was at the end of Round 645 
3 of the NIST PQC Project, we chose to use ecdh-nistp256-kyber-512r3-sha256-d00 for 646 
combining Elliptic Curve Diffie Hellman (ECDH) P256 with Kyber-512. If the next version of the 647 
draft, while in Round 4 of NIST’s PQC Project, introduced a change which would break existing 648 
implementations of ecdh-nistp256-kyber-512r3-sha256-d00, then we would change 649 
the SSH method name to ecdh-nistp256-kyber-512r4-sha256-d01. New implementa-650 
tions would negotiate with the new method name. Older implementations could still use PQC 651 
SSH with implementations that support both the newer and older methods.  652 

When the specification is ratified, the final standardized name would be different, something 653 
like ecdh-nistp256-kyber-512-sha256. Support for older, temporary method names can 654 
be removed in a phased fashion to allow early implementers to switch to the ratified name. 655 
More details about this methodology can be found in the relevant OQS OpenSSH git issue. 656 

6 Transport Layer Security (TLS) 657 

6.1 Interoperability and Performance Discussion 658 

The Transport Layer Security (TLS) protocol is arguably the most deployed online security protocol, so it 659 
is critical to make sure it supports post-quantum protection. Moreover, its wide use makes it a prime 660 
target for harvest-now-decrypt-later attacks. It is therefore no surprise that TLS has been one of the first 661 
protocols on which PQC was prototyped (before even the NIST PQC standardization effort) [12], that 662 

https://github.com/open-quantum-safe/openssh/issues/134
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numerous academic studies have been performed,1 and that large-scale industrial experiments2 have 663 
been conducted to study the feasibility of PQC integration and its performance. 664 

Since then, many open-source and commercial TLS 1.3 implementations have added support for PQC 665 
and hybrid ciphersuites, even before the availability of the final PQC FIPS standards and their inclusions 666 
in the TLS specification. Most implementations (and all the ones by NCCoE collaborating participants) 667 
have implemented the draft IETF draft-ietf-tls-hybrid-design-05 [13] specification for hybrid TLS 1.3 key 668 
exchange. Our goal was to test interoperability between compliant implementations, and to measure 669 
performance between the various algorithms to understand their impact. 670 

It is important to note that we only considered PQC and hybrid key exchange and not authentication 671 
(except for the Commercial National Security Algorithm Suite [CNSA] 2.0 profile that tested Dilithium-5 672 
authentication) for two reasons: 1) the pressing record-now-decrypt-later concern only affects 673 
encryption (depending on the key exchange part of the session establishment),3 and 2) there is no 674 
industry-wide agreement on how to perform hybrid authentication or if it is necessary (see Section 8). 675 

We tested both the client and server capabilities of the following collaborator components: 676 

 Open Quantum Safe (OQS) OpenSSL Provider 677 

 wolfSSL 678 

 AWS s2n-tls 679 

 Samsung SDS PQC-TLS (s-pqc-tls) 680 

 OQS NGINX 681 

The algorithm identifiers we used for post-quantum negotiations in TLS were the ones defined in OQS 682 
OpenSSL4. At the time of this testing, draft-ietf-tls-hybrid-design [13] did not have any assigned 683 
identifiers, and most collaborator implementations did not support the temporary identifiers defined in 684 
draft-kwiatkowski-tls-ecdhe-kyber [14] and draft-tls-westerbaan-xyber768d00 [15], so we chose to only 685 
work with the OQS OpenSSL ones. 686 

6.2 Interoperability Testing 687 

We tested two algorithmic profiles for TLS: the first one only uses the key exchange part of the protocol 688 
(PQC and hybrid), while the other follows the CNSA Suite 2.0. Following the efforts of the X.509 689 
workstream, we might perform more tests to include PQC and hybrid authentication. 690 

The tests were run in Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-72-generic x86_64) with an Intel Xeon Gold 691 
6126 CPU @ 2.60 GHz (2 Core), 32 GB for RAM virtual instances in the NCCoE lab. 692 

 

1 See, e.g., Prototyping post-quantum and hybrid key exchange and authentication in TLS and SSH (iacr.org). 
2 See, e.g., Google and Cloudflare’s public experiment: TLS Post-Quantum Experiment (cloudflare.com). 
3 An attacker would need access to a quantum computer to mount an attack against the authentication portion of 
the TLS handshake. 
4 https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md#code-points--algorithm-ids  

https://github.com/open-quantum-safe/oqs-provider
https://github.com/wolfSSL/wolfssl
https://github.com/aws/s2n-tls
https://www.samsungsds.com/en/etc/contact/contactus-page.html
https://github.com/open-quantum-safe/oqs-demos/tree/main/nginx
https://eprint.iacr.org/2019/858
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md#code-points--algorithm-ids
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6.2.1 PQC Hybrid Key Exchange Test Profile 693 

Kyber, the first KEM picked for standardization by NIST, was used in profiles either by itself or in 694 
combination with the NIST elliptic prime curve of corresponding strength. The tested key exchange 695 
algorithm combinations were: 696 

 Kyber-512, Kyber-768, Kyber-1024 697 

 P256+Kyber-512, P384+Kyber-768, P521+Kyber-1024 698 

For each test profile, and for each supported algorithm by both the client and the server, we tested 699 
successful TLS 1.3 connection. Table 3 contains the results of interoperability testing. Key exchange 700 
methods not supported by a component at the time of the testing are depicted as “N/A”. Table 3 shows 701 
that all supported algorithm implementations interoperated between the components. 702 

Table 3 Profile 1 interoperability test results for PQC key exchange in TLS 1.3 with NCCoE collaborator 703 
components 704 

Profile 1 Client 
Server: 
OQS-

OpenSSL 

Server: 
wolfSSL 

Server: 
AWS 

s2n-tls 

Server: 
OQS 

NGINX 

Server: 
Samsung 

SDS 
PQC-TLS 

Kyber-512 

OQS-OpenSSL Success Success N/A Success Success 
wolfSSL Success Success N/A Success Success 
AWS s2n-tls N/A  N/A N/A N/A N/A 
Samsung SDS 
PQC-TLS 

Success Success N/A Success Success 

Kyber-768 

OQS-OpenSSL Success Success N/A Success Success 
wolfSSL Success Success N/A Success Success 
AWS s2n-tls N/A N/A N/A N/A N/A 
Samsung SDS 
PQC-TLS 

Success Success N/A Success Success 

Kyber-1024 

OQS-OpenSSL Success Success N/A Success Success 
wolfSSL Success Success N/A Success Success 
AWS s2n-tls N/A N/A N/A N/A N/A 
Samsung SDS 
PQC-TLS 

Success Success N/A Success Success 

P256+Kyber-512 

OQS-OpenSSL Success Success Success Success Success 
wolfSSL Success Success Pending  Success Success 
AWS s2n-tls   Success Success Success Success 
Samsung SDS 
PQC-TLS 

Success Success Success Success Success 

P384+Kyber-768 
OQS-OpenSSL Success Success N/A Success Success 
wolfSSL Success Success N/A Success Success 
AWS s2n-tls N/A N/A  N/A N/A N/A 
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Profile 1 Client 
Server: 
OQS-

OpenSSL 

Server: 
wolfSSL 

Server: 
AWS 

s2n-tls 

Server: 
OQS 

NGINX 

Server: 
Samsung 

SDS 
PQC-TLS 

Samsung SDS 
PQC-TLS 

Success Success N/A Success Success 

P521+Kyber-1024 

OQS-OpenSSL Success Success N/A Success Success 
wolfSSL Success Success N/A Success Success 
AWS s2n-tls N/A N/A N/A N/A N/A 
Samsung SDS 
PQC-TLS 

Success Success N/A Success Success 

6.2.2 PQC Hybrid Key Exchange and Authentication Test Profile 705 

Profile 2 used Kyber-1024 and Dilithium at level 5, notably excluding hybrids and complying with CNSA 706 
Suite 2.0 in the long-term.  707 

We tested successful TLS 1.3 connection for both the client and the server. Table 4 contains the results 708 
of interoperability testing. Methods not supported by a component at the time of the testing are 709 
depicted as “N/A”. Table 4 shows that all supported algorithm implementations interoperated between 710 
the components. 711 

Table 4 Profile 2 interoperability test results for PQC key exchange and authentication in TLS 1.3 with 712 
NCCoE collaborator components 713 

Profile 2 Client 
Server: 
OQS-

OpenSSL 

Server: 
wolfSSL 

Server: 
AWS 

s2n-tls 

Server: 
OQS 

NGINX 

Server: 
Samsung 
SDS PQC-

TLS 

Kyber-1024 / 
Dilithium5 

OQS-OpenSSL Success  Success N/A Success N/A 
wolfSSL Success Success N/A Success N/A 
AWS s2n-tls N/A  N/A N/A N/A N/A 
Samsung SDS PQC-TLS N/A N/A N/A N/A N/A 

6.3 Performance Testing 714 

Our performance testing results are discussed below. Note that the goal of this testing is not to compare 715 
performance between implementations. We want to compare the impact of the different algorithmic 716 
choices within one implementation at a time and observe if the impact of the new algorithms is similar 717 
between implementations. 718 

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
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6.3.1 OQS-OpenSSL 719 

We tested performance with OQS OpenSSL for Profiles 1 and 2. The tests were performed using the OQS 720 
benchmarking server5 on the loopback interface, running on an m5n.large AWS instance (Intel Xeon 721 
Platinum 8259CL CPU @ 2.50 GHz with 2 CPU and 8 GB of memory). We measured the maximum TLS 1.3 722 
handshake rate, which is shown in Table 5 for Profile 1 and Table 6 for Profile 2. 723 

Table 5 Profile 1 performance test results for PQC key exchange and authentication in TLS 1.3 with 724 
NCCoE collaborator components 725 

Security Level Algorithm (Key Exchange / Auth) handshake / s 

1 

Elliptic Curve Diffie-Hellman Exchange (ECDHE) P-256 / 
Elliptic Curve Digital Signature Algorithm (ECDSA) P-256 

1236.67 

Kyber-512 / ECDSA P-256 1591.13 
P256-Kyber-512 / ECDSA P-256 531.67 

3 
ECDHE P-384 / ECDSA P-384 223.47 
Kyber-768 / ECDSA P-384 681.19 
P384-Kyber-768 / ECDSA P-384 184.44 

5 
ECDHE P-521 / ECDSA P-521 192.19 
Kyber-1024 / ECDSA P-521 667.65 
P521-Kyber-1024 / ECDSA P-521 109.78 

 

Table 6 Profile 2 performance test results for PQC key exchange and authentication in TLS 1.3 with 726 
NCCoE collaborator components 727 

Security Level Algorithm (Key Exchange / Auth) handshake / s 

5 
ECDHE P-521 / ECDSA P-521 192.19 
Kyber-1024 / Dilithium-5 1293.23 

 

These tables can be interpreted as measuring the load on a TLS server. The results show that PQC hybrid 728 
can have a significant impact on the maximum connection throughput of a heavily loaded server. We 729 
can see that Kyber’s performance is high at all security levels. When compared with ECDH with P384 and 730 
P521, Kyber-768 and Kyber-1024 render much higher performance. When compared with highly 731 
optimized P256, Kyber-512 is slightly less efficient, but of similar performance. In combined PQC hybrid 732 
key exchanges, Kyber-512 and ECDH P256 used together have half the handshake throughput, as both 733 
algorithms of similar performance are used. When used with non-optimized P384 and P521, Kyber-768 734 
and Kyber-1024 have little impact on the slowdown, as the NIST curves were the bottleneck for these 735 
connections.  736 

 

5 Handshake performance (openquantumsafe.org) 

https://openquantumsafe.org/benchmarking/visualization/handshakes.html
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6.3.2 Samsung SDS PQC-TLS (s-pqc-tls) 737 

The same tests for Profile 1 were conducted with s-pqc-tls on an Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-738 
72-generic x86_64) with an Intel Xeon Gold 6126 CPU @ 2.60 GHz (2 Core) and 32 GB RAM. The 739 
connections were taking place over the loopback interface using the widely adopted JSSE in an 740 
enterprise IT environment to assess the impact of PQC on performance.  741 

Table 7 Performance test results for PQC key exchange and authentication in TLS 1.3 using Samsung 742 
SDS PQC-TLS (s-pqc-tls) 743 

Security Level Algorithm (Key Exchange / Auth) handshake / s 

1 

ECDHE P-256 / ECDSA P-256 333.62 
Kyber-512 / ECDSA P-256 419.18 
P256-Kyber-512 / ECDSA P-256 301.70 
X25519-Kyber-512 / ECDSA P-256 367.86 

3 

ECDHE P-384 / ECDSA P-384 187.08 
Kyber-768 / ECDSA P-384 259.84 
P384-Kyber-768 / ECDSA P-384 169.08 
X25519-Kyber-768 / ECDSA P-384 242.59 

5 
ECDHE P-521 / ECDSA P-521  105.35 
Kyber-1024 / ECDSA P-521 157.19 
P521-Kyber-1024 / ECDSA P-521  99.58 

 

As indicated in Table 8, we observe similar behavior as with OQS OpenSSL. Kyber is efficient and 744 
performs faster than ECDH, especially for the higher security curves P384 and P521. Combining ECDH 745 
with Kyber decreases throughput but not detrimentally. We also see that combining X25519 with Kyber 746 
is slightly more efficient than ECDH with Kyber. It is important to emphasize that these results are 747 
specific to the test environment, and actual performance may vary depending on the operational 748 
environment. 749 

6.3.3 AWS s2n-tls 750 

We tested PQC hybrid key exchange with P256 and Kyber-512, and compared it with X25519 key 751 
exchange in TLS 1.3 with s2n-tls. The tests were run on an Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-72-752 
generic x86_64) with an Intel Xeon Gold 6126 CPU @ 2.60 GHz (2 Core), 32 GB for RAM in the NCCoE lab 753 
to test.openquantumsafe.org. The round-trip between client and server was 96 ms. Figure 1 shows the 754 
mean handshake time and standard deviation for 1000 sequential connections. The server certificate 755 
was ECDSA P256 public key signed by an RSA-2048 CA. 756 
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Figure 1 TLS 1.3 PQC hybrid key exchange performance between NCCoE lab s2n-tls clients and OQS 757 
server test.openquantumsafe.org 758 

We can see that PQC hybrid TLS handshakes with Kyber-512 and ECDH P256 are a few milliseconds 759 
slower than classical ECDH P256 ones. The slowdown due to Kyber is within one standard deviation of 760 
the classical key exchange. Kyber-512 is an efficient algorithm and although it slows down these 761 
handshakes, the absolute additional time is insignificant for a typical Internet connection. For highly 762 
optimized and regional connections, a few milliseconds may be more significant, but for average web or 763 
machine-to-machine communications over the internet, the PQC connections will perform satisfactorily. 764 
If we consider P384 or P512, which are not optimized like P256, Kyber-768 or Kyber-1024 will have even 765 
less impact. 766 

We then tested higher security levels of Kyber in PQC hybrid key exchange in TLS 1.3 with s2n-tls. We 767 
compared it with classical key exchange with P256 and P384. The tests were between a client and server 768 
with a simulated delay between them to achieve 133ms round-trip time. The server certificate was an 769 
ECDSA P256 public key signed by an RSA-2048 CA. Figure 2 shows the mean handshake time and 770 
standard deviation for 1000 sequential connections. The standard deviation was negligible because this 771 
was a simulated environment between locally connected client and server. The measurements include 772 
an extra round trip compared to Figure 1 because we chose to include the TCP handshake time to 773 
represent the actual connection experience. 774 

100.521 106.4125

0.0

20.0

40.0

60.0

80.0

100.0

120.0
TL

S 
1.

3 
Ha

nd
sh

ak
e 

Ti
m

e 
(m

s)

Key Exchange 

X25519

P256+Kyber768

96ms RTT



PRELIMINARY DRAFT  

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 25 

 

Figure 2 TLS 1.3 PQC hybrid key exchange performance between locally connected s2n-tls client and 775 
server using simulated round-trip delay 776 

The results show there is essentially minimal impact on the handshake time. The PQC hybrid exchange 777 
even with Kyber-1024 is just a few milliseconds slower than very efficient P256. Such performance 778 
differences will not have a noticeable impact on user experience. Lossy conditions could be affected 779 
more as Kyber-1024 or Kyber-768 will include more TCP segments, which means higher total loss 780 
probability per packet.  781 

To prove this point, we extended the simulation to include a 3% loss probability between the client and 782 
the server. The results are in Figure 3.  783 
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Figure 3 TLS 1.3 PQC hybrid key exchange performance between locally connected s2n-tls client and 784 
server using simulated round-trip delay and 3% loss probability 785 

We can see that 3% loss probability leads to almost an extra round-trip’s delay. We can also observe 786 
that Kyber-768 and 1024’s bigger key and ciphertext sizes lead to more losses and higher mean 787 
handshake time due to higher loss probability (5.9% instead of 3%). Overall, all these connections are 788 
significantly affected by the higher loss probability. The post-quantum handshakes do not seem to be 789 
more materially impacted than the classical ones. 20 ms in a handshake that takes 400 ms will not likely 790 
be noticed. It is also worth noting that variance for these times was as much as the handshake itself. 791 
Higher network losses will completely “randomize” handshake performance. Although limited, the 792 
results also show that a 3% packet loss leads to another RTT slowdown in the handshake on average.  793 

In summary, performance testing showed that Kyber is very efficient and when used by itself can slightly 794 
speed up handshakes compared to using ECDH. When combining Kyber with ECDH, there is a slight 795 
slowdown which will be unnoticeable for most connections. Given that Kyber-768 or Kyber-1024 could 796 
be carried over two TCP packets, Kyber could have more impact on lossy connections. These results 797 
generally are in line with other performance studies [11][16][17][18] conducted by academia and 798 
industry for Kyber and other, less efficient PQC KEMs.  799 

6.4 Lessons Learned 800 

While collaborators were performing interoperability testing, they had to work through some issues 801 
with their implementation components. Below we summarize the lessons learned:  802 

 Compliance with older versions of a draft standard specification could cause interoperability is-803 
sues. As RFC drafts evolve over time, tracking changes to implement them in code takes effort 804 
and paying attention to incremental differences in the diffs. This was observed with an issue be-805 
tween s2n-tls and OQS OpenSSL. s2n-tls key shares were compliant with an older version of the 806 
draft, but OQS OpenSSL had switched to a more recent version which ended up failing the hand-807 
shake. 808 

 Using final names or identifiers in implementations is prone to interoperability issues for early 809 
implementations that do not all get updated at the same time. Someone supporting TLS 1.3 810 
group 0x2f3a for P256+Kyber-512 in the -00 version of the draft RFC may not interoperate with 811 
someone that implements the -05 version. A solution is to use a new temporary group identifier 812 
specific to the time or the version of the algorithm, every time there is a backwards compatibil-813 
ity breaking change. Examples include X25519Kyber768Draft00 and SecP256r1Ky-814 
ber768Draft00 assigned for temporary use by draft specifications draft-tls-westerbaan-815 
xyber768d00 [15] and draft-kwiatkowski-tls-ecdhe-kyber [14] until we have the final standards. 816 
The shortcoming of this approach is that you may have multiple old codepoints in use which will 817 
end up getting deprecated and phased out.  818 

 Supported group order and key_shares in the ClientHello could lead to unexpected/non-intu-819 
itive key exchanges. For example, a client sending a key_share for only X25519+Kyber-512 and 820 
advertising support for X25519+Kyber-512, P256+Kyber-512, X25519, and P256 could negotiate 821 
plain X25519 with the server because the server does not support X25519+Kyber-512. This was 822 
not a violation of the TLS 1.3 standard, but we were expecting that the client would negotiate 823 
P256+Kyber-512 after seeing a Hello Retry Request with P256+Kyber-512. 824 
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7 QUIC 825 

7.1 Interoperability and Performance Discussion 826 

QUIC is a widely used protocol for the web, video, and streaming. Because QUIC uses TLS 1.3 to establish 827 
its shared keys, testing QUIC heavily depended on PQC TLS 1.3. Our PQC QUIC testing prioritized 828 
protecting against harvest-now-decrypt-later attacks, so we wanted to test a set of PQC key exchange 829 
methods to identify gaps and issues. Protecting QUIC authentication is considered less urgent since 830 
attacks require an active quantum computer during session establishment. We generated testing 831 
profiles for PQC key exchange and authentication, which has not been implemented by all vendors and 832 
thus received limited interoperability testing. On the other hand, PQC authentication would have more 833 
significant impact on QUIC’s performance, so we focused more on authentication for our performance 834 
testing. 835 

The collaborator component used for testing QUIC was: 836 

 AWS s2n-quic implementation (built with s2n-tls and AWS-LC)837 

The algorithm identifiers for post-quantum negotiations in TLS 1.3 (used in QUIC) were the ones defined 838 
in OQS OpenSSL6. At the time of this testing, draft-ietf-tls-hybrid-design [13] did not have any assigned 839 
identifiers, and collaborator implementations did not support the temporary identifiers defined in draft-840 
kwiatkowski-tls-ecdhe-kyber [14] and draft-tls-westerbaan-xyber768d00 [15], so we chose to only work 841 
with the OQS OpenSSL ones. 842 

7.2 Interoperability Testing 843 

7.2.1 PQC Hybrid Key Exchange Test Profile 844 

QUIC establishes its encrypted tunnels over UDP with AES-GCM or Chacha20/Poly1305 as the 845 
authenticated encryption algorithm. It uses keys negotiated in TLS 1.3 sent over QUIC frames. Thus, we 846 
had to use a quantum-safe version of TLS 1.3 to ensure the encryption in QUIC is quantum-safe. As there 847 
is no ratified post-quantum TLS 1.3 RFC, we decided to code to the draft IETF draft-ietf-tls-hybrid-design-848 
05 [13] specification for hybrid TLS key exchange in QUIC as we did with our TLS testing. 849 

The QUIC Profile included the following algorithm parameters: 850 

 Kyber-512, Kyber-768, Kyber-1024851 

 P256+Kyber-512, x25519+Kyber-512, P384+Kyber-768, P521+Kyber-1024852 

At the time of the initial testing, there was only one PQC implementation of the protocol, s2n-quic. Thus, 853 
we were not able to complete any interoperability testing. oqs-demos/quic may be tested with s2n-quic 854 
in the future as a QUIC integration with OQS. 855 

6 https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md#code-points--algorithm-ids 

https://github.com/aws/s2n-quic
https://github.com/aws/s2n-tls
https://github.com/aws/aws-lc
https://github.com/aws/s2n-quic
https://github.com/open-quantum-safe/oqs-demos/tree/main/quic
https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md#code-points--algorithm-ids
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7.2.2 PQC Hybrid Key Exchange and Authentication Test Profiles 856 

In terms of PQC authentication, we decided to generate one more testing profile which supports both 857 
PQC hybrid key exchange and authentication combinations. The QUIC Profile 2 included: 858 

 ECDHE-Kyber hybrid (L1: P256-512, L3: P384-768, L5: P521-1024). 859 

 Auth: Dilithium-2, Dilithium-3, Dilithium-4 860 

We were not able to complete any interoperability testing for this profile at the time of the initial testing 861 
because only one collaborator component, s2n-quic, supported PQC QUIC. oqs-demos/quic may be 862 
tested with s2n-quic in the future as a QUIC integration with OQS.   863 

7.3 Performance Testing 864 

Post-quantum key exchange has been extensively tested in TLS 1.3 connections with Kyber. The impact 865 
of 0.8-1.2 KB with Kyber-512 or Kyber-768 key shares will be insignificant for regular TLS or QUIC 866 
connections. Thus, we wanted to evaluate the impact of post-quantum authentication in QUIC 867 
performance. Post-quantum authentication adds more complexity to QUIC connections, as it interferes 868 
with QUIC Amplification Protection and Congestion Control mechanisms. As this had not been evaluated 869 
before, to the best of our knowledge, we chose to use s2n-quic’s netbench benchmarking tool. Our 870 
measurements evaluated the following QUIC key exchange and authentication options: 871 

 client-server with X25519+Kyber-512 and 2048-bit RSA certificates with one intermediate CA 872 

 client-server with X25519+Kyber-512 and 18 KB PEM encoded cert chain (Dilithium-2 WebPKI 873 
equivalent with one intermediate CA) 874 

 client-server with X25519+Kyber-512 and 10 KB PEM encoded cert chain (Dilithium-2 WebPKI 875 
equivalent omitting the intermediate CA) 876 

 client-server with X25519+Kyber-512 and 22 KB PEM encoded cert chain (Dilithium-3 WebPKI 877 
equivalent with one intermediate CA) 878 

Note that due to lack of support of Dilithium in s2n-tls/s2n-quic at the time of the testing, the big 879 
certificate chains were using specially crafted, bloated RSA certificates of similar size to Dilithium-2, 3 880 
WebPKI certificates (with 2 Signed Certificate Timestamps [SCTs]). Given the performance of Dilithium, 881 
this emulation is expected to be very close to using Dilithium certificates themselves. 882 

The parameters tweaked while testing included: 883 

 QUIC’s initial congestion window (initcwnd), which can introduce a round-trip if the Dilithium 884 
authentication data from the server exceeds ~14 KB 885 

 QUIC’s amplification window, which can introduce a round-trip if the Dilithium authentication 886 
data from the server exceeds ~3.6 KB 887 

 QUIC’s initial round-trip estimate (kInitialRtt), which could cause connection slowdowns due 888 
to packet pacing (Section 7.7 of RFC 9002 [19]). This parameter was not part of the initial test-889 
ing, but we observed pacing was affecting these connections and decided to study it more. 890 

Our experiments measured the QUIC handshake time for the connect netbench scenario, which 891 
creates 1000 connections with 1-byte bidirectional streams before it closes each connection down. The 892 

https://github.com/aws/s2n-quic
https://github.com/open-quantum-safe/oqs-demos/tree/main/quic
https://github.com/aws/s2n-quic
https://www.rfc-editor.org/rfc/rfc9002.html#name-pacing
https://github.com/aws/s2n-quic/blob/main/netbench/netbench-scenarios/src/connect.rs
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client and server were run in Amazon Linux 2 running on Intel Xeon Platinum 8175M CPU @ 2.50 GHz 893 
with 32 GB RAM. s2n’s benchmark utility, netbench, plotted the results for the scenario. Figure 4 894 
shows the handshake time for:  895 

 a classical handshake with RSA-2048 certificate chains with one intermediate CA; 896 

 a handshake with ~10 KB authentication data which corresponds to a Dilithium-2 leaf WebPKI 897 
certificate (assuming the ICA was omitted to trim down the data as per draft-kampanakis-tls-898 
scas-latest-03 [20] or draft-jackson-tls-cert-abridge-00 [21]; 899 

 a handshake with an 18 KB Dilithium-2 leaf WebPKI certificate chain with one intermediate CA; 900 
and 901 

 a handshake with a 22 KB Dilithium-3 leaf WebPKI certificate chain with one intermediate CA. 902 

The client-server round-trip for the experiments was about 60 ms. 903 

 

Figure 4 QUIC handshake time with classical and Dilithium-2, 3 WebPKI with QUIC’s default congestion 904 
control (~14 KB), default initial round-trip kInitialRtt (333 ms), and amplification protection (3x) 905 

We can see that the classical handshake completes in just one round trip (typical TLS 1.3 1-RTT). The 10 906 
KB cert introduces one extra round trip due to QUIC’s amplification window (~3.6 KB). Amplification 907 
protection also introduces a round trip for the 18 KB chain. Congestion control does not add a second 908 
round-trip in this case because the initial congestion window has not filled up after the client 909 
acknowledges the first 3.6 KB. The 22 KB chain ends up including two round trips, one from amplification 910 
protection and one from congestion control.  911 

We then wanted to evaluate how tweaking QUIC network parameters could speed up these handshakes 912 
by eliminating the round trips. Figure 5 shows the times for PQC QUIC handshakes with a Dilithium-3 913 
WebPKI certificate chain with one intermediate CA. We measured the handshake time with the 914 
following combinations of amplification window (depicted as Amp), initial congestion window initcwnd 915 
(depicted as icwnd), and the initial QUIC RTT kInitialRtt (depicted as irtt). 916 

 Amp=3.6 KB, icwnd=14 KB, irtt=333 917 
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 Amp=20 KB, icwnd=14 KB, irtt=333 918 

 Amp=3.6 KB, icwnd=25 KB, irtt=333 919 

 Amp=20 KB, icwnd=25 KB, irtt=333 920 

 Amp=20 KB, icwnd=25 KB, irtt=50 921 

The default corresponding values are 3x the client request size (~3.6 KB), 10x the maximum datagram 922 
size (~14 KB) as per Section 7.2 of RFC 9002 [19], and 333 ms as per Section 6.2.2 of RFC 9002 [19]. 923 

 

Figure 5 PQC QUIC handshake time with PQC hybrid key exchange and Dilithium-3 WebPKI equivalent 924 
signatures with various QUIC amplification window, initcwnd and kInitialRtt 925 

We can see that the amplification window adds a round-trip, and increasing it eliminates the extra 926 
round-trip. The same goes for the initial congestion window. We notice that when increasing both Amp 927 
and icwnd, we still see an extra 65 ms slowdown. This is due to irtt and QUIC’s packet pacing. Packet 928 
pacing is built to prevent packet bursts which could trigger short-term packet loss. While the server does 929 
not know the RTT from the client, it uses the initial default value of 333 ms and calculates the time 930 
needed to pause after sending 10 packets. The pausing time ends up amounting to 65-70 ms. The effects 931 
of packet pacing are not experienced when we have an extra round trip due to amplification protection 932 
or congestion control because the server has a more accurate estimate of the RTT after it observes the 933 
round trip, and packet pacing has little impact on the handshake. When dropping irtt to a more realistic 934 
value (50 ms), packet pacing pauses much less and thus the handshake completes in almost one round-935 
trip as expected.  936 

It is clear that QUIC’s network parameters affect the impact that PQC authentication will have on these 937 
handshakes. To prevent the extra round trips, we would need to significantly increase the amplification 938 
window, which increases amplification attack risks. We would also need to increase the initial 939 
congestion window, which could affect network congestion. We would need to increase the initial RTT 940 
to a more realistic value instead of the default assumed 333 ms, so that packet pacing does not affect 941 
the handshake by 65 ms or more. Other mechanisms to alleviate these handshakes include trimming the 942 
authentication data sent or using validation tokens. These changes, although possible, should not be 943 

https://www.rfc-editor.org/rfc/rfc9002.html#name-initial-and-minimum-congest
https://www.rfc-editor.org/rfc/rfc9002.html#pto-handshake
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taken lightly, as they have tradeoffs. Some of these options are also discussed in Section 2 of a recent 944 
vision paper [22].  945 

At the time of the initial testing, we focused on experimenting with PQC certificate sizes and QUIC 946 
network parameters. Future testing could include varying the network hops and loss probabilities 947 
between client and server to investigate performance in different network conditions. We may also look 948 
into the time-to-last-byte per QUIC connection instead of time-to-first-byte (handshake time) to more 949 
accurately evaluate the impact PQC certs would have on user experience.  950 

7.4 Lessons Learned 951 

While experimenting with QUIC performance, we identified issues we had not anticipated. Below we 952 
summarize the lessons learned: 953 

 Although we expected the extra round trips due to QUIC amplification protection and conges-954 
tion control, we did not anticipate that the initial RTT would add 65 ms to the handshake after 955 
eliminating the other round trips. We learned that experimentation can sometimes reveal issues 956 
which theoretical intuition does not. Hands-on experiments should be used before evaluating 957 
technical solutions. 958 

 While testing QUIC connections with s2n-quic’s netbench, we noticed that when the data trans-959 
ferred was much larger than the authentication data in the handshake, the impact of PQC de-960 
creased. We did not collect the results of these experiments because netbench did not fully sup-961 
port them, but we noticed this while capturing data. So far, like we also did in the experiments 962 
above, researchers have been measuring the handshake time for a PQC connection and compar-963 
ing it to classical connections. We have been showing that in the worst of these connections, 964 
PQC affects the handshake more, which could be inaccurate. The tail-ends of these measure-965 
ments may be overestimating the impact. For example, mobile clients perform ~12 connections 966 
per page to fetch ~2 MB of total data on average. That means that each TCP connection carries 967 
~160 KB of data. A bad connection, which suffers from 20 KB extra PQC authentication data, is 968 
likely to be suffering already carrying all 160 KB per connection. We may just not be measuring it 969 
because we have been focusing on the time-to-first-byte. Our research efforts, when evaluating 970 
PQC impact on transport protocols, should focus on the time-to-last-byte or the time-to-mid-971 
byte, which will be more indicative of what a user would notice.  972 

8 X.509 973 

8.1 Interoperability and Performance Discussion 974 

8.1.1 Introduction 975 

X.509 certificates will be important artifacts in the migration process towards PQC, as they are the main 976 
way to transport and communicate public keys between endpoints. X.509 certificates can be used to 977 
carry signature or encryption keys and are therefore used in protocols such as TLS/SSL, QUIC, S/MIME, 978 
and IPsec. 979 

Many formats have been proposed to adapt the current X.509 certificate structure to PQC. Some of 980 
them are pure PQC artifacts transporting only a PQC public key and signed by a PQC signature algorithm, 981 

https://httparchive.org/reports/state-of-the-web#bytesTotal
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while others are hybrid artifacts including both traditional and PQC public keys and signed by both 982 
traditional and PQC signature algorithms. 983 

The different X.509 certificate formats that have been tested are clarified in Section 8.1.2. 984 

8.1.2 X.509 Certificate Formats 985 

8.1.2.1 PURE PQC 986 

This X.509 certificate is a pure PQC certificate, meaning that it only contains the PQC material (PQC key 987 
and PQC signature). It uses the legacy X.509 structure and replaces with traditional objects with 988 
quantum-safe objects ones: 989 

 For the algorithm identifier, new OIDs for post-quantum algorithms and parameter sets are 990 
used. 991 

 Keys and signatures follow the usual ASN.1 syntax, except the byte string corresponds to a post-992 
quantum object. 993 

The details of this format can be found in the following documents: 994 

 RFC 5280 [23] 995 

 draft-ietf-lamps-dilithium-certificates [24] 996 

 draft-ietf-lamps-kyber-certificates [25] 997 

8.1.2.2 HYBRID CONCATENATED 998 

This X.509 certificate is a hybrid certificate. It basically concatenates the classic and post-quantum 999 
objects without changing the structure of the ASN.1 tree: 1000 

 For the algorithm identifier, a specific OID for the selected combination of traditional + post-1001 
quantum algorithm is used. 1002 

 Keys and signatures follow the usual ASN.1 syntax, except the byte string corresponds to the 1003 
concatenation of a traditional and a post-quantum object. 1004 

There is no specification available so far. 1005 

8.1.2.3 HYBRID BOUND 1006 

This X.509 certificate is a hybrid certificate. It uses two certificates, one traditional and one post-1007 
quantum. The traditional certificate is built as usual, and the post-quantum certificate is built according 1008 
to the PURE PQC model (see Section 8.1.2.1). In addition, the post-quantum certificate contains an 1009 
extension that links itself to the traditional certificate. The traditional certificate may contain a similar 1010 
extension linking to the post-quantum certificate, so that each certificate has an authenticated pointer 1011 
to the other. 1012 

The details of this format can be found in the following: 1013 

 draft-becker-guthrie-cert-binding-for-multi-auth [26] 1014 

https://www.rfc-editor.org/rfc/rfc5280
https://datatracker.ietf.org/doc/draft-ietf-lamps-dilithium-certificates/
https://datatracker.ietf.org/doc/draft-ietf-lamps-kyber-certificates/
https://datatracker.ietf.org/doc/draft-becker-guthrie-cert-binding-for-multi-auth/
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8.1.2.4 HYBRID COMPOSITE 1015 

This X.509 certificate is a hybrid certificate. This version is a refinement of the previous HYBRID 1016 
CONCATENATED format (see Section 8.1.2.2) that uses ASN.1 encoding to separate the traditional and 1017 
post-quantum objects. 1018 

 The algorithm identifier is a special OID for “composite”. 1019 

 Keys and signatures are “composite” objects: a composite public key is an ASN.1 sequence of 1020 
public key fields, each with its own algorithm identifier and contents (and similarly for the signa-1021 
ture). 1022 

The details of this format can be found in the following documents: 1023 

 draft-ounsworth-pq-composite-sigs [27] 1024 

 draft-ietf-lamps-pq-composite-kem [28] 1025 

8.1.2.5 HYBRID USING EXTENSIONS (Catalyst) 1026 

This X.509 certificate is a hybrid certificate. This format stores the post-quantum objects in X.509 1027 
extensions. Except for these extensions, the certificate looks exactly like a traditional X.509 certificate, 1028 
so an unmodified tool should be able to parse and verify it, assuming it treats unknown non-critical 1029 
extensions as opaque data. In principle, this format is therefore retro-compatible. 1030 

The details of this format can be found in the following documents: 1031 

 draft-truskovsky-lamps-pq-hybrid-x509 [29] 1032 

 ITU-T X.509 (10/2019) [30] 1033 

8.1.2.6 HYBRID DELTA EXTENSIONS (Chameleon) 1034 

This X.509 certificate is a hybrid certificate. This format encodes the differences between two 1035 
certificates in a single extension. One certificate is the “base” or outer certificate, and the second one is 1036 
the “delta” or inner certificate. Only the differences between the base and delta certificate are 1037 
contained in the extension. Except for the extension, the certificate looks exactly like a traditional X.509 1038 
certificate, so an unmodified tool should be able to parse and verify it, assuming it treats unknown non-1039 
critical extensions as opaque data. In principle, this format is therefore retro-compatible. A delta 1040 
certificate can be reconstructed by the base certificate into a fully verifiable secondary certificate. 1041 

The details of this format can be found in the following: 1042 

 draft-bonnell-lamps-chameleon-certs [31] 1043 

8.2 Interoperability Testing 1044 

8.2.1 Testing Procedure 1045 

An interoperability test aims at verifying that: 1046 

 all the public keys contained in the X.509 certificate can be extracted and used by another ven-1047 
dor application; and 1048 

https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/
https://datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-kem
https://datatracker.ietf.org/doc/draft-truskovsky-lamps-pq-hybrid-x509/
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=14033&lang=en
https://datatracker.ietf.org/doc/draft-bonnell-lamps-chameleon-certs/
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 all the signatures contained in the X.509 certificate can be verified by another vendor applica-1049 
tion. 1050 

The most basic interoperability testing between applications A and B consists of the following steps: 1051 

In case of a SIG algorithm: 1052 

1. Application A generates a Root CA certificate (self-signed). 1053 

2. Application B verifies the Root CA certificate. 1054 

This test checks both the PQC public key usability and the PQC signature correctness. 1055 

In case of a KEM algorithm: 1056 

1. Application A generates an end-entity certificate holding a KEM key. This certificate is signed by 1057 
the private key of the Root CA certificate generated in the signature algorithm test case. 1058 

2. Application B verifies the end-entity certificate holding the KEM key. 1059 

See https://github.com/IETF-Hackathon/pqc-certificates/tree/master#zip-format-r3. 1060 

8.2.2 Test Profiles 1061 

8.2.2.1 PURE_PQ_SIG 1062 

The PURE_PQ_SIG test profile tests a PURE PQ X.509 certificate transporting a PQC signature key. This 1063 
test profile includes the algorithm configurations listed in Table 8: 1064 

Table 8 Algorithm configurations included in the PURE_PQ_SIG test profile 1065 

X.509 Public Key Algorithm X.509 Signature Algorithm 
Dilithium-2 (ML-DSA-44-ipd) Dilithium-2 (ML-DSA-44-ipd) 
Dilithium-3 (ML-DSA-65-ipd) Dilithium-3 (ML-DSA-65-ipd) 
Dilithium-5 (ML-DSA-87-ipd) Dilithium-5 (ML-DSA-87-ipd) 
Falcon-512 Falcon-512 
Falcon-1024 Falcon-1024 
SPHINCS+-SHAKE-128f (SLH-DSA-SHAKE-128f-ipd) SPHINCS+-SHAKE-128f (SLH-DSA-SHAKE-128f-ipd) 
SPHINCS+-SHAKE-192f (SLH-DSA-SHAKE-192f-ipd) SPHINCS+-SHAKE-192f (SLH-DSA-SHAKE-192f-ipd) 
SPHINCS+-SHAKE-256f (SLH-DSA-SHAKE-256f-ipd) SPHINCS+-SHAKE-256f (SLH-DSA-SHAKE-256f-ipd) 
SPHINCS+-SHA2-128f (SLH-DSA-SHA2-128f-ipd) SPHINCS+-SHA2-128f (SLH-DSA-SHA2-128f-ipd) 
SPHINCS+-SHA2-192f (SLH-DSA-SHA2-192f-ipd) SPHINCS+-SHA2-192f (SLH-DSA-SHA2-192f-ipd) 
SPHINCS+-SHA2-256f (SLH-DSA-SHA2-256f-ipd) SPHINCS+-SHA2-256f (SLH-DSA-SHA2-256f-ipd) 

8.2.2.2 PURE_PQ_KEM 1066 

The PURE_PQ_KEM test profile tests a PURE PQ X.509 certificate transporting a PQC KEM key. This test 1067 
profile includes the algorithm configurations listed in Table 9: 1068 

https://github.com/IETF-Hackathon/pqc-certificates/tree/master#zip-format-r3
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Table 9 Algorithm configurations included in the PURE_PQ_KEM test profile 1069 

X.509 Public Key Algorithm X.509 Signature Algorithm 
Kyber-512 Dilithium-2 (ML-DSA-44-ipd) 
Kyber-768 Dilithium-3 (ML-DSA-65-ipd) 
Kyber-1024 Dilithium-5 (ML-DSA-87-ipd) 

8.2.2.3 HYBRID_CONCATENATED 1070 

The HYBRID_CONCATENATED test profile tests a HYBRID CONCATENATED X.509 certificate transporting 1071 
a PQC SIG key. This test profile includes the algorithm configurations listed in Table 10: 1072 

Table 10 Algorithm configurations included in the HYBRID_CONCATENATED test profile 1073 

X.509 Public Key Algorithm X.509 Signature Algorithm 
RSA (3072)+Dilithium-2 RSA_PKCSv1.5_SHA256 (3072)+Dilithium-2 
ECDSA (P-256)+Dilithium-2 ECDSA_SHA256 (P-256)+Dilithium-2 
ECDSA (P-521)+Dilithium-5 ECDSA_SHA512 (P-521)+Dilithium-5 

8.2.2.4 HYBRID_BOUND 1074 

The HYBRID_BOUND test profile tests a HYBRID BOUND X.509 certificate transporting a PQC SIG key. 1075 
This test profile includes the algorithm configurations listed in Table 11: 1076 

Table 11 Algorithm configurations included in the HYBRID_BOUND test profile 1077 

X.509 Public Key Algorithm X.509 Signature Algorithm 
RSA (3072)+Dilithium-2 RSA_PKCSv1.5_SHA256 (3072)+Dilithium-2 
ECDSA (P-256)+Dilithium-2 ECDSA_SHA256 (P-256)+Dilithium-2 
ECDSA (P-521)+Dilithium-5 ECDSA_SHA512 (P-521)+Dilithium-5 

8.2.2.5 HYBRID_COMPOSITE 1078 

The HYBRID_COMPOSITE test profile tests a HYBRID COMPOSITE X.509 certificate transporting a PQC SIG 1079 
key. This test profile includes the algorithm configurations listed in Table 12: 1080 

Table 12 Algorithm configurations included in the HYBRID_COMPOSITE test profile 1081 

X.509 Public Key Algorithm X.509 Signature Algorithm 
RSA (3072)+Dilithium-2 RSA_PKCSv1.5_SHA256 (3072)+Dilithium-2 
ECDSA (P-256)+Dilithium-2 ECDSA_SHA256 (P-256)+Dilithium-2 
ECDSA (P-521)+Dilithium-5 ECDSA_SHA512 (P-521)+Dilithium-5 

8.2.2.6 HYBRID_CATALYST 1082 

The HYBRID_CATALYST test profile tests a HYBRID USING EXTENSIONS X.509 certificate transporting a 1083 
PQC SIG key. This test profile includes the algorithm configurations listed in Table 13: 1084 

Table 13 Algorithm configurations included in the HYBRID_CATALYST test profile 1085 

X.509 Public Key Algorithm X.509 Signature Algorithm 
RSA (3072)+Dilithium-2 RSA_PKCSv1.5_SHA256 (3072)+Dilithium-2 
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X.509 Public Key Algorithm X.509 Signature Algorithm 
ECDSA (P-256)+Dilithium-2 ECDSA_SHA256 (P-256)+Dilithium-2 
ECDSA (P-521)+Dilithium-5 ECDSA_SHA512 (P-521)+Dilithium-5 

8.2.2.7 HYBRID_CHAMELEON 1086 

The HYBRID_CHAMELEON test profile tests a HYBRID DELTA EXTENSIONS X.509 certificate transporting a 1087 
PQC SIG key. This test profile includes the algorithm configurations listed in Table 14: 1088 

Table 14 Algorithm configurations included in the HYBRID_CHAMELEON test profile 1089 

X.509 Public Key Algorithm X.509 Signature Algorithm 
RSA (3072)+Dilithium-2 RSA_PKCSv1.5_SHA256 (3072)+Dilithium-2 
ECDSA (P-256)+Dilithium-2 ECDSA_SHA256 (P-256)+Dilithium-2 
ECDSA (P-521)+Dilithium-5 ECDSA_SHA512 (P-521)+Dilithium-5 

8.2.3 Test Results 1090 

All interoperability tests have been performed within the IETF PQC X.509 Hackathon. The results can be 1091 
found here: IETF Hackathon Results. [32] 1092 

8.2.3.1 PURE_PQ_SIG 1093 

See IETF Hackathon Results. 1094 

8.2.3.2 PURE_PQ_KEM 1095 

See IETF Hackathon Results. 1096 

8.2.3.3 HYBRID_CONCATENATED 1097 

See IETF Hackathon Results. 1098 

8.2.3.4 HYBRID_BOUND 1099 

See IETF Hackathon Results.  1100 

8.2.3.5 HYBRID_COMPOSITE 1101 

See IETF Hackathon Results. 1102 

8.2.3.6 HYBRID_CATALYST 1103 

See IETF Hackathon Results. 1104 

8.2.3.7 HYBRID_CHAMELEON 1105 

See IETF Hackathon Results. 1106 

8.3 Performance Testing 1107 

Performance was not investigated during this first testing phase. It will be investigated in future phases 1108 
of interoperability testing. 1109 

https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
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8.4 Lessons Learned 1110 

While collaborators were going through interoperability testing, they had to work through issues with 1111 
their implementation components. Below we summarize the lessons learned: 1112 

 Falcon signature has variable size and caused some issues.  1113 

 There is a lot of interest in hybrid certificate formats. For example, we have seen many imple-1114 
mentations of composite signature signed certificates. There is also interest in using certificate 1115 
structures to convey hybrid information in the following X.509 certificate components: 1116 

• New V3Extensions types:   1117 

o The Chameleon Delta Certificate Descriptor Extension (DCD) 1118 

o The RelatedCertificate Extension for multi-certificate authentication 1119 

o The Catalyst AltSignature and AltPublicKey extension  1120 

• Existing V3Extensions: 1121 

o Using the Subject Info Access (SIA) extension for certificate discovery 1122 

• SubjectPublicKey  1123 

o Composite keys  1124 

o An external public key structure 1125 

• Signature structures 1126 

o Composite signatures 1127 

 ASN.1 encoding issues – some specifications had different encodings for Dilithium keys (for ex-1128 
ample). We settled on using OCTET_STRING, which looks like the way the standards are going. 1129 

 Having OIDs to reference specification versions is critical. Changing specifications has required 1130 
numerous updates to the prototype OIDs to try and avoid compatibility issues. See OID Mapping 1131 
table for the latest prototype OIDs.  1132 

 PEM and Distinguished Encoding Rules (DER) encoding issues sometimes caused edge cases, 1133 
which required special parsers. 1134 

 X509-related issues like basic constraints rules and encodings sometimes came into play. We 1135 
recognized that these are not PQ algorithm-related; it just means X.509 in general can be diffi-1136 
cult to implement and work together. 1137 

9 Hardware Security Modules (HSMs) 1138 

9.1 Discussion about Interoperability and Performance 1139 

HSMs serve as foundational elements in establishing the online trust required to facilitate digital 1140 
commerce and identity in today’s connected world. They provide hardware-based protection for high-1141 
value cryptographic assets and perform complicated cryptographic processing using those assets. Given 1142 
their foundational nature and the value of the assets they protect, it is imperative that we be able to 1143 
migrate HSMs from the current classic cryptographic mechanisms such as RSA and ECC over to the next 1144 

https://github.com/IETF-Hackathon/pqc-certificates/blob/master/docs/oid_mapping.md


PRELIMINARY DRAFT  

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 38 

generation of PQC algorithms such as Kyber, Dilithium, Falcon, eXtended Merkle Signature Scheme 1145 
(XMSS)/Multi-Tree eXtended Merkle Signature Scheme (XMSSMT), Leighton-Micali Signature 1146 
(LMS)/Hierarchical Signature System (HSS), and SPHINCS+. 1147 

HSMs are available from a number of vendors, all of whom must ensure the cryptographic keys they are 1148 
generating and consuming, as well as the cryptographic algorithms they are performing, are compatible 1149 
with HSMs from other vendors to ensure the system as a whole can function, providing a solid and 1150 
secure foundation for many of the digital systems we rely on today. 1151 

As such, we have endeavored to validate the ability for HSMs to interoperate in the following ways: 1152 

 Public keys generated on one vendor’s HSMs can be successfully exported and then imported 1153 
into another vendor’s HSM to create a valid public key object. 1154 

 Digital signatures generated on one vendor’s HSMs can be successfully read and verified on an-1155 
other vendor’s HSMs. 1156 

 A key encapsulated on one vendor’s HSMs can be successfully read and decapsulated on an-1157 
other vendor’s HSMs, with both HSMs generating the same shared secret key value. 1158 

Performance was not investigated during this initial effort, nor was interoperability across specific APIs 1159 
such as PKCS#11. These will be investigated in future phases of interoperability testing. 1160 

9.1.1 OID Usage 1161 

One detail that deserves mention is the OID allocation used during the interoperability validation effort. 1162 
Currently, new PQC algorithms such as Kyber, Dilithium, Falcon, and SPHINCS+ do not have official OIDs 1163 
allocated to them. NIST will request official values once the standardization process is completed. In the 1164 
meantime, temporary OIDs have been identified and we have leveraged the following OID allocation 1165 
sources for the purposes of this interoperability testing exercise: 1166 

 Kyber, Dilithium, Falcon, SPHINCS+ SHA2 variants: IETF Hackathon7 1167 

 SPHINCS+ SHAKE variants: libOQS 1168 

 LMS, HSS, XMSS, XMSSMT: C509 Signature Algorithms 1169 

The OID allocations are summarized in Table 15. 1170 

Table 15 Summary of OID allocations 1171 

 Algorithm & Variant OID 

PQ
C 

H
ac

ka
th

on
/ 

lib
O

Q
S Kyber-512 1.3.6.1.4.1.22554.5.6.1 

Kyber-768 1.3.6.1.4.1.22554.5.6.2 
Kyber-1024 1.3.6.1.4.1.22554.5.6.3 
Dilithium-2 1.3.6.1.4.1.2.267.7.4.4 
Dilithium-3 1.3.6.1.4.1.2.267.7.6.5 
Dilithium-5 1.3.6.1.4.1.2.267.7.8.7 
Falcon-512 1.3.9999.3.6 

Falcon-1024 1.3.9999.3.9 
 

7 Note that this list appears to have been extracted from the libOQS mappings. 

https://github.com/IETF-Hackathon/pqc-certificates/blob/master/docs/oid_mapping.md
https://github.com/open-quantum-safe/oqs-provider/blob/main/oqs-template/oqs-sig-info.md
https://www.ietf.org/id/draft-ietf-cose-cbor-encoded-cert-05.html
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 Algorithm & Variant OID 
SPHINCS+-SHA2-128fs 1.3.9999.6.4.4 
SPHINCS+-SHA2-128ss 1.3.9999.6.4.10 
SPHINCS+-SHA2-192fs 1.3.9999.6.5.3 
SPHINCS+-SHA2-192ss 1.3.9999.6.5.7 
SPHINCS+-SHA2-256fs 1.3.9999.6.6.3 
SPHINCS+-SHA2-256ss 1.3.9999.6.6.7 

lib
O

Q
S 

SPHINCS+-SHAKE-128fs 1.3.9999.6.7.4 
SPHINCS+-SHAKE-128ss 1.3.9999.6.7.10 
SPHINCS+-SHAKE-192fs 1.3.9999.6.8.3 
SPHINCS+-SHAKE-192ss 1.3.9999.6.8.7 
SPHINCS+-SHAKE-256fs 1.3.9999.6.9.3 
SPHINCS+-SHAKE-256ss 1.3.9999.6.9.7 

C5
09

 HSS (all variants) 1.2.840.113549.1.9.16.3.17 
XMSS (all variants) 0.4.0.127.0.15.1.1.13.0 

XMSSMT (all variants) 0.4.0.127.0.15.1.1.14.0 

9.1.2 Algorithm Versions Tested 1172 

The specific PQC algorithm versions that were used for this exercise are summarized in Table 16, which 1173 
includes hyperlinks to the relevant reference documents. 1174 

Table 16 Algorithm versions tested 1175 

Algorithm Version Tested (w/hyperlink) 
Kyber v3.02 (August 4, 2021) 

Dilithium v3.1 (February 8, 2021) 
SPHINCS+ v3.1 (June 10, 2022) 
LMS/HSS RFC 8554 

XMSS/XMSSMT RFC 8391 

9.2 Interoperability Test Results 1176 

This section contains the detailed test results from all of the interoperability testing that was performed 1177 
as part of this exercise. The following subsections describe the vendor-declared list of basic capabilities 1178 
for each of their implementations, as well as the detailed results from performing interoperability tests 1179 
on key import/export, digital signature generation/verification, and key encapsulation/decapsulation. 1180 

9.2.1 Basic Capabilities 1181 

Each HSM vendor provided an outline of the PQC capabilities that they supported, which are 1182 
summarized in the tables below using three generic categories: key generation (Table 17), digital 1183 
signatures (Table 18), and key encapsulation (Table 19). Each category is organized by algorithm and 1184 
variant, for which the vendors marked their capability using the following notation: 1185 

  = available/supported 1186 

  = supported but not tested 1187 

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://datatracker.ietf.org/doc/html/rfc8554
https://datatracker.ietf.org/doc/html/rfc8391


PRELIMINARY DRAFT  

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 40 

  = not supported at this time 1188 

Table 17 Key generation capabilities by HSM vendor 1189 

Key Generation Algorithm and 
Parameters 

Crypto4A Entrust Thales DIS Thales 
TCT 

Utimaco8 

Kyber L1: 512 Success Success Success Success Not tested 
Kyber L3: 768 Success Success Success Success Not tested 
Kyber L5: 1024 Success Success Success Success Not tested 
Dilithium L2 Success Success Success Success Not tested 
Dilithium L3 Success Success Success Success Not tested 
Dilithium L5 Success Success Success Success Not tested 
Falcon L1: 512 N/A Success Success Success N/A 
Falcon L5: 1025 N/A Success Success Success N/A 
SPHINCS+-SHAKE-128ss Success Success Success N/A N/A 
SPHINCS+-SHAKE-128fs Success Success Success N/A N/A 
SPHINCS+-SHAKE-192ss Success Success Success N/A N/A 
SPHINCS+-SHAKE-192fs Success Success Success N/A N/A 
SPHINCS+-SHAKE-256ss Success Success Success N/A N/A 
SPHINCS+-SHAKE-256fs Success Success Success N/A N/A 
SPHINCS+-SHA2-128ss Success Success Success N/A N/A 
SPHINCS+-SHA2-128fs Success Success Success N/A N/A 
SPHINCS+-SHA2-192ss Success Success Success N/A N/A 
SPHINCS+-SHA2-192fs Success Success Success N/A N/A 
SPHINCS+-SHA2-256ss Success Success Success N/A N/A 
SPHINCS+-SHA2-256fs Success Success Success N/A N/A 
XMSS-SHA2_10_256 Success N/A Success N/A Not tested 
XMSS-SHA2_16_256 Success N/A Success N/A Not tested 
XMSS-SHA2_20_256 Success N/A Not tested N/A Not tested 
XMSSMT-SHA2_20/2_256 Success N/A Success N/A Not tested 
XMSSMT-SHA2_40/2_256 Success N/A Not tested N/A Not tested 
XMSSMT-SHA2_60/3_256 Success N/A Not tested N/A Not tested 
LMS/HSS {L, hi, wi, ni} = {1, 10, 8, 
32} 

Success N/A Success Success Not tested 

LMS/HSS {L, hi, wi, ni} = {1, 20, 8, 
32} 

Success N/A Not tested N/A Not tested 

LMS/HSS {L, hi, wi, ni} = {1, 10, 8, 
24} 

Success N/A Success Success Not tested 

LMS/HSS {L, hi, wi, ni} = {1, 20, 8, 
24} 

Success N/A Not tested N/A Not tested 

LMS/HSS {L, hi, wi, ni} = {1, 5, 8, 32} Success N/A Success Success Not tested 
LMS/HSS {L, hi, wi, ni} = {1, 5, 8, 24} Success N/A Success Success Not tested 
LMS/HSS {L, hi, wi, ni} = {2, {10, 8, 
32}, {10, 8, 32}} 

Success N/A Success Success Not tested 

 

8  We have documented the capabilities reported by Utimaco because the test results were not fully available at 
the deadline of this document. The full set of test results will be added to a future version of this document. 
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Key Generation Algorithm and 
Parameters 

Crypto4A Entrust Thales DIS Thales 
TCT 

Utimaco8 

LMS/HSS {L, hi, wi, ni} = {2, {10, 8, 
32}, {20, 8, 32}} 

Success N/A Not tested N/A Not tested 

LMS/HSS {L, hi, wi, ni} = {2, {20, 8, 
32}, {20, 8, 32}} 

Success N/A Not tested N/A Not tested 

 

For the digital signature capabilities, the vendors indicated their ability to generate (i.e., sign) and verify 1190 
signatures separately for each algorithm and variant.  1191 

Table 18 Digital signature capabilities by HSM vendor 1192 

 
 
 

Digital Signature Generation/Verification 
Algorithm Cr

yp
to

4A
 

En
tr

us
t 

Th
al

es
 D

IS
 

Th
al

es
 T

CT
 

U
tim

ac
o9  

• Dilithium 
o L2 
o L3 
o L5 

• Falcon 
o L1: 512 
o L5: 1024 

• SPHINCS+ 
o SPHINCS+-SHAKE-128ss 
o SPHINCS+-SHAKE-128fs 
o SPHINCS+-SHAKE-192ss 
o SPHINCS+-SHAKE-192fs 
o SPHINCS+-SHAKE-256ss 
o SPHINCS+-SHAKE-256fs 
o SPHINCS+-SHA2-128ss 
o SPHINCS+-SHA2-128fs 
o SPHINCS+-SHA2-192ss 
o SPHINCS+-SHA2-192fs 
o SPHINCS+-SHA2-256ss 
o SPHINCS+-SHA2-256fs 

• XMSS/XMSSMT 
o XMSS-SHA2_10_256 
o XMSS-SHA2_16_256 
o XMSS-SHA2_20_256 
o XMSSMT-SHA2_20/2_256 
o XMSSMT-SHA2_40/2_256 
o XMSSMT-SHA2_60/3_256 
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/ 
/ 

 
/ 
/ 

 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

 
/ 
/ 
/ 
/ 
/ 
/ 

 

9 We have documented the capabilities reported by Utimaco because the test results were not fully available at 
the deadline of this document. The full set of test results will be added to a future version of this document. 
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• LMS/HSS 
o {L, hi, wi, ni} = {1, 10, 8, 32} 
o {L, hi, wi, ni} = {1, 20, 8, 32} 
o {L, hi, wi, ni} = {1, 10, 8, 24} 
o {L, hi, wi, ni} = {1, 20, 8, 24} 
o {L, hi, wi, ni} = {1, 5, 8, 32} 
o {L, hi, wi, ni} = {1, 5, 8, 24} 
o {L, hi, wi, ni} = {2, {10, 8, 32}, {10, 8, 32}} 
o {L, hi, wi, ni} = {2, {10, 8, 32}, {20, 8, 32}} 
o {L, hi, wi, ni} = {2, {20, 8, 32}, {20, 8, 32}} 

 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

 

Similarly, for key encapsulation mechanisms, the vendors indicated their ability to perform 1193 
encapsulation and decapsulation operations separately as well for each algorithm and variant. 1194 

Table 19 Key encapsulation capabilities by HSM vendor 1195 
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• Kyber 
o L1: 512 
o L3: 768 
o L5: 1024 

(E/D 
/ 
/ 
/ 

(E/D) 
/ 
/ 
/ 

(E/D) 
/ 
/ 
/ 

(E/D) 
 /  
 /  
 /  

(E/D) 
/ 
/ 
/ 

9.2.2 PQC Key Generation, Export, and Import 1196 

The first set of interoperability tests involved having each HSM vendor generate a variety of public key 1197 
objects which they then exported in a PEM-based format. These public keys were then imported into 1198 
other vendors’ HSMs to see if they would result in valid public key objects that could be used for digital 1199 
signature verification and key encapsulation. 1200 

The results of these tests are summarized in Table 20 where each row summarizes whether or not the 1201 
given vendor’s HSM was able to generate and export the given algorithm’s public key, and if the other 1202 
HSM vendors were able to import the key successfully, using the notation: 1203 

  = successfully imported the public key object 1204 

 

10 We have documented the capabilities reported by Utimaco because the test results were not fully available at 
the deadline of this document. The full set of test results will be added to a future version of this document. 
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  = unable to import the public key object 1205 

  = supported but not tested 1206 

  = not supported at this time 1207 

Table 20 Test results for HSM key generation, export, and import 1208 

Export Import: 
Crypto4A 

Import: 
Entrust 

Import: 
Thales 

DIS 

Import: 
Thales 

TCT 

Import: 
Utimaco11 

Kyber-512 (L1)      
Crypto4A      
Entrust      
Thales DIS       
Thales TCT      
Utimaco      
Kyber-768 (L3)      
Crypto4A      
Entrust      
Thales      
Thales TCT      
Utimaco      
Kyber-1024 (L5)      
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
Dilithium-2 (L2)      
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
Dilithium-3 (L3)      
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
Dilithium-5 (L5)      
Crypto4A      

 

11 We have documented the capabilities reported by Utimaco because the test results were not fully available at 
the deadline of this document. The full set of test results will be added to a future version of this document. 
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Export Import: 
Crypto4A 

Import: 
Entrust 

Import: 
Thales 

DIS 

Import: 
Thales 

TCT 

Import: 
Utimaco11 

Entrust      
Thales DIS      
Thales TCT      
Utimaco      
Falcon-512 (L1)      
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
Falcon-1024 (L5)      
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHAKE-128ss  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHAKE-128fs  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHAKE-192ss  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHAKE-192fs  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHAKE-256ss  



PRELIMINARY DRAFT  

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 45 

Export Import: 
Crypto4A 

Import: 
Entrust 

Import: 
Thales 

DIS 

Import: 
Thales 

TCT 

Import: 
Utimaco11 

Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHAKE-256fs  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHA2-128ss  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHA2-128fs  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHA2-192ss  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHA2-192fs  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHA2-256ss  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
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Export Import: 
Crypto4A 

Import: 
Entrust 

Import: 
Thales 

DIS 

Import: 
Thales 

TCT 

Import: 
Utimaco11 

SPHINCS+-SHA2-256fs  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
XMSS-SHA2_10_256  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
XMSS-SHA2_16_256  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
XMSS-SHA2_20_256  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
XMSSMT-SHA2_20/2_256  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
XMSSMT-SHA2_40/2_256  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
XMSSMT-SHA2_60/3_256  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
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Export Import: 
Crypto4A 

Import: 
Entrust 

Import: 
Thales 

DIS 

Import: 
Thales 

TCT 

Import: 
Utimaco11 

Utimaco      
LMS/HSS {L, hi, wi, ni} = {1, 10, 8, 32}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {1, 20, 8, 32}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {1, 10, 8, 24}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {1, 20, 8, 24}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {1, 5, 8, 32}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {1, 5, 8, 24}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {2, {10, 8, 24}, {10, 8, 24}}  
Crypto4A      
Entrust      
Thales DIS      
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Export Import: 
Crypto4A 

Import: 
Entrust 

Import: 
Thales 

DIS 

Import: 
Thales 

TCT 

Import: 
Utimaco11 

Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {2, {10, 8, 24}, {20, 8, 24}}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {2, {20, 8, 24}, {20, 8, 24}}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      

9.2.3 PQC Signature Generation and Verification 1209 

The second set of interoperability tests performed involved having an HSM vendor perform a digital 1210 
signature and export the public key component of the signing key (a.k.a., the verification key). The other 1211 
HSM vendors then attempted to import the verification key and verify the generated signature using the 1212 
same message that was signed. 1213 

The results of these tests are summarized in Table 21 where each row summarizes whether or not the 1214 
given vendor’s HSM was able to generate a digital signature for the corresponding algorithm, and if the 1215 
other HSM vendors were able to import the verification key and verify the generated signature 1216 
successfully, using the notation: 1217 

  = successfully imported the verifying key and verified the digital signature 1218 

  = did NOT successfully import the key and verify the digital signature 1219 

  = supported but not tested 1220 

  = not supported at this time 1221 

Table 21 Test results for HSM signature generation and verification 1222 

Signer Verifier: 
Crypto4A 

Verifier: 
Entrust 

Verifier: 
Thales 

DIS 

Verifier: 
Thales 

TCT 

Verifier: 
Utimaco12 

Dilithium-2 (L2)      
Crypto4A      

 

12 We have documented the capabilities reported by Utimaco because the test results were not fully available at 
the deadline of this document. The full set of test results will be added to a future version of this document. 
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Signer Verifier: 
Crypto4A 

Verifier: 
Entrust 

Verifier: 
Thales 

DIS 

Verifier: 
Thales 

TCT 

Verifier: 
Utimaco12 

Entrust      
Thales DIS      
Thales TCT      
Utimaco      
Dilithium-3 (L3)      
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
Dilithium-5 (L5)      
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
Falcon-512 (L1)      
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
Falcon-1024 (L5)      
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHAKE-128ss  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHAKE-128fs  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHAKE-192ss  
Crypto4A      
Entrust      
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Signer Verifier: 
Crypto4A 

Verifier: 
Entrust 

Verifier: 
Thales 

DIS 

Verifier: 
Thales 

TCT 

Verifier: 
Utimaco12 

Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHAKE-192fs  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHAKE-256ss  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHAKE-256fs  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHA2-128ss  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHA2-128fs  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHA2-192ss  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHA2-192fs  
Crypto4A      
Entrust      
Thales DIS      
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Signer Verifier: 
Crypto4A 

Verifier: 
Entrust 

Verifier: 
Thales 

DIS 

Verifier: 
Thales 

TCT 

Verifier: 
Utimaco12 

Thales TCT      
Utimaco      
SPHINCS+-SHA2-256ss  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
SPHINCS+-SHA2-256fs  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
XMSS-SHA2_10_256  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
XMSS-SHA2_16_256  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
XMSS-SHA2_20_256  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
XMSSMT-SHA2_20/2_256  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
XMSSMT-SHA2_40/2_256  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
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Signer Verifier: 
Crypto4A 

Verifier: 
Entrust 

Verifier: 
Thales 

DIS 

Verifier: 
Thales 

TCT 

Verifier: 
Utimaco12 

Utimaco      
XMSSMT-SHA2_60/3_256  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {1, 10, 8, 32}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {1, 20, 8, 32}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {1, 10, 8, 24}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {1, 20, 8, 24}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {1, 5, 8, 32}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {1, 5, 8, 24}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
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Signer Verifier: 
Crypto4A 

Verifier: 
Entrust 

Verifier: 
Thales 

DIS 

Verifier: 
Thales 

TCT 

Verifier: 
Utimaco12 

LMS/HSS {L, hi, wi, ni} = {2, {10, 8, 24}, {10, 8, 24}}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {2, {10, 8, 24}, {20, 8, 24}}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
LMS/HSS {L, hi, wi, ni} = {2, {20, 8, 24}, {20, 8, 24}}  
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      

9.2.4 PQC Key Encapsulation and Decapsulation 1223 

The last set of interoperability tests performed involved having an HSM vendor (a.k.a., HSMA) perform a 1224 
key encapsulation operation by importing another HSM vendor’s (a.k.a., HSMB) public encapsulation key 1225 
to generate the required ciphertext and shared secret value. HSMB then performs a key decapsulation 1226 
on the ciphertext generated by HSMA, and verifies that the generated shared secret matches the one 1227 
produced by HSMA during the encapsulation operation. 1228 

The results of these tests are summarized in Table 22 where each row summarizes whether or not the 1229 
given vendor’s HSM was able to successfully perform the encapsulation and decapsulation operations 1230 
described in the previous paragraph, using the notation: 1231 

  = successfully imported encapsulation ciphertext and generated valid shared secret 1232 

  = did NOT successfully generate the correct shared secret 1233 

  = supported but not tested 1234 

  = not supported at this time 1235 
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Table 22 Test results for HSM key encapsulation and decapsulation 1236 
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Kyber-512 (L1)      
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
Kyber-768 (L3)      
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      
Kyber-1024 (L5)      
Crypto4A      
Entrust      
Thales DIS      
Thales TCT      
Utimaco      

9.3 Summary of Results 1237 

No single vendor at this time has a complete offering of PQC algorithm support that has been validated. 1238 
However, a high degree of interoperability was achieved for the capabilities that are currently supported 1239 
across the whole suite of HSM vendors who participated in this exercise. 1240 

At this point in time, the only incompatibility that was found was with Entrust’s SPHINCS+ SHA2-based 1241 
variants, which couldn’t be verified by either Crypto4A or Thales DIS (and vice versa). 1242 

The high degree of interoperability is a good indicator of the level of effort that HSM vendors have put 1243 
into providing properly functioning PQC capabilities in their next generation of products. Having a high 1244 
degree of interoperability between HSM vendors is an essential element of minimizing the difficulty of 1245 
migrating our existing quantum-vulnerable cryptographic capabilities to quantum-safe variants, though 1246 
there is still an enormous amount of work to be done. 1247 

 

13 We have documented the capabilities reported by Utimaco because the test results were not fully available at 
the deadline of this document. The full set of test results will be added to a future version of this document. 
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10 Overall Status and Themes 1248 

Migration to post-quantum cryptography is a complex effort. Fortunately, the activities performed by 1249 
the NCCoE project participants will help the ecosystem prepare for quantum readiness. 1250 

Thanks to early prototyping by academia and industry, we observed only a few challenges with the 1251 
collaborator’s core TLS and SSH protocol implementations, giving confidence that migrating to the new 1252 
PQC standards will be straightforward for most implementations. The implementations used draft 1253 
versions of the protocols that have been proposed by experimenters versus the standard bodies 1254 
themselves (e.g., the IETF) who have been waiting for the final FIPS documents. These drafts are likely to 1255 
serve as a basis for the respective working groups to define PQC integration, and the interoperability 1256 
experiments in this publication can serve as supporting material to accelerate their adoption. 1257 

Few implementations for derived protocols (DTLS, MQTT, QUIC, etc.) were available; these will be tested 1258 
in later phases of the project as more partners add support to their components. 1259 

The performance testing conducted demonstrated that the cost of Kyber, the recommended algorithm 1260 
for key exchange, is competitive when compared with the current elliptic curve state of the art, and 1261 
even their hybrid combination would be practical for most use cases. This is encouraging for 1262 
organizations planning to transition sooner than later, wishing to add quantum resistance on top of 1263 
existing standards. 1264 

Our workstream is planning many more activities, including testing more algorithms and parameter sets 1265 
and more protocols, onboarding more partner implementations in both hardware and software, and 1266 
demonstrating more scenarios. In tandem, we will start to release a more detailed technical view of our 1267 
testbed so that interested parties can replicate our test procedures.1268 
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1269 Appendix A List of Acronyms 
AES-GCM Advanced Encryption Standard with Galois/Counter Mode 

AI Artificial Intelligence 

API Application Programming Interface 

ASC Accredited Standards Committee 

ASN.1 Abstract Syntax Notation One 

AWS Amazon Web Services 

C-QSA CryptoNext Quantum Safe Application Plugins 

C-QSC CryptoNext Quantum Safe Crypto Services 

C-QSL CryptoNext Quantum Safe Library 

C-QSR CryptoNext Quantum Safe Remediation 

C-QST CryptoNext Quantum Safe Tools 

CA Certificate Authority 

CFRG (IRTF) Crypto Forum Research Group 

CISA Cybersecurity & Infrastructure Security Agency 

CMS Cryptographic Message Syntax 

CNG Cryptography API Next Generation 

CNSA Commercial National Security Algorithm Suite 

CPU Central Processing Unit 

CRADA Cooperative Research and Development Agreement 

CRQC Cryptanalytically Relevant Quantum Computer 

DCD Delta Certificate Descriptor 

DER Distinguished Encoding Rules 

DIS (Thales) Digital Identity and Security 

DTLS Datagram Transport Layer Security 

ECC Elliptic Curve Cryptography 

ECDH Elliptic Curve Diffie Hellman 

ECDHE Elliptic Curve Diffie-Hellman Exchange 

ECDSA Elliptic Curve Digital Signature Algorithm 

EdDSA Edwards-Curve Digital Signature Algorithm 

ETSI European Telecommunications Standards Institute 

FIPS Federal Information Processing Standard 

FM (Thales) Functionality Module 

GB Gigabyte 

GHz Gigahertz 

GSMA Groupe Speciale Mobile Association 
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HSE High Speed Encryptor 

HSM Hardware Security Module 

HSP Hardware Security Platform 

HSS Hierarchical Signature System 

IETF Internet Engineering Task Force 

IKEv2 Internet Key Exchange Version 2 

IoT Internet of Things 

IPsec Internet Protocol Security 

IRTF Internet Research Task Force 

ISA Instruction Set Architecture 

ISC Information Security Corporation 

JCE Java Cryptography Extension 

JSSE Java Secure Socket Extension 

KB Kilobyte 

KEM Key Encapsulation Mechanism 

KMIP Key Management Interoperability Protocol 

LAMPS (IETF) Limited Additional Mechanisms for PKIX and SMIME 

LMS Leighton-Micali Signature 

MB Megabyte 

MQTT Message Queuing Telemetry Transport 

NCCoE National Cybersecurity Center of Excellence 

NIAP National Information Assurance Partnership 

NSA National Security Agency 

OASIS Organization for the Advancement of Structured Information Standards 

OCSP Online Certificate Status Protocol 

OID Object Identifier 

OMB Office of Management and Budget 

OQS (Microsoft) Open Quantum Safe 

PKCS Public-Key Cryptography Standard 

PKI Public Key Infrastructure 

PQC Post-Quantum Cryptography 

PQSDK PQShield Software Development Kit 

R&D Research and Development 

RAM Random Access Memory 

REST Representational State Transfer 

RFC Request for Comments 
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RTT Round-Trip Time 

S/MIME Secure/Multipurpose Internet Mail Extensions 

SCT Signed Certificate Timestamp 

SDK Software Development Kit 

SFTP Secure File Transfer Protocol 

SHA2 Secure Hash Algorithm 2 

SHAKE Secure Hash Algorithm and KECCAK 

SIA Subject Info Access 

SP Special Publication 

SSH Secure Shell 

TCP Transmission Control Protocol 

TCT (Thales) Trusted Cyber Technologies 

TLS Transport Layer Security 

TPM Trusted Platform Module 

TSA Time Stamp Authority 

UDP User Datagram Protocol 

WG Working Group 

XMSS eXtended Merkle Signature Scheme 

XMSSMT Multi-Tree eXtended Merkle Signature Scheme 
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1418 Appendix C Hash and Sign Analysis 
NIST’s Post-Quantum Cryptography Project is in the process of standardizing new, quantum-safe 1419 
signatures. These signatures operate on arbitrary size messages, which is different than traditional uses 1420 
of classical signatures which were digesting the message and signing the digest. As we proceed with 1421 
standardizing and adopting the use of quantum-safe signatures, we ought to evaluate which choice is 1422 
more suitable for various common use-cases and what implications it would have. This appendix 1423 
analyzes the options and summarizes public discussions on the topic in various fora. The goal is for 1424 
engineers or standards bodies that will use these signatures to make informed decisions between using 1425 
the quantum-safe signatures as they are or choosing an option which digests the message before signing 1426 
it. 1427 

This analysis finds that most use-cases can leverage post-quantum signatures as they are without pre-1428 
digesting the message. This approach offers better collision resistance than digesting before signing. 1429 
Some contexts could still benefit from pre-digesting, particularly cases that cannot tolerate holding an 1430 
entire large message in memory or where digesting can speed up performance. Pre-digesting could still 1431 
remain possible for uses which can offer a protocol-level signature envelope.   1432 

1433 C.1 Introduction of the Digest-then-Sign Dilemma 
Asymmetric cryptographic primitives have generally been limited to fixed-size inputs, typically a few 1434 
hundred bytes, that are mapped to a particular mathematical object. To construct signature schemes 1435 
with arbitrarily sized input, the natural approach is to first hash the message, then sign the resulting 1436 
digest. Traditional signature schemes like RSA/PKCS#1 (RFC 8017) and ECDSA (FIPS 186-5) are 1437 
constructed in such a way that it is easy to separate the digesting step from the asymmetric primitive. 1438 
This approach is commonly called digest-then-sign or hash-then-sign.  1439 

Newer signature algorithms use a slightly different method by injecting a random nonce or data from 1440 
the public key into the digest. This may bring additional security properties, such as improved resistance 1441 
against hash collisions or exclusive ownership and message bindings. In this approach, it is no longer 1442 
possible to separate the digesting step from the public/private key operation. EdDSA (RFC 8032) is a 1443 
notable example of a signature scheme using this method.  1444 

In all three quantum-safe signatures picked in Round 3 of NIST’s Post-Quantum Project, the digest step 1445 
is intrinsically linked to the asymmetric primitive. Before generating the signature, the input message is 1446 
hashed with additional algorithm-specific data. More precisely,   1447 

 Dilithium takes the whole message M as input and hashes it with tr, a hash of the public key {ρ, 1448 
t}, to create a digest μ=SHAKE256(tr||M). It then proceeds to sign that value. Dilithium requires 1449 
collision resistance for the digest function, but collisions are specific to a given public key. 1450 

 Falcon calculates the HashToPoint(r||M, q, n) of message M where r is a random value and q, n 1451 
are Falcon parameters. HashToPoint hashes r||M to a point in the lattice which is then used to 1452 
generate the signature. This randomized hashing does not require collision resistance for the 1453 
hash function. 1454 

 SPHINCS+ calculates a proper output size digest of the message M by using 1455 
(R||PK.seed||PK.root||M) as inputs to a variable/extendable output function (e.g., SHAKE256, 1456 

https://eprint.iacr.org/2020/1525.pdf
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MGF1-SHA256). R is a random value generated from a secret random value and the message. 1457 
PK.seed and PK.root are public values for the signer. This randomized hashing does not require 1458 
collision resistance for the digest function. The calculated digest is then used to generate the 1459 
SPHINCS+ signature. Note that SPHINCS+ does two passes on the message, one to generate R 1460 
and a second to digest the message. Two passes could affect performance for large messages. 1461 

Thus, the digest step and the public/private key operation cannot be separated in the case of these 1462 
quantum-safe signatures. This change causes difficulties when migrating solutions based on RSA or 1463 
ECDSA to PQC. For example, a paper from 2021 on hash-based signatures for secure boot [33] came 1464 
across an OpenSSL API incompatibility between classical ECDSA signatures, which were assuming a 1465 
digest, and SPHINCS+, which includes the message digest in the signature parameter itself. 1466 

Note that the analysis below applies to stateful hash-based signatures [4] (RFC 8554 [34], RFC 8391 1467 
[35]), as they also digest the message internally by using a pseudorandom value in order to generate the 1468 
one-time signature which is included in the message signature. 1469 

1470 C.1.1 Terminology 
To avoid any confusion, this rest of this appendix will use the following terminology: 1471 

 “message” denotes the raw data to be signed (contents of a file, attributes in a certificate, etc.). 1472 

 “Internal Digest” denotes the hashing done as part of the post-quantum signature algorithm, for 1473 
example the step μ=SHAKE256(tr||M) in Dilithium, as explained above. 1474 

 “Signed Data” denotes the actual input to the signature algorithm. The Signed Data may or may 1475 
not be the same as the Message. For example, in a hash-then-sign scenario, the Signed Data 1476 
would be the hash of the Message.  1477 

Notice that the Internal Digest is always performed on the Signed Data, so in a hash-then-sign scenario 1478 
there would be two consecutive hashes: first a plain hash (e.g., SHAKE256) of the Message to generate 1479 
the Signed Data, then the Internal Digest (randomized, as above) on the Signed Data during the 1480 
signature.  1481 

1482 C.2 Performance for PQC Signatures 
First, we analyze performance of the quantum-safe signatures and compare it against digesting the 1483 
messages before signing. Table 23 was generated using liboqs 0.8.0-rc1 and OpenSSL 1.1.1 (see 1484 
Appendix D.4 for additional details). We used absolute times instead of CPU cycles in our 1485 
measurements, as these are only provided for comparison in this context.   1486 

Table 23 Mean time (μs) of post-quantum signature sign and verify for plaintext sizes of 1K, 10K, 100K, 1487 
1MB, 100MB on Intel(R) Xeon(R) Platinum 8175M CPU @ 2.50GHz 1488 

 
Time (μs) for 1KB message 

  1KB 10KB 100KB 1MB 100MB 
SHA256 2.64 25.07 253.9 2496 250000 
SHA512 1.84 17.00 166.7 1669 167778 
SHAKE256 3.52 32.88 304.4 3046 306000 

https://openquantumsafe.org/liboqs/
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Dilithium-3 sign 267.5 299.55 615.1 3421 306767 
Dilithium-3 verify 123.9 156.10 470.4 3308 305914 
Dilithium-5 sign 359.6 393.2 707.0 3498 306448 
Dilithium-5 verify 203.6 236.7 549.2 3361 306240 
Falcon-512 sign 2373 2399 2671 5428 313660 
Falcon-512 verify 1972 1997 2273 5013 307683 
Falcon-1024 sign 6711 6749 7022 9768 312870 
Falcon-1024 verify 6080 6045 6336 9071 312147 
SPHINCS+-SHA2-192f-simple sign 15119 15149 15435 18455 351220 
SPHINCS+-SHA2-192f-simple verify 1060 1079 1228 2725 169114 
SPHINCS+-SHAKE-192s-simple sign 590634 590486 591140 602835 1202268 
SPHINCS+-SHAKE-192s-simple 
verify 671 692 988 3721 306412 

 

Table 23 shows that Dilithium and Falcon signing and verification performance is affected by the 1489 
message size increases. The flavor of randomized hashing (i.e., SHAKE256, HashToPoint) these 1490 
algorithms use ends up showing up as the message exceeds 1 MB. In absolute numbers, even for 100 1491 
MB plaintexts, both Falcon and Dilithium performance stayed below 400 ms in our platform, which is 1492 
acceptable.  1493 

The two SPHINCS+ parameters we tested were at NIST’s Level 3. One used SHAKE256 as the hash and 1494 
was optimized for size. The other parameter was using SHA512 and was optimized for performance. We 1495 
notice that with SPHINCS+-SHAKE-192s-simple, signing is barely affected by smaller message sizes. That 1496 
is because signing is dominated by the FORS and WOTS+ hash calculations and not by the two SHAKE256 1497 
internal hashes (i.e., Hmsg, PRFmsg), especially for small message sizes (1, 10, 100, and 1000 KB). At 1MB, 1498 
the internal hash’s cost increases and affects signing. Since verification is faster, the cost of the internal 1499 
SHAKE256 digest becomes noticeable for messages of 1 MB and 100 MB. The observations are 1500 
essentially the same for the SPHINCS+-SHA2-192f-simple sign parameter set. Signing and verification 1501 
show noticeable slowdowns at 100 MB message sizes when SHA512 is used in the Hmsg and PRFmsg 1502 
calculation of the message and is significant compared to the rest of the FORS and WOTS+ hashing in 1503 
SPHINCS+. In absolute performance numbers, signing stayed within the same magnitude, so if the signer 1504 
could afford SPHINCS+ signing performance, it could afford signing bigger messages. Similarly, SPHINCS+ 1505 
verification performance stayed within acceptable levels even for big messages. 1506 

When evaluating SHA-256, SHA512, and SHAKE256 performance in a hash-then-sign scenario, we can 1507 
see that it is highly efficient even for 100 MB. Ιf someone was following the digest-then-sign paradigm 1508 
with the post-quantum signatures, they would get better overall performance when using more efficient 1509 
SHA256 or SHA512 than a slower Internal Digest function like SHAKE256. Using SHAKE256 pre-digests, 1510 
the improvement will be insignificant. For example, if the function used to digest the message was 1511 
SHAKE256, which is also used internally in the Dilithium μ calculation, then digesting before signing 1512 
would not have a significant performance impact. Note that in absolute numbers, even for 100MB 1513 
plaintexts, Falcon and Dilithium performance stays below 400 ms in our platform, which is acceptable. 1514 
Using digest-then-sign in SPHINCS+ would improve signing and verification performance when SHA256 1515 
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or SHA512 is used to pre-hash the message, especially for the SPHINCS+-SHAKE parameter sets, but 1516 
overall the improvement will be noticeable only for large messages.  1517 

1518 C.3 The EdDSA Precedent 
Although hash-then-sign has been the status quo, the message digest was traditionally specified in the 1519 
use-case itself (e.g., X.509, CMS, TLS), not internally in the signature. RSA and ECDSA signature 1520 
specifications themselves have been used with a hash function which digested the message. The 1521 
message digest was subsequently signed by the RSA or ECDSA primitive. Digesting was decoupled from 1522 
signing with the private key operation. The paper SoK: Comparison of the Security of Real World RSA 1523 
Hash-and-Sign Signatures [36] lays out all the standardized hash-then-sign RSA signatures, which mostly 1524 
were what all RSA signature variants used.  1525 

This paradigm changed with EdDSA. The EdDSA signature was relatively recently standardized in RFC 1526 
8032 [37]. Initially it was specified taking the whole message as input, but later was ratified with two 1527 
versions, Pure and Prehash. The former takes the whole message as input and passes through it twice in 1528 
order to sign. The latter takes the digest of the message as input. To explain the rationale, RFC 8032 1529 
states: 1530 

Choosing which variant to use depends on which property is deemed to be more important 1531 
between 1) collision resilience and 2) a single-pass interface for creating signatures. The collision 1532 
resilience property means EdDSA is secure even if it is feasible to compute collisions for the hash 1533 
function. The single-pass interface property means that only one pass over the input message is 1534 
required to create a signature. PureEdDSA requires two passes over the input. Many existing 1535 
APIs, protocols, and environments assume digital signature algorithms only need one pass over 1536 
the input and may have API or bandwidth concerns supporting anything else. 1537 

The Ed25519ph and Ed448ph variants are prehashed. This is mainly useful for interoperation 1538 
with legacy APIs, since in most of the cases, either the amount of data signed is not large or the 1539 
protocol is in the position to do digesting in ways better than just prehashing (e.g., tree hashing 1540 
or splitting the data). The prehashing also makes the functions greatly more vulnerable to 1541 
weaknesses in hash functions used. These variants SHOULD NOT be used. 1542 

Additionally, the EdDSA paper [38] explains that pre-digesting the messages with PrehashEdDSA 1543 
introduces collision concerns by saying: 1544 

PureEdDSA is resilient to collisions in the underlying hash function H. HashEdDSA is not resilient 1545 
to collisions in H0: if the attacker finds messages M1 and M2 with H0(M1)=H0(M2), and 1546 
convinces the legitimate H0-EdDSA signer to sign M1, then the attacker can forge the same 1547 
signature as a signature of M2. Modern hash functions are designed to resist collisions, and in 1548 
principle it should be safe to design signature systems to rely on this, but it is more conservative 1549 
to design signature systems so that collisions serve merely as early-warning signals. PureEdDSA 1550 
is therefore recommended by default.  1551 

Many common use-cases that sign small size messages (a few KB) use the PureEdDSA version:  1552 

 RFC 8442 [39] defines only PureEdDSA for TLS 1.2 and earlier.  1553 

 RFC 8446 [40] specifies only the use of PureEdDSA to sign the TLS 1.3 transcript.  1554 
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 RFC 8410 [41] standardizes the use of PureEdDSA in X.509 certificates.  1555 

 RFC 8420 [42] defines usage in the Internet Key Exchange Protocol Version 2 (IKEv2). 1556 

 RFC 8709 [43] defines usage in Secure Shell (SSH). 1557 

 RFC 8037 [44] defines usage in JOSE JWS Signatures.  1558 

 For Cryptographic Message Syntax (CMS), RFC 8419 [45] defines a digest of the message by say-1559 
ing: 1560 

[...] In most situations, the CMS SignedData includes signed attributes, including the 1561 
message digest of the content. Since HashEdDSA offers no benefit when signed 1562 
attributes are present, only PureEdDSA is used with the CMS. 1563 

XML Signatures also include a digest of the message to be signed. In OCSP and OCSP staples (RFC 2560 1564 
[46]), the signature is “computed on the hash of the DER encoding ResponseData.” What’s more, 1565 
OpenPGP digests the message before signing it. So these use-cases all sign the full message or a digest of 1566 
it and do not depend on a Prehash version of the signature itself. The size of the data is small enough for 1567 
the signature to be generated or verified on the fly without issues.  1568 

Regarding APIs, traditionally crypto APIs were assuming digests as inputs to a signature. OpenSSL 1569 
historically had only one API EVP_PKEY_sign which assumed digest-then-sign. Of course, that did not satisfy 1570 
the PureEdDSA variant, so BoringSSL and OpenSSL, two popular open-source cryptographic libraries, 1571 
distinguish between the PureEdDSA and other hash-then-sign signature schemes in their EVP_MD, 1572 
EVP_DigestSign*, and EVP_PKEY_Sign and EVP_PKEY_SignInit APIs. For more details, refer to the 1573 
relevant github discussion. 1574 

1575 C.4 The PKCS#11 Challenge 
In PKCS#11, RSA and ECDSA signatures can be used with or without pre-hashing. According to the 1576 
PKCS#11 specification for ECDSA [47], the CKM_ECDSA mechanism assumes a digest of the message or a 1577 
message truncated to the right size. Arbitrary-length messages are signed with the CKM_ECDSA_SHA256 1578 
mechanism, which digests and then signs the message. In either case, ECDSA signs a “short version” of 1579 
the message. It is either digested externally to the signer (CKM_ECDSA) or inside the signer 1580 
(CKM_ECDSA_SHA256). RSA is used in similar ways with more legacy options. Note that if the signer is a 1581 
FIPS-certified module, digesting usually takes place in the signer FIPS boundary as required by the FIPS 1582 
140 certification. In this context, 2020/990 [48] proposed for HSMs to use different boundaries for the 1583 
randomized message digesting and asymmetric signing/verification which is up to the HSM vendor. 1584 

PKCS#11 includes a multi-part/incremental API when large messages cannot be stored in memory for 1585 
the signer and uses C_SignUpdate to incrementally digest the message in chunks until it completes the 1586 
digest and signs it (C_SignFinal). The CKM_ECDSA_SHA256 mechanism is used with the incremental API 1587 
which allows the signer/verifier to take the message piece by piece until it completes the digest and 1588 
signs/verifies it. In a typical large message scenario, streaming the message to the signer can affect 1589 
performance. For example, an HSM attached to a network could see significant performance impact for 1590 
large messages using the incremental API. 1591 

If PKCS#11 was taking arbitrary-size as inputs without digesting them beforehand, the incremental API 1592 
would not work for big messages that cannot be buffered. The whole input would not be available at the 1593 

https://github.com/awslabs/aws-lc/blob/b632a56ef69366b27a77f461e8768f9a2f26a950/include/openssl/ssl.h#L1119
https://github.com/awslabs/aws-lc/blob/a5059b198e7280ee9d62e597afbfbb305a8671ea/include/openssl/evp.h#L289
https://github.com/awslabs/aws-lc/blob/a5059b198e7280ee9d62e597afbfbb305a8671ea/include/openssl/evp.h#L564
https://github.com/awslabs/aws-lc/blob/a5059b198e7280ee9d62e597afbfbb305a8671ea/include/openssl/evp.h#L297
https://github.com/openssl/openssl/pull/5880
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signer (C_SignInit/Update/Final) before signing or the verifier (C_VerifyInit/Update/Final) who 1594 
receives the signature after the message. PureEdDSA would suffer from that probem. The EdDSA paper 1595 
[38] explains cases like PKCS#11 where PureEdDSA would not work with the incremental API by saying:  1596 

The main motivation for HashEdDSA is the following storage issue (which is irrelevant to most 1597 
well-designed signature applications). Computing the PureEdDSA signature of M requires 1598 
reading through M twice from a buffer as long as M, and therefore does not support a small-1599 
memory “Init-Update-Final” interface for long messages. Every common hash function H0 1600 
supports a small-memory “Init-Update-Final” interface for long messages, so H0-EdDSA signing 1601 
also supports a small-memory “Init-Update-Final” interface for long messages. 1602 

The PKCS#11 specification also acknowledges the issue by stating: 1603 

Note that for EdDSA in pure mode, Ed25519 and Ed448 the data must be processed twice. 1604 
Therefore, a token might need to cache all the data, especially when used with 1605 
C_SignUpdate/C_VerifyUpdate. If tokens are unable to do so they can return 1606 
CKR_TOKEN_RESOURCE_EXCEEDED.  1607 

The latest PKCS#11 API includes only one mechanism for EdDSA, CKM_EDDSA. CKM_EDDSA takes 1608 
optional CK_EDDSA_PARAMS which indicates if it is the Pure or Prehash variant. PureEdDSA is used by 1609 
default, which assumes arbitrary message inputs. In cases where the message is big and can’t be cached, 1610 
CKM_EDDSA is used in its Prehash version. The signer/verifier can keep taking the message as input 1611 
piece by piece with the incremental API (C_SignUpdate / C_VerifyUpdate) until it can complete the digest 1612 
used for PrehashEdDSA signing/verification. Thales seems to also have created its own digest EdDSA 1613 
mechanisms like CKM_SHA256_EDDSA which hard-codes PrehashEdDSA and its digest function, but no 1614 
further information is available about these mechanisms.  1615 

1616 C.5 Options for Standardization 
As new PQC signatures are getting standardized, adopters will need to decide if they want to follow the 1617 
digest-then-sign paradigm. The options available are:  1618 

 All digest operations are handled internally to the sign/verify operation, which is what the three 1619 
PQC signatures are doing. 1620 

 Using a digest-then-sign methodology with or without randomized metadata 1621 

• Digesting takes place before passing the digest to the signature algorithm  1622 

• Digesting takes place inside the signing operation (Prehash signature mode) 1623 

 Digest-then-sign by externalizing the PQC signature Internal Digest (which has security implica-1624 
tions) 1625 

This section describes these options, giving possible use-cases, pros, and cons for each one.  1626 

1627 C.5.1 No-digest Before Signing 
One option, since post-quantum signatures support it, is to not digest the message and just feed it 1628 
whole to the signing operation. Without digests, we do not need to depend on collision resistance for 1629 
the hash function for Falcon and SPHINCS+. We still need collision resistance of the hash function for 1630 

https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html
https://thalesdocs.com/dpod/services/luna_cloud_hsm/extern/client_guides/Content/sdk/luna_cloud_mechanisms/CKM_SHA256_EDDSA.htm
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Dilithium. This approach also allows for easier security analysis of the signature scheme. Additionally, as 1631 
shown in section C.5.2, digesting before signing may only have noticeable impact with large messages 1632 
when the pre-digest function is more efficient than the Internal Digest. For more details on the 1633 
advantages of this approach, refer to the discussions in Appendix D.  1634 

We expect post-quantum signatures that do not digest to be the default approach for standardization 1635 
and adoption in most use-cases. An example where this method worked is with PureEdDSA, which got 1636 
adopted although previous cryptographic APIs assumed a digest for RSA and ECDSA. Most uses of post-1637 
quantum signatures (e.g., TLS, SSH, X.509, SSH, IKEv2) will operate fine with signing the whole message, 1638 
as they typically sign relatively short messages. They adopted PureEdDSA for the same reason. 1639 
Standards like CMS and OpenPGP also sign relatively short data called “signed attributes,” so this 1640 
method can be used there as well. Since the signed attributes contain a digest of the message, these 1641 
standards can be considered as an instance of the digest-then-sign paradigm, but they would still make 1642 
use of a PQC signature primitive that does not pre-digest.  1643 

A potential shortcoming of not digesting the message before signing would be the cost of streaming it to 1644 
the signing entity if it was different than the holder of the message. For example, the cost of I/O for an 1645 
HSM getting streamed a large message over PCKS#11’s multi-part API could affect signing performance.  1646 

PKCS#11 could provide mechanisms corresponding to the pure signature paradigm for each algorithm 1647 
(e.g., CKM_DILITHIUM, CKM_FALCON, CKM_SPHINCSPLUS). To avoid the challenge with long messages 1648 
explained in section C.4, PKCS#11 could assume a relatively short input for these mechanisms, for 1649 
example up to a few tens of kilobytes. These mechanisms would work mainly with the one-part 1650 
interface (C_Sign / C_Verify).  1651 

Vendors may also support the multi-part/incremental API (C_SignInit/Update/Final) in the same 1652 
CKM_DILITHIUM mechanism only for Dilithium with a complication. Dilithium digests the message as 1653 
SHAKE256(tr||M) where tr is the public key. A big input message could be streamed piece by piece 1654 
when calculating SHAKE256(tr||M) since tr is known to the signer/verifier before receiving the message. 1655 
This would work well if PKCS#11 adopted only the Dilithium signature. However, doing the same thing 1656 
for the multi-part interface for Falcon or SPHINCS+ would impose challenges to a Falcon or SPHINCS+ 1657 
verifier because the nonce is not available at C_VerifyInit, and to a SPHINCS+ signer that requires two 1658 
passes on the message. A multi-part interface for the same mechanism for Falcon and SPHINCS+ (e.g., 1659 
CKM_FALCON, CKM_SPHINCSPLUS) would require buffering the message, which imposes hard size 1660 
limits. If PKCS#11 pure PQC signature mechanisms support the incremental API, it may need to be done 1661 
consistently for all signatures (not just CKM_DILITHIUM) to prevent confusion and inadvertent mistakes 1662 
for users, and the size constraints should be clearly documented.  1663 

1664 C.5.2 Digest-then-sign 
Other use-cases may need a hash-then-sign for performance reasons, especially if the message is large. 1665 
For example, certain applications have messages in the MB or GB range (e.g., firmware and software, 1666 
large legal documents, CAD files, high-resolution images and scans, video surveillance artifacts). If the 1667 
pre-hash is faster than the Internal Digest (e.g., SHA2-512 vs SHAKE256), then digest-then-sign would 1668 
perform better than no-digest before signing for these messages. Using two different primitives 1669 
increases code size, on the other hand. Similarly, if signing or verification happens in a constrained 1670 
device, then pre-hashing the message locally and sending only the digest to the signing module may be 1671 
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more efficient. Use-cases that combine classical with post-quantum signatures could also benefit from 1672 
calculating just one digest for both signatures instead of two.  1673 

Although it has generally worked well in the past, digest-then-sign has some issues. One is the potential 1674 
collision risk if the digest function is found to have collisions. Falcon and SPHINCS+ are naturally resistant 1675 
to collisions. Introducing a pre-hash re-introduces these risks. Dilithium can be affected by collision 1676 
attacks but is less vulnerable than plain hash-then-sign since its collisions are specific to a given public 1677 
key. 1678 

To ease the concern, we could use an appropriately large output digest like SHA2-512 or SHAKE256 with 1679 
64-byte output size. Arguably, collisions are not a realistic risk, as the SHA-2 and SHA-3 families are 1680 
unlikely to be found weak against collision attacks and the crypto community knows how to design hash 1681 
functions now more than it did 20 or 30 years ago. Although it seems unlikely for SHA-2 or SHA-3 to fall 1682 
victim of new collision attacks, no one can be certain of what the future holds for newer hash functions. 1683 
Additionally, not requiring collision resistance for the digest simplifies the security proofs for these 1684 
signatures which use the whole message as input. For more details on the concerns of the digest-then-1685 
sign approach, refer to the discussions in Appendix D.   1686 

Optionally, the local pre-hashing step may process additional metadata to improve security against 1687 
collision attacks. That is the digest-with-something-then-sign idea discussed in Appendix D. This must be 1688 
carefully specified for each use-case. There are two ways to implement digest-with-something-then-1689 
sign: 1690 

1. Sign a randomized hash of the message with a proper hash function. Schemes could sign the 1691 
H(nonce||M) where nonce is a random value and M is the message. Given that the nonce is a 1692 
random value, such an approach would require it to be included as part of the signature enve-1693 
lope. The security would depend on the nonce generation process using proper entropy.  1694 

2. Sign an H(pk||M) where pk is the public key of the signer and M is the message which only pro-1695 
tects from collisions against multiple signers. That means that we no longer need to include a 1696 
new nonce value in the signature envelope. The benefit of this approach would be potentially 1697 
better performance for pre-calculating the hash, but it does not offer general collision re-1698 
sistance. 1699 

The first digest-with-something-then-sign option would generally require changes for implementers that 1700 
now need to parse a nonce along with a signature. It would not work with large messages signed in the 1701 
context of PKCS#11 because the signature is provided after the message, which means the message is 1702 
not available to the verifier at the time the nonce is available. Both approaches would also require a 1703 
change in signing APIs and seem challenging to adopt for the general case.  1704 

C.5.2.1 Externally to the Signing Operation 1705 

Digest-then-sign or digest-with-something-then-sign can be implemented outside of the signature and 1706 
fed as input to the signing or verification operation. This has been the approach for RSA and ECDSA in 1707 
various use-cases. The process can be broken into three steps:  1708 

1. Digest the message and protocol-defined metadata (if any). 1709 

2. Optionally, append protocol-defined attributes to the digest. 1710 
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3. Sign the digest and the attributes using the general method (Signed Data is short). 1711 

Certain standards, like CMS, S/MIME, and OpenPGP, explicitly require hashing the message and some 1712 
metadata before signing. These uses follow the digest-then-sign approach, but they would still make use 1713 
of a signature primitive that does not pre-hash. 1714 

The digest-then-sign approach can also be used as an additional PKCS#11 mechanism (e.g., 1715 
CKM_DILITHIUM_SHAKE256, CKM_FALCON_SHAKE256, CKM_SPHINCSPLUS_SHAKE256) similar to 1716 
CKM_ECDSA_SHA256. Only hash functions with conservative collision resistance (such as SHA2-512 or 1717 
SHAKE256 with 64-byte output size) should be supported to alleviate the collision concern. These 1718 
mechanisms would be readily compatible with both the one-part and the multi-part APIs. Note that 1719 
hash-with-something-then-sign could also be achieved in PKCS#11 by streaming the signing public key to 1720 
the module before the message.  1721 

Specifically for Dilithium, PCKS#11 could use one mechanism for both the one-part and the multi-part 1722 
API as explained in Appendix C.5.1. 1723 

C.5.2.2 Internally (Prehash signature mode) 1724 

Alternatively, pre-hashing could take place in the signature algorithm like with PrehashEdDSA. Specific 1725 
standardization of a Prehash variant of each post-quantum signature scheme would be necessary by 1726 
NIST.  1727 

The difference between PureEdDSA and PrehashEdDSA lies in the Internal Digest step:  1728 

 With PureEdDSA, the Internal Digest is H(r, PK, M). 1729 

 With PrehashEdDSA, the Internal Digest is H(str, r, PK, PH(M)), where str is some domain separa-1730 
tion string, and PH denotes the pre-hash function. 1731 

The additional input in Prehash mode provides domain separation between digest-then-sign and direct 1732 
signature use-cases. As this requires a modification in the Internal Digest, it is not a generic 1733 
transformation that would use the signature algorithm as a black box.  1734 

This approach prevents the use of improper hashes and ensures the digest is performed inside the 1735 
crypto module without user manipulation.  1736 

The issue with offering two options, one with digesting in the signature itself and one without, is that it 1737 
reduces interoperability. It also increases technical debt for implementers that now need to support two 1738 
variants. The wide adoption of PureEdDSA and the limited use of PrehashEdDSA demonstrate that. What 1739 
is more, giving the option to use a signature that pre-hashes internally could be an unnecessary 1740 
impediment. If there is no hard-coded digest option in the signature, then a use-case would need to 1741 
consciously choose the slightly less secure digest-then-sign option. 1742 

If it was standardized, use-cases requiring a digest-then-sign workflow should use it within the Prehash 1743 
variant of the signature scheme. One use-case that could make use of this with large messages is 1744 
PKCS#11. Support for the Pure and Prehash variants in PKCS#11 could be achieved similarly to what was 1745 
done for CKM_EDDSA by using different mechanism parameters (like CK_EDDSA_PARAMS). For 1746 
example, CKM_FALCON would mean pure Falcon by default, and it would support an optional 1747 
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parameter CK_FALCON_PARAMS = { prehash: SHAKE256 } to switch to hash-then-sign. Obviously, the 1748 
Prehash variant would support the multi-part API without size constraints, unlike the pure variant. 1749 

C.5.2.3 By Externalizing the Internal Digest 1750 

To avoid streaming a large message to a constrained crypto module, it may be tempting to separate the 1751 
internal randomized digest from the post-quantum signature. Then the randomized digest could be 1752 
computed locally, and only the short result would be sent to the crypto module for signing. More 1753 
precisely, the signer could compute the following: 1754 

 μ=SHAKE256(tr||M) locally for Dilithium; send μ to the crypto module for signing. 1755 

 P=HashToPoint(r||M, q, n) locally for Falcon; send P to the crypto module for signing. 1756 

 d=H_msg(R||PK.seed||PK.root||M) locally for SPHINCS+; send d to the crypto module. 1757 

However, this paradigm changes the security model for these signatures by splitting the operation over 1758 
two separate suboperations. Doing so will most likely be incompatible with cryptographic certifications 1759 
like FIPS or Common Criteria. Moreover, in the case of Falcon and SPHINCS+, the possibility of 1760 
malformed digests even introduces a mathematical flaw that makes the algorithms insecure. More 1761 
details on the implications are given in Appendix D. 1762 

1763 C.6 Conclusion 
In this appendix, we evaluated the pros and cons of signing a message digest with a post-quantum 1764 
signature scheme which can sign arbitrary messages. Some use-cases could prefer to digest the message 1765 
before passing the digest to the signing algorithm for various reasons. We evaluated the alternatives 1766 
and concluded that the pure post-quantum signatures without any sort of digest will probably be the 1767 
choice for most use-cases. For some applications, digesting before signing may still make sense. 1768 
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1769 Appendix D Hash then Sign Previous Discussions 

1770 D.1 Internet Research Task Force (IRTF) Crypto Forum Research Group 
1771 (CFRG)  

The Internet Research Task Force (IRTF) Crypto Forum Research Group (CFRG) discussed the topic in a 1772 
long thread. Various thoughts were expressed which mainly focused around the security concerns of 1773 
digest-then-sign and alternatives. One message argued that the Internal Digest in Dilithium limits the 1774 
usability of any found collision to a specific public key but does not frustrate a collision attack against a 1775 
specific public key. Someone described current HSM use-cases that leverage digests before signing like 1776 
firmware signing (PKC#11), trusted platform modules (TPMs), and Time Stamp Authorities (TSAs).  1777 

The collision resistance requirement of digest-then-sign approach was also discussed. Some argued that 1778 
if the hash / digest function is broken in terms of collision, then we would have more problems with our 1779 
post-quantum signatures and that we generally can trust the SHA-2 and SHA-3 families as collision 1780 
resistant. Some proposed the digesting to be in the envelope, out of the signature. Another response 1781 
made the point that we could hash and randomize but not move that out of the signature. It also argued 1782 
that HSMs trusting the digest can be dangerous, and using the randomization in the signature allows for 1783 
better security analysis.  1784 

One more argument for the advantage of binding the signature to the public key was also brought up in 1785 
the thread. Someone also made the point that the EdDSA went through the exercise of defining two 1786 
versions, Pure and Prehash, which did not lead to interoperability as only the former was predominantly 1787 
implemented. There were concerns voiced regarding the size of the message input for HSMs and other 1788 
use-cases. Different approaches to message streaming digesting were also discussed. 1789 

The topic was brought up in another thread in IETF’s CFRG WG, where similar arguments were made. 1790 
The collision resistance concern was discussed again in that thread. One response stressed the 1791 
importance of using a conservative hash function like SHA2-512 or SHAKE256 for digest-then-sign, and 1792 
others pointed out that hashes of today are secure and give us sufficient collision resistance. Another 1793 
response stressed that taking the randomizing digest out of Falcon is a dangerous idea.  1794 

In summary of these discussions, signing without digesting first is a more secure approach which allows 1795 
better security analysis of signature schemes that can take arbitrary size messages as input. Digest-then-1796 
sign comes with a collision resistance requirement for the digest function, which can generally be 1797 
assumed for modern digest functions. So the collision requirement is not a strong one. Taking the 1798 
randomized hashing out of the signature is probably a bad idea in terms of cryptographic risk. Digesting 1799 
very large messages can be a concern for some use-cases that incrementally digest the message.  1800 

1801 D.2 IETF LAMPS (Limited Additional Mechanisms for PKIX and SMIME) 
1802 Working Group (LAMPS WG) 

The topic was also discussed in two threads (PT7jTztNfI1K6DkS7bQ_SkljoVI, 1803 
xchLLz0kdM1sUjlCBYNZaPj4jt4) in IETF’s LAMPS WG, which deals with certificates and CMS. The former 1804 
thread overlaps with the CFRG thread summarized in Appendix D.1. In the latter, a few participants 1805 
expressed support for pre-hashing in principle but without laying out the actual mainstream use-cases. 1806 

https://mailarchive.ietf.org/arch/msg/cfrg/eYnEUnuGsEYgJuISIhxLIZTNXy8/
https://mailarchive.ietf.org/arch/msg/spasm/gQ6OM7lX_W9WTWvZ4LgDINszAVA/
https://mailarchive.ietf.org/arch/msg/cfrg/8vgOkeuwwklvWN2Z7PAN-FC9FB0/
https://mailarchive.ietf.org/arch/msg/cfrg/qX_3nlSF6UcvW2DK1ADJ7bTS340/
https://mailarchive.ietf.org/arch/msg/cfrg/jqRuA_88riKvVACVhcGreTQyelU/
https://mailarchive.ietf.org/arch/msg/cfrg/jqRuA_88riKvVACVhcGreTQyelU/
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/eAaiJO1qzkA/m/K66R_ftNBwAJ
https://mailarchive.ietf.org/arch/msg/cfrg/JRmgT5PFz4kXFiXQXarVO88V5uY/
https://mailarchive.ietf.org/arch/msg/cfrg/qdeYWxyGeHlb4A9tuKZsbTBnqGY/
https://mailarchive.ietf.org/arch/msg/cfrg/nqLykaoT2oA3ULF3XxUqIc62Ty8/
https://mailarchive.ietf.org/arch/msg/cfrg/IivvaRNFm4zzSmu-RSCvwto_3-4/
https://mailarchive.ietf.org/arch/msg/cfrg/IivvaRNFm4zzSmu-RSCvwto_3-4/
https://mailarchive.ietf.org/arch/msg/spasm/PT7jTztNfI1K6DkS7bQ_SkljoVI/
https://mailarchive.ietf.org/arch/msg/spasm/xchLLz0kdM1sUjlCBYNZaPj4jt4/
https://datatracker.ietf.org/wg/lamps/about/
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1807 D.3 NIST PQC Forum 
The digest-then-sign discussion also took place in a long thread in NIST’s PQC email list. The trigger for 1808 
this discussion was the PKCS#11 incremental API incompatibility with big messages and the current 1809 
arbitrary message signing approach of post-quantum signatures.  1810 

The initial message pointed out that PKCS#11 uses a one-part C_Sign, C_Verify and multi-part APIs 1811 
C_SignInit/Update/Final, C_VerifyInit/Update/Final which traditionally assumed you can receive and 1812 
hash the whole message before signing it with RSA and ECDSA. The multi-part API digests the message 1813 
incrementally until it completes the hash and signs it. So, to make it work for quantum-safe signatures, 1814 
you would need sign the hash of the message with the new signature. The thread pointed out the 1815 
collision concern with digest-then-sign and proposed various approaches by changing the way 1816 
randomized hashing takes place in PQC signatures, but that would affect their security. One could also 1817 
randomize the hash of the message H(nonce, M) to improve the collision concern, but that would not 1818 
work because the nonce is part of the signature which comes after the message. That means that the 1819 
nonce will not be available along with the whole message as the verifier starts incremental verification 1820 
of very big messages that can’t be buffered. Reversing the order in randomized hashing of the message 1821 
does not work because of collision concerns due to length extension attacks. 1822 

Another approach would be taking the randomized hashing of these signatures out of the signature and 1823 
doing it independently. As it was pointed out, that could have detrimental effects on security, so it is not 1824 
a good option. Another approach would be to digest the message only for the multi-part APIs and not 1825 
the one-part ones. The challenge with that would be that there would be two different approaches for 1826 
the incremental and one-part method. That seemed to be the case with ECDSA as well in PKCS#11 with 1827 
the CKM_ECDSA and CKM_ECDSA_SHA256 mechanisms.  1828 

One more idea mentioned was for the incremental interface only to digest H(pk||m) as the PK will be 1829 
available before starting the incremental verification and incrementally calculating the digest would be 1830 
possible. The counterargument against that was the one-part and incremental interface should use the 1831 
same signing method, and not one without pre-hashing and one with pre-hashing H(pk||m). 1832 

The NIST PQC alias saw three more threads (PLAkpoagAQAJ, BuZZpWLaAgAJ, 4MBurXr58Rs) on the topic 1833 
which overlap with the aforementioned long thread in NIST’s PQC email list and the IETF threads 1834 
discussed in Appendix D above. One comment supported digesting in the signature because we don’t 1835 
have to expose the hash in the API, test vectors are comprehensive, and improper hash functions are 1836 
not a concern. 1837 

1838 D.4 Liboqs and OpenSSL 1.1.1 Signature Performance Platform Details 
model name      : on Intel(R) Xeon(R) Platinum 8175M CPU @ 2.50GHz 1839 
Target platform:  x86_64-Linux-5.4.241-160.348-aws 1840 
Compiler:         gcc (7.3.1) 1841 
Compile options:  [-Wa,--noexecstack;-O3;-fomit-frame-pointer;-fdata-sections;-ffunction-1842 
sections;-Wl,--gc-sections;-Wbad-function-cast] 1843 
OQS version:      0.8.0-rc1 1844 
Git commit:       unknown 1845 
OpenSSL enabled:  Yes (OpenSSL 1.1.1g FIPS  21 Apr 2020) 1846 
AES:              NI 1847 
SHA-2:            OpenSSL 1848 

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/CO8cfknSqwA/m/3oSaTDPQAgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cIsc6tUY9Rw/m/PLAkpoagAQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/yg9z4keaEf4/m/BuZZpWLaAgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/CO8cfknSqwA/m/3oSaTDPQAgAJ
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SHA-3:            OpenSSL 1849 
OQS build flags:  OQS_DIST_BUILD OQS_OPT_TARGET=generic CMAKE_BUILD_TYPE=Release  1850 
CPU exts active:  ADX AES AVX AVX2 AVX512 BMI1 BMI2 PCLMULQDQ POPCNT SSE SSE2 SSE3 1851 
 1852 
OpenSSL 1.1.1g 21 Apr 2020 1853 
built on: Mon May  8 16:50:49 2023 UTC 1854 
options:bn(64,64) md2(char) rc4(16x,int) des(int) aes(partial) idea(int) blowfish(ptr)  1855 
compiler: gcc -fPIC -pthread -m64 -Wa,--noexecstack -Wall -O3 -O2 -g -pipe -Wall -Wp,-1856 
D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector-strong --param=ssp-buffer-size=4 -grecord-1857 
gcc-switches -m64 -mtune=generic -Wa,--noexecstack -DOPENSSL_USE_NODELETE -DL_ENDIAN -1858 
DOPENSSL_PIC -DOPENSSL_CPUID_OBJ -DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -1859 
DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -1860 
DKECCAK1600_ASM -DRC4_ASM -DMD5_ASM -DAESNI_ASM -DVPAES_ASM -DGHASH_ASM -DECP_NISTZ256_ASM -1861 
DX25519_ASM -DPOLY1305_ASM -DZLIB -DNDEBUG -DPURIFY -DDEVRANDOM="\"/dev/urandom\""  1862 

1863 D.5 Security Issues when Externalizing the Internal Digest 
Externalizing the Internal Digest out of the signature updates the security model, which increases the 1864 
attack surface by allowing an attacker to send malicious specially crafted “digests” to the crypto module. 1865 
Such an attack would mathematically break Falcon and SPHINCS+. For instance: 1866 

 Multiple Falcon signatures of the same point P=HashToPoint(r||M, q, n) may reveal information 1867 
about the private key (hence the randomization of the digest). If the client is responsible for 1868 
computing HashToPoint, an attacker could send the same point multiple times to obtain multi-1869 
ple valid signatures, and extract the private key. 1870 

 If the internal SPHINCS+ digest is an attacker-controlled string, instead of the output of a hash 1871 
function, then an attacker would be able to choose which parts of the FORS tree it learns at each 1872 
signature. Sending some specially crafted fake digests would be enough to forge a valid signa-1873 
ture for a target message. 1874 

Additionally, delegating the randomized hash to the client application means the client must access 1875 
resources it normally shouldn’t, such as parts of the private key or sampling randomness, which is not 1876 
always a safe assumption. For instance: 1877 

 For Falcon, the Internal Digest is P=HashToPoint(r||M, q, n) where r is a random nonce. This 1878 
means the client application has to sample its own randomness. 1879 

 For SPHINCS+, the Internal Digest is d=H_msg(R||PK.seed||PK.root||M). The issue is with R. 1880 
Normally, it is generated by hashing a part of the private key, a random seed, and the message. 1881 
The most obvious issue here is the access to the part of the private key. A single-pass SPHINCS+ 1882 
variant where R would be sampled randomly would partially solve this, but it would mean that 1883 
the client application has to sample its own randomness instead. 1884 

Such changes would most likely be forbidden in certified implementations.  1885 

For Dilithium, the Internal Digest is µ=H(tr||M) where tr=H(pk) is normally precomputed as part of the 1886 
private key. This is non-sensitive information, so the client could read this field (or recompute it itself 1887 
from the public key). Decoupling the calculation of μ and the rest of the signature would make 1888 
implementations more complicated. It would also mean the cryptographic boundary is split between 1889 
two entities, but the implications are not as serious as for Falcon and SPHINCS+. 1890 
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