

NIST SPECIAL PUBLICATION 1800-38C

Migration to Post-Quantum
Cryptography Quantum Readi-
ness: Testing Draft Standards

Volume C:
Quantum-Resistant Cryptography Technology Interoperability and Performance Report

William Newhouse
Murugiah Souppaya
National Institute of Standards
and Technology
Rockville, Maryland

William Barker
Dakota Consulting
Silver Spring, Maryland

Chris Brown
The MITRE Corporation
Mclean, Virginia

Panos Kampanakis
Amazon Web Services, Inc.
(AWS)
Arlington, Virginia

Jim Goodman
Crypto4A Technologies, Inc.
Ontario, Canada

Julien Prat
Robin Larrieu
CryptoNext Security
Paris, France

John Gray
Mike Ounsworth
Cleandro Viana
Entrust
Minneapolis, Minnesota

Hubert Le Van Gong
JPMorgan Chase Bank, N.A.
Jersey City, New Jersey

Kris Kwiatkowski
PQShield
Oxford, United Kingdom

Anthony Hu
wolfSSL
Seattle, Washington

Robert Burns
Thales DIS CPL USA, Inc.
Austin, Texas

Christian Paquin
Microsoft
Redmond, Washington

Jane Gilbert
Gina Scinta
Thales Trusted Cyber Technolo-
gies
Abingdon, MD

Eunkyung Kim
Samsung SDS Co., Ltd.
Seoul, Republic of South Korea

Volker Krummel
Utimaco
Nordrhein-Westfalen, Germany

December 2023

PRELIMINARY DRAFT

This publication is available free of charge from
https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-quantum-cryptographic-algorithms

https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-quantum-cryptographic-algorithms

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography ii

DISCLAIMER 1

Certain commercial entities, equipment, products, or materials may be identified by name or company 2
logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 3
experimental procedure or concept adequately. Such identification is not intended to imply special sta-4
tus or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it in-5
tended to imply that the entities, equipment, products, or materials are necessarily the best available 6
for the purpose. 7

While NIST and the NCCoE address goals of improving management of cybersecurity and privacy risk 8
through outreach and application of standards and best practices, it is the stakeholder’s responsibility to 9
fully perform a risk assessment to include the current threat, vulnerabilities, likelihood of a compromise, 10
and the impact should the threat be realized before adopting cybersecurity measures such as this 11
recommendation. 12

13

National Institute of Standards and Technology Special Publication 1800-38C Natl. Inst. Stand. Technol. 14
Spec. Publ. 1800-38C, 100 pages, (December 2023), CODEN: NSPUE2 15

FEEDBACK 16

You can improve this initial public draft by submitting comments. 17

This initial draft offers: (1) identification of compatibility issues between quantum-ready algorithms; (2) 18
resolution of compatibility issues in a controlled, non-production environment; and (3) reduction of time 19
spent by individual organizations performing similar interoperability testing for their own PQC migration 20
efforts. 21

You can improve this initial public draft by submitting comments. We are always seeking feedback on 22
our publications and how they support our readers’ needs. We are particularly interested in learning 23
from readers if this initial draft is helpful to you and what you want to see covered in future versions of 24
this publication. 25

Comments on this publication may be submitted to: applied-crypto-pqc@nist.gov 26

Public comment period: December 19, 2023 through February 20, 2024 27

All comments are subject to release under the Freedom of Information Act. 28

National Cybersecurity Center of Excellence 29
National Institute of Standards and Technology 30

100 Bureau Drive 31
Mailstop 2002 32

Gaithersburg, MD 20899 33
Email: nccoe@nist.gov 34

mailto:applied-crypto-pqc@nist.gov
mailto:nccoe@nist.gov

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography iii

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE 35

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards 36
and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and 37
academic institutions work together to address businesses’ most pressing cybersecurity issues. This 38
public-private partnership enables the creation of practical cybersecurity solutions for specific 39
industries, as well as for broad, cross-sector technology challenges. Through consortia under 40
Cooperative Research and Development Agreements (CRADAs), including technology partners—from 41
Fortune 50 market leaders to smaller companies specializing in information technology security—the 42
NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity 43
solutions using commercially available technology. The NCCoE documents these example solutions in 44
the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework 45
and details the steps needed for another entity to re-create the example solution. The NCCoE was 46
established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, 47
Maryland. 48

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit 49
https://www.nist.gov. 50

NIST CYBERSECURITY PRACTICE GUIDES 51

NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity 52
challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the 53
adoption of standards-based approaches to cybersecurity. They show members of the information 54
security community how to implement example solutions that help them align with relevant standards 55
and best practices, and provide users with the materials lists, configuration files, and other information 56
they need to implement a similar approach. 57

The documents in this series describe example implementations of cybersecurity practices that 58
businesses and other organizations may voluntarily adopt. These documents do not describe regulations 59
or mandatory practices, nor do they carry statutory authority. 60

KEYWORDS 61

algorithm; cryptography; encryption; identity management; key establishment and management; post-62
quantum cryptography; public-key cryptography; quantum-resistant 63

ACKNOWLEDGMENTS 64

We are grateful to the following individuals for their generous contributions of expertise and time. 65

Name Organization

Dusan Kostic Amazon Web Services, Inc. (AWS)

Jake Massimo Amazon Web Services, Inc. (AWS)

https://www.nccoe.nist.gov/
https://www.nist.gov/

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography iv

Name Organization

Avani Wildani Cloudflare, Inc.

Bruno Couillard Crypto4A Technologies, Inc.

Jean-Charles CryptoNext Security

Natasha Eastman Cybersecurity and Infrastructure Security Agency (CISA)

Garfield Jones Cybersecurity and Infrastructure Security Agency (CISA)

Nancy Pomerleau Cybersecurity and Infrastructure Security Agency (CISA)

Judith Furlong Dell Technologies

Corey Bonnell DigiCert

Jayaram Chandrasekar Entrust

Boris Balacheff HP, Inc.

Tommy Charles HP, Inc.

Thalia Laing HP, Inc.

Alyson Comer IBM

Anne Dames IBM

Richard Kisley IBM

Bruce Rich IBM

Kelsey Holler Information Security Corporation

Roy Basmacier Keyfactor

David Hook Keyfactor

Alexander Scheel Keyfactor

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography v

Name Organization

Ted Shorter Keyfactor

Janet Jones Microsoft

Benjamin Rodes Microsoft

Lily Chen National Institute of Standards and Technology (NIST)

David Cooper National Institute of Standards and Technology (NIST)

Daniel Eliot National Institute of Standards and Technology (NIST)

Dustin Moody National Institute of Standards and Technology (NIST)

Andy Regenscheid National Institute of Standards and Technology (NIST)

Rebecca Guthrie National Security Agency (NSA)

Mike Jenkins National Security Agency (NSA)

Brendan Zember National Security Agency (NSA)

Sean Morgan Palo Alto Networks Public Sector, LLC

Graeme Hickey PQShield

Michael Hutter PQShield

Axel Poschmann PQShield

Evgeny Gervis SafeLogic, Inc.

Yoonchan Jhi Samsung SDS Co., Ltd.

Changhoon Lee Samsung SDS Co., Ltd.

Marc Manzano SandboxAQ

Tarun Sibal SandboxAQ

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography vi

Name Organization

Mark Carney Santander

Daniel Cuthbert Santander

Jaime Gomez Santander

Suvi Lampila SSH Communications Security Corp

Eric Amador Thales DIS CPL USA, Inc.

Daniel Apon The MITRE Corporation

Kaitlyn Laohoo The MITRE Corporation

Neil McNab The MITRE Corporation

Jessica Walton The MITRE Corporation

Lee E. Sattler Verizon

Russ Housley Vigil Security

David Ott VMWare

Dimitrios Sikeridis VMWare

The Technology Partners/Collaborators who participated in this build submitted their capabilities in 66
response to a notice in the Federal Register. Respondents with relevant capabilities or product 67
components were invited to sign a Cooperative Research and Development Agreement (CRADA) with 68
NIST, allowing them to participate in a consortium to build this example solution. We worked with: 69

Migration to Post-Quantum Cryptography Technology Collaborators

Amazon Web Services, Inc.
(AWS)

Information Security Corporation Samsung SDS Co., Ltd.

Cisco Systems, Inc. InfoSec Global SandboxAQ

Cloudflare, Inc. ISARA Corporation Santander

https://aws.amazon.com/
https://aws.amazon.com/
https://infoseccorp.com/
https://www.samsungsds.com/
https://www.cisco.com/
https://www.infosecglobal.com/
https://www.sandboxaq.com/
https://www.cloudflare.com/
https://www.isara.com/
https://www.santander.com/en/home

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography vii

Migration to Post-Quantum Cryptography Technology Collaborators

Crypto4A Technologies, Inc. JPMorgan Chase Bank, N.A. SSH Communications Security
Corp

CryptoNext Security Keyfactor Thales DIS CPL USA, Inc.

Cybersecurity and Infrastruc-
ture Security Agency (CISA) Microsoft Thales Trusted Cyber Technolo-

gies

Dell Technologies National Security Agency (NSA) Utimaco

DigiCert Palo Alto Networks Public Sector,
LLC Verizon

Entrust PQShield VMware, Inc.

HP, Inc. QuantumXchange wolfSSL

IBM SafeLogic, Inc.

DOCUMENT CONVENTIONS 70

The terms “shall” and “shall not” indicate requirements to be followed strictly to conform to the 71
publication and from which no deviation is permitted. The terms “should” and “should not” indicate that 72
among several possibilities, one is recommended as particularly suitable without mentioning or 73
excluding others, or that a certain course of action is preferred but not necessarily required, or that (in 74
the negative form) a certain possibility or course of action is discouraged but not prohibited. The terms 75
“may” and “need not” indicate a course of action permissible within the limits of the publication. The 76
terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or causal. 77

CALL FOR PATENT CLAIMS 78

This public review includes a call for information on essential patent claims (claims whose use would be 79
required for compliance with the guidance or requirements in this Information Technology Laboratory 80
(ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication 81
or by reference to another publication. This call also includes disclosure, where known, of the existence 82
of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant 83
unexpired U.S. or foreign patents. 84

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in writ-85
ten or electronic form, either: 86

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not 87
currently intend holding any essential patent claim(s); or 88

https://crypto4a.com/
https://www.jpmorgan.com/global
https://www.ssh.com/
https://www.ssh.com/
https://cryptonext-security.com/
https://www.keyfactor.com/
https://cpl.thalesgroup.com/
https://www.cisa.gov/
https://www.cisa.gov/
https://www.microsoft.com/en-us/
https://www.thalestct.com/
https://www.thalestct.com/
https://www.dellemc.com/
https://www.nsa.gov/
https://utimaco.com/
https://www.digicert.com/
https://www.paloaltonetworks.com/
https://www.paloaltonetworks.com/
https://www.verizon.com/
https://www.entrust.com/
https://pqshield.com/
https://www.vmware.com/
https://www.hp.com/us-en/home.html
https://quantumxc.com/cipherinsights/
https://www.wolfssl.com/
https://www.ibm.com/
https://www.safelogic.com/

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography viii

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring 89
to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft 90
publication either: 91

1. under reasonable terms and conditions that are demonstrably free of any unfair discrimination; 92
or 93

2. without compensation and under reasonable terms and conditions that are demonstrably free 94
of any unfair discrimination. 95

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its 96
behalf) will include in any documents transferring ownership of patents subject to the assurance, provi-97
sions sufficient to ensure that the commitments in the assurance are binding on the transferee, and that 98
the transferee will similarly include appropriate provisions in the event of future transfers with the goal 99
of binding each successor-in-interest. 100

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of 101
whether such provisions are included in the relevant transfer documents. 102

Such statements should be addressed to: applied-crypto-pqc@nist.gov 103

mailto:applied-crypto-pqc@nist.gov

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography ix

Contents 104

1 Introduction .. 1 105

2 Project Scope .. 2 106

3 Testing Scope .. 2 107

3.1 Selected Post-Quantum Algorithms ... 3 108

3.2 Protocols, Standards, and Use-Cases ... 3 109

3.3 Out of Scope .. 4 110

4 Collaborators and Their Contributions ... 4 111

5 Secure Shell (SSH) ... 15 112

5.1 Interoperability and Performance Discussion .. 15 113

5.2 Interoperability Testing.. 16 114

5.2.1 PQC Hybrid Key Exchange Test Profile .. 16 115

5.2.2 PQC Hybrid Key Exchange and Authentication Test Profiles 17 116

5.3 Performance Testing .. 17 117

5.4 Lessons Learned ... 18 118

6 Transport Layer Security (TLS) ... 18 119

6.1 Interoperability and Performance Discussion .. 18 120

6.2 Interoperability Testing.. 19 121

6.2.1 PQC Hybrid Key Exchange Test Profile .. 20 122

6.2.2 PQC Hybrid Key Exchange and Authentication Test Profile .. 21 123

6.3 Performance Testing .. 21 124

6.3.1 OQS-OpenSSL .. 22 125

6.3.2 Samsung SDS PQC-TLS (s-pqc-tls) ... 23 126

6.3.3 AWS s2n-tls ... 23 127

6.4 Lessons Learned ... 26 128

7 QUIC ... 27 129

7.1 Interoperability and Performance Discussion .. 27 130

7.2 Interoperability Testing.. 27 131

7.2.1 PQC Hybrid Key Exchange Test Profile .. 27 132

7.2.2 PQC Hybrid Key Exchange and Authentication Test Profiles 28 133

7.3 Performance Testing .. 28 134

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography x

7.4 Lessons Learned ... 31 135

8 X.509 .. 31 136

8.1 Interoperability and Performance Discussion .. 31 137

8.1.1 Introduction .. 31 138

8.1.2 X.509 Certificate Formats ... 32 139

8.2 Interoperability Testing.. 33 140

8.2.1 Testing Procedure ... 33 141

8.2.2 Test Profiles ... 34 142

8.2.3 Test Results ... 36 143

8.3 Performance Testing .. 36 144

8.4 Lessons Learned ... 37 145

9 Hardware Security Modules (HSMs) .. 37 146

9.1 Discussion about Interoperability and Performance .. 37 147

9.1.1 OID Usage.. 38 148

9.1.2 Algorithm Versions Tested .. 39 149

9.2 Interoperability Test Results .. 39 150

9.2.1 Basic Capabilities ... 39 151

9.2.2 PQC Key Generation, Export, and Import ... 42 152

9.2.3 PQC Signature Generation and Verification ... 48 153

9.2.4 PQC Key Encapsulation and Decapsulation .. 53 154

9.3 Summary of Results ... 54 155

10 Overall Status and Themes .. 55 156

Appendix A List of Acronyms ... 56 157

Appendix B References ... 59 158

Appendix C Hash and Sign Analysis ... 63 159

C.1 Introduction of the Digest-then-Sign Dilemma .. 63 160

C.1.1 Terminology .. 64 161

C.2 Performance for PQC Signatures ... 64 162

C.3 The EdDSA Precedent .. 66 163

C.4 The PKCS#11 Challenge .. 67 164

C.5 Options for Standardization ... 68 165

C.5.1 No-digest Before Signing .. 68 166

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography xi

C.5.2 Digest-then-sign .. 69 167

C.6 Conclusion ... 72 168

Appendix D Hash then Sign Previous Discussions 73 169

D.1 Internet Research Task Force (IRTF) Crypto Forum Research Group (CFRG) 73 170

D.2 IETF LAMPS (Limited Additional Mechanisms for PKIX and SMIME) Working Group 171
(LAMPS WG) .. 73 172

D.3 NIST PQC Forum ... 74 173

D.4 Liboqs and OpenSSL 1.1.1 Signature Performance Platform Details 74 174

D.5 Security Issues when Externalizing the Internal Digest .. 75 175

 176

List of Figures 177

Figure 1 TLS 1.3 PQC hybrid key exchange performance between NCCoE lab s2n-tls clients and OQS 178
server test.openquantumsafe.org .. 24 179

Figure 2 TLS 1.3 PQC hybrid key exchange performance between locally connected s2n-tls client and 180
server using simulated round-trip delay ... 25 181

Figure 3 TLS 1.3 PQC hybrid key exchange performance between locally connected s2n-tls client and 182
server using simulated round-trip delay and 3% loss probability .. 26 183

Figure 4 QUIC handshake time with classical and Dilithium-2, 3 WebPKI with QUIC’s default congestion 184
control (~14 KB), default initial round-trip kInitialRtt (333 ms), and amplification protection (3x) 29 185

Figure 5 PQC QUIC handshake time with PQC hybrid key exchange and Dilithium-3 WebPKI equivalent 186
signatures with various QUIC amplification window, initcwnd and kInitialRtt 30 187

List of Tables 188

Table 1 Products and Technologies .. 10 189

Table 2 Profile 1 interoperability test results for PQC key exchange in SSH with NCCoE collaborator 190
components ... 16 191

Table 3 Profile 1 interoperability test results for PQC key exchange in TLS 1.3 with NCCoE collaborator 192
components ... 20 193

Table 4 Profile 2 interoperability test results for PQC key exchange and authentication in TLS 1.3 with 194
NCCoE collaborator components .. 21 195

Table 5 Profile 1 performance test results for PQC key exchange and authentication in TLS 1.3 with 196
NCCoE collaborator components .. 22 197

Table 6 Profile 2 performance test results for PQC key exchange and authentication in TLS 1.3 with 198
NCCoE collaborator components .. 22 199

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography xii

Table 7 Performance test results for PQC key exchange and authentication in TLS 1.3 using Samsung 200
SDS PQC-TLS (s-pqc-tls) .. 23 201

Table 8 Algorithm configurations included in the PURE_PQ_SIG test profile 34 202

Table 9 Algorithm configurations included in the PURE_PQ_KEM test profile 35 203

Table 10 Algorithm configurations included in the HYBRID_CONCATENATED test profile 35 204

Table 11 Algorithm configurations included in the HYBRID_BOUND test profile 35 205

Table 12 Algorithm configurations included in the HYBRID_COMPOSITE test profile 35 206

Table 13 Algorithm configurations included in the HYBRID_CATALYST test profile 35 207

Table 14 Algorithm configurations included in the HYBRID_CHAMELEON test profile 36 208

Table 15 Summary of OID allocations ... 38 209

Table 16 Algorithm versions tested .. 39 210

Table 17 Key generation capabilities by HSM vendor ... 40 211

Table 18 Digital signature capabilities by HSM vendor ... 41 212

Table 19 Key encapsulation capabilities by HSM vendor .. 42 213

Table 20 Test results for HSM key generation, export, and import ... 43 214

Table 21 Test results for HSM signature generation and verification .. 48 215

Table 22 Test results for HSM key encapsulation and decapsulation .. 54 216

Table 23 Mean time (μs) of post-quantum signature sign and verify for plaintext sizes of 1K, 10K, 100K, 217
1MB, 100MB on Intel(R) Xeon(R) Platinum 8175M CPU @ 2.50GHz .. 64 218

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 1

1 Introduction 219

In recent years, there has been a substantial amount of research on developing quantum computers — 220
machines that exploit quantum mechanical phenomena to solve mathematical problems that are 221
difficult or intractable for conventional computers. If large-scale quantum computers are ever built, they 222
will be able to break many of the public-key cryptographic systems currently in use. This would seriously 223
compromise the confidentiality and integrity of electronically accessible digital information on a global 224
scale. NIST has led an effort to develop standards for cryptographic systems that are secure against both 225
quantum and classical computers and can interoperate with existing communications protocols and 226
networks. NIST’s National Cybersecurity Center of Excellence (NCCoE) has initiated a project intended to 227
facilitate and accelerate migration from current quantum-vulnerable cryptography to sufficiently 228
quantum-resistant cryptography. 229

The question of when a cryptanalytically relevant quantum computer (CRQC) computer will be built is 230
uncertain. While in the past it was less clear that large quantum computers were a physical possibility, 231
many scientists now believe them to merely represent a solvable engineering challenge. Some engineers 232
predict that within the next decade, sufficiently large quantum computers will be built to break 233
essentially all public key schemes currently in use. 234

It has taken almost two decades to deploy our current public key cryptography infrastructure, and 235
historically, it has taken decades to replace cryptographic algorithms in use in our information systems 236
after they have been determined to be vulnerable to cryptanalysis. Even now, intelligence organizations 237
and criminal organizations are recording cryptographically protected information that is sensitive and 238
has long-term value for future exploitation by quantum computers. Therefore, regardless of whether we 239
can accurately estimate when quantum computing will be sufficiently mature to enable exploitation of 240
current public-key cryptographic systems, we must begin now to prepare our information security 241
systems to be able to resist quantum computing-based attacks. 242

In 2021, the NCCoE formally initiated its Migration to Post-Quantum Cryptography (PQC) project [1] by 243
issuing an open invitation to commercial and open-source software and hardware technology providers, 244
including those experienced in creating cryptographic technologies, to participate in demonstrating 245
technologies and tools that can provide organizations with insights and findings that support their 246
migrations to PQC. 247

Together with our project consortium members, this project takes a multi-step approach to providing 248
practical demonstrations supporting timely migration from the current set of public-key cryptographic 249
algorithms to replacement post-quantum cryptographic algorithms that are resistant to quantum 250
computer-based attacks. The project will demonstrate technical actions which are consistent with the 251
steps identified in the “Quantum-Readiness: Migration to Post-Quantum Cryptography” factsheet [2] 252
created in partnership with the U.S. Department of Homeland Security’s Cybersecurity & Infrastructure 253
Security Agency (CISA), the National Security Agency (NSA), and NIST: 254

 Establish a Quantum-Readiness Roadmap 255

 Prepare a Cryptographic Inventory 256

 Discuss Quantum-Readiness Roadmaps with Technology Vendors 257

https://csrc.nist.gov/news/2023/three-draft-fips-for-post-quantum-cryptography

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 2

 Determine Supply Chain Quantum-Readiness 258

2 Project Scope 259

The Migration to PQC project includes an industry consortium who met in June 2022 for a kickoff 260
meeting in which each consortium member presented their potential technology and areas of expertise 261
as contributions to the overall project. The project established two workstreams focusing on specific 262
aspects of the migration challenge: the Quantum-Vulnerable Cryptography Discovery Workstream and 263
the Interoperability and Performance of PQC Algorithms Workstream. Interested consortium members 264
engage in the development of the scope and outcome of each workstream. 265

In the Interoperability and Performance Workstream outlined in this volume, a subset of consortium 266
members contributed working implementations of pre-standardized PQC algorithms in a variety of 267
scenarios, which included the Transport Layer Security (TLS) protocol, Secure Shell (SSH) protocol, and 268
hardware security modules (HSMs). NIST’s NCCoE has begun the process of testing pre-standardized 269
post-quantum implementations in a lab environment to ensure that PQC will work in practice before 270
standards are complete and commercial implementations are finalized, in alignment with Office of 271
Management and Budget (OMB) M-23-02 [3]. Where interoperability testing has already been ongoing 272
in other venues, such as the X.509 certificate Internet Engineering Task Force (IETF) hackathon, we 273
leverage and highlight the outcomes from our consortium members in those venues. 274

Interoperability testing of NIST pre-standardized post-quantum cryptographic algorithms was identified 275
as a core focus area to support the ability of technology vendors and standards bodies to migrate and 276
develop new products that utilize PQC. Organizations that procure systems and software implementing 277
PQC will be able to learn about the quantum-readiness of technologies they are already using and 278
technologies they are procuring to protect their systems. Benchmarking performance metrics from tests 279
in our lab will assist our consortium members and any technology vendor in optimizing their 280
implementations as they move toward production-grade status. Understanding performance metrics of 281
post-quantum-ready algorithms will play a crucial role in motivating technology providers to provide 282
technologies that will enable organizations’ migrations, and will provide initial data on which post-283
quantum cryptographic algorithm is best suited for specific use cases. 284

The primary audience for this report is cryptographic protocol designers and technology 285
developers/producers responsible for implementation of PQC standards. Secondarily, security 286
architects, system administrators, and others responsible for monitoring the state of implementation of 287
PQC standards in technology may also benefit from this report. 288

The remainder of this document summarizes the outcomes from the Interoperability and Performance 289
Workstream testing that have occurred thus far, in which we identified the challenging problems and 290
bottlenecks that integrators will face when transitioning systems to post-quantum-ready algorithms. 291
Each section details the test participants, methodologies, and lessons learned from each Interoperability 292
and Performance work item. 293

3 Testing Scope 294

For the purposes of interoperability and performance testing, the collaborators agreed on a common 295
scope that enabled them to test their implementations with standards that are commonly used and are 296

https://github.com/IETF-Hackathon/pqc-certificates

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 3

expected to or have started to migrate to quantum-safe algorithms. In summary, interoperability testing 297
within this context enables: 298

 identification of compatibility issues between quantum-ready algorithms; 299

 resolution of compatibility issues in a controlled, non-production environment; and 300

 reduction of time spent by individual organizations performing similar interoperability testing 301
for their own migration efforts. 302

3.1 Selected Post-Quantum Algorithms 303

Workstream participants experimented with post-quantum algorithms listed below. 304

 CRYSTALS-Kyber as the preferred post-quantum Key Encapsulation Mechanism (KEM) 305

 CRYSTALS-Dilithium as the preferred post-quantum signature algorithm 306

 Falcon as a post-quantum signature algorithm 307

 SPHINCS+ as a post-quantum signature algorithm picked by NIST at the end of Round 3 308

 Stateful hash-based signatures standardized in NIST Special Publication (SP) 800-208 [4] tested 309
in the context of HSMs 310

At the time of this testing, there were limited implementations and evaluations of the candidate KEMs 311
still in the running in the fourth round of NIST’s Post-quantum Cryptography Standardization process. As 312
a result, we did not include any Round 4 KEMs or new additional signatures in our experiments. NIST has 313
also requested comments on the standardization of key establishment and digital signature schemes 314
specified in: 315

 FIPS 203, Module-Lattice-Based Key-Encapsulation Mechanism Standard 316

 FIPS 204, Module-Lattice-Based Digital Signature Standard 317

 FIPS 205, Stateless Hash-Based Digital Signature Standard 318

3.2 Protocols, Standards, and Use-Cases 319

The protocols, standards, and use-cases outlined in this section were selected to leverage existing work 320
that was prioritized by the participating organizations. These included transport protocols TLS 1.3 321
(Section 6), SSH (Section 5), and QUIC (Section 7). They also included X.509 certificates (Section 8), which 322
are ubiquitously used for authentication. As many of the participating organizations were HSM 323
manufacturers (Section 9), they also chose to perform interoperability testing of implemented quantum-324
safe algorithms for HSM use-cases. 325

Additionally, the collaborators explored the topic of stateful hash-based signatures in Appendix C. In 326
contrast to traditional signature schemes where the input is hashed before signing, new quantum-ready 327
signature schemes can sign arbitrary messages without a pre-hash requirement. In this analysis, we 328
evaluated each approach and summarized the advantages and disadvantages for different use-cases and 329
standards. 330

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 4

3.3 Out of Scope 331

There are key protocols, standards, and use cases that are not addressed by the initial testing outlined in 332
this document. They were deemed out of scope due to a prioritization effort to make the most efficient 333
use of the resources available. In the bullets below, we offer additional details as to why specific 334
transport protocols were not chosen. 335

 TLS 1.2. There had been work on post-quantum TLS 1.2 [5][6], but retrofitting post-quantum al-336
gorithms in TLS 1.2 introduces downgrade concerns where a man-in-the-middle can force the 337
two parties to negotiate classical algorithms even though implementations can support and pre-338
fer the PQC algorithms. These concerns are not new. They existed in TLS 1.2 because the data 339
signed in a TLS 1.2 connection does not include the server public key. The IETF recently has been 340
moving towards declaring TLS 1.2 frozen [7], so no new features are expected to make it into 341
the protocol. Thus, we decided to not experiment with PQC and TLS 1.2. 342

 IKEv2/IPsec VPNs. Quantum-safe Internet Key Exchange version 2 (IKEv2) and Internet Protocol 343
Security (IPsec) VPNs have been tested in other efforts [8][9]. Because IKEv2/IPsec VPNs usually 344
stay up for long periods of time and transfer large amounts of data, the performance impact of 345
PQC is considered negligible, as it is amortized over the life of the tunnel. 346

 Datagram Transport Layer Security (DTLS). DTLS 1.3 is a protocol similar to TLS 1.3 that runs 347
over UDP. Other than wolfSSL, there were no other PQC DTLS implementations in the project, so 348
we chose not to experiment with it. DTLS is expected to see similar effects to TLS 1.3, but further 349
testing is necessary to confirm that. There have not been enough studies of PQC DTLS by the re-350
search community. 351

 Message Queuing Telemetry Transport (MQTT) is a message protocol used in the Internet of 352
Things (IoT) space. Other than wolfSSL’s wolfMQTT, no other collaborators supported post-353
quantum MQTT. Thus, we chose not to experiment with it. Note that MQTT uses TLS for tunnel 354
establishment, so it is expected to see similar impact by the new algorithms as TLS. Depending 355
on how quick and short MQTT transactions are, the impact of PQC may not be amortized as with 356
web TLS connections or with IKEv2/IPsec or SSH tunnels, which transfer larger amounts of data. 357

The participants also chose to exclude firmware signing and IoT uses, as collaborators were focusing on 358
different technological uses of cryptography at the time. 359

4 Collaborators and Their Contributions 360

Organizations participating in this project workstream submitted their capabilities in response to an 361
open call in the Federal Register for all sources of relevant security capabilities from academia and 362
industry (vendors and integrators). The following respondents with relevant capabilities or product 363
components (identified as “Technology Partners/Collaborators” herein) signed a Cooperative Research 364
and Development Agreement (CRADA) to collaborate with NIST in a consortium to provide pre-365
standardized post-quantum algorithm implementations. Note that not all respondents will have results 366
published in this version of the report. 367

Amazon Web Services (AWS) 368

AWS research and engineering efforts focus on the continuation of providing cryptographic security for 369
customers, while developing and testing new cryptographic systems that exceed current customers’ 370

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 5

demands and protect against projected future adversaries like quantum computing. AWS has invested in 371
the migration to post-quantum cryptography by contributing to post-quantum key agreement and 372
signature schemes to protect customer data, deploying the new algorithms to AWS services, 373
contributing to quantum-safe standardization, and investigating solutions to migration challenges. 374

Crypto4a 375

Crypto4A Technologies Inc. is a Canadian cybersecurity technology company providing industry-leading, 376
fifth-generation, quantum-safe, crypto-agile HSM, hardware security platforms (HSPs), and PQC 377
migration solutions. Its products and solutions provide processing capabilities for classic and quantum-378
safe cryptography that is built in — not bolted on. Crypto4A enables the cryptographic agility, mobility, 379
and scalability demanded by enterprises and government agencies to secure their digital assets and 380
infrastructure while adapting to changing markets, standards, and requirements. 381

CryptoNext Security 382

Founded in 2019 by Jean-Charles Faugère after over twenty years of academic research in quantum-383
resistant cryptography, CryptoNext Security is a pioneer and leading software startup vendor in PQC 384
technology and solutions, having its headquarters based in Paris. CryptoNext and its founders have been 385
fully engaged in the NIST standardization PQC efforts and a participant to the initial 2016 PQC 386
contenders and is pursuing with the current new calls. CryptoNext is a deeply involved member of 387
various IETF PQC-related workgroups and interoperability trials. 388

CryptoNext offers its Quantum Safe Library (C-QSL), a fully optimized PQC library for various 389
environments, and its Quantum Safe Remediation suite (C-QSR), a multi-layer, natively crypto-agile, PQC 390
standards-compliant and interoperable software suite of technology tools (C-QST) and application 391
plugins (C-QSA) for a broad range of uses such as business applications, secure messaging, HSM, VPN 392
encryptors, PKI, signature and certificate solutions, IoT, and blockchain. CryptoNext works with multiple 393
global industries such as finance, defense, critical infrastructure, and government customers as industry 394
hardware and software technology partners to support them in their post-quantum migration roadmap 395
for long-term efficiency. 396

Entrust 397

Entrust keeps the world moving safely by enabling strong identities, secure payments, and protected 398
data. Entrust offers an unmatched breadth of solutions that are critical to the future of secure 399
enterprises, governments, the people they serve, and the data and transactions associated with them. 400
The company is one of the world’s leading providers of high-assurance, PQ-ready network and data 401
security solutions, and pioneered the application of encryption standards decades ago to release the 402
world’s first public key infrastructure. 403

Entrust is a participating member of the IETF. With NIST recently announcing draft standards for post-404
quantum cryptography, Entrust has incorporated the proposed quantum-safe algorithms to help 405
organizations prepare for the post-quantum world. The company is working with customers on PQ 406
readiness planning and roadmaps, which includes taking inventory of cryptographic assets; building 407
maturity and crypto agility into management of keys, certificates, and cryptography; and deploying post 408
quantum-ready security infrastructures. 409

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 6

IBM 410

IBM is one of the largest multinational technology companies with operations in over 170 countries and 411
is known for its research and development, hardware and software products, servers, storage systems, 412
and networking equipment. It also provides consulting, technology, and business services, such as cloud 413
computing, data analytics, and artificial intelligence (AI). IBM's research and development efforts have 414
contributed to numerous technological innovations, including the development of the first 415
programmable computer and now technological breakthroughs in quantum computing. 416

IBM has scientists and researchers around the globe who deeply believe in the power of the scientific 417
method to invent what’s next for IBM, our clients, and the world. Security and cryptography have long 418
been important areas of research. IBM researchers with their academic and industry partners developed 419
three of the four post-quantum cryptographic algorithms to be standardized by NIST. 420

IBM z16 enterprise server leverages hybrid key agreement schemes and dual signing schemes to protect 421
its infrastructure, and relevant to the project it provides an HSM and software libraries which allow its 422
clients to experiment with FIPS 203 (CRYSTALS Kyber) and FIPS 204 (CRYSTALS Dilithium), two of the 423
primary post-quantum algorithms slated to be standardized. Also, the z16 has been instrumented to 424
support tools which allow users of the cryptographic capabilities of the system to discover the use of 425
vulnerable cryptography, which is an essential step in the migration to quantum-safe algorithms. 426
Additional details about the z16 and the use of the tools for that environment can be found in this IBM 427
Redbook. 428

Information Security Corporation (ISC) 429

Since 1989, Information Security Corporation (ISC) has specialized in the design and development of 430
cybersecurity solutions for PKI credential management, confidentiality, authentication, and automated 431
provisioning of relying applications. ISC has developed a variety of certificate lifecycle management 432
applications and cryptographic web services employing classical as well as quantum-safe public key 433
cryptography. 434

ISC is a member of the OASIS PKCS#11 Technical Committee, several IETF working groups, and various 435
National Information Assurance Partnership (NIAP) Technical Communities that focus on advancing the 436
rapid adoption of standards-based PQC algorithms. ISC’s participation in the NCCoE PQC Migration 437
Project includes providing expertise, historical perspective, and interoperability testing between ISC 438
products and other consortium members’ certificates and HSM APIs to ensure that customers are able 439
to transition to PQC algorithms as quickly as possible. 440

Keyfactor 441

Keyfactor brings digital trust to the hyper-connected world with identity and authentication for every 442
machine, workload, human, and connected thing. By modernizing PKI, automating machine identities, 443
and protecting critical software and product supply chains with secure digital signing and cryptography, 444
Keyfactor helps organizations establish digital trust – then maintain it. 445

Keyfactor is committed to making quantum-ready PKI, signing, and cryptography solutions available to 446
the world, founding and actively supporting widely adopted open-source projects, including EJBCA, 447
SignServer, and the FIPS 140-validated Bouncy Castle Cryptography APIs. As a participating member of 448

https://www.redbooks.ibm.com/abstracts/sg248525.html
https://www.redbooks.ibm.com/abstracts/sg248525.html
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4616

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 7

X9 and the IETF PQC Hackathon, Keyfactor has been following the evolution of NIST PQC standards and 449
has incorporated the proposed algorithms into the Bouncy Castle APIs, which serves as the engine 450
behind their commercial PKI, signing, and certificate management solutions. With quantum-ready 451
solutions and expertise, Keyfactor is working with customers to protect their business and remain 452
resilient in the post-quantum world. 453

Kudelski IoT 454

Kudelski IoT is the Internet of Things division of Kudelski Group and provides end-to-end IoT solutions, 455
IoT product design, and full-lifecycle services to IoT semiconductor and device manufacturers, 456
ecosystem creators, and end-user companies. These solutions and services leverage the group’s 30+ 457
years of innovation in digital business model creation; hardware, software, and ecosystem design and 458
testing; state-of-the-art security lifecycle management technologies and services; and managed 459
operation of complex systems. 460

Kudelski IoT is investing in quantum-resistant technology and the migration to PQC, with a broad 461
products and services portfolio and active research contributions. Kudelski IoT is expanding its Security 462
IP portfolio, adding quantum-resistant algorithms, with optimized performance and minimized resource 463
impacts. These algorithms are designed to be upgradable and are also resilient against side-channel and 464
fault attacks. The expansion also involves extending its key management system (keySTREAM) to 465
facilitate quantum-resistant device lifecycle management, supporting customers throughout the 466
migration to post-quantum solutions. 467

Kudelski IoT has two specialized laboratories that are highly engaged in evaluating the security 468
robustness of algorithms, including quantum-resistant cryptography, by conducting attacks. 469

Microsoft 470

Microsoft is committed to providing secure and trustworthy products and services to its customers. As 471
such, Microsoft has been investing in PQC research, development, experimentation, and collaboration 472
since 2014, playing a role in the emergence of PQC and public standards. In particular, Microsoft 473
submitted four algorithms in NIST’s standardization effort. Microsoft is proud to participate in the Open 474
Quantum Safe project, where they help develop the liboqs library used in this project and by many PQC 475
industry vendors. Microsoft established the Quantum Safe Program, aiming to accelerate and advance 476
all quantum-safe efforts across the company from both technical and business perspectives. 477

PQShield 478

PQShield is a cybersecurity company specializing in PQC, that aims to deliver security and privacy in an 479
increasingly digital world, protecting today’s technology from tomorrow’s attacks. PQShield was the first 480
company to develop quantum-safe technology on microchips, in applications, and in the cloud, and it is 481
focusing on empowering organizations, industries, and nations with the ultimate quantum-resistant 482
cryptography solutions in software, hardware, and research IP. 483

PQShield began as a spin-off from the University of Oxford, and has grown to become a world-class 484
collaboration of leading engineers and researchers. With teams in Europe, Japan, the US, and the UK, it 485
is the industry hub of expertise in PQC. PQShield employees are also contributors to the NIST post-486
quantum cryptography standardization project, with researchers and advisory boards co-authoring the 487

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 8

standards announced by NIST. It’s contributed multiple cryptographic extensions to RISC-V, the open 488
standard instruction set architecture (ISA) that is gaining traction from proprietary competitors such as 489
ARM and Intel, and is also working with many other organizations such as the World Economic Forum, 490
IETF, ETSI, Groupe Special Mobile Association (GSMA), NCCoE, and GlobalPlatform, to advise and define 491
their positions. 492

PQShield is committed to helping modernize the cryptographic components and supply chain that keep 493
organizations safe. 494

Samsung SDS 495

Samsung SDS provides cloud and digital logistics services. Samsung SDS builds optimized cloud 496
environments with Samsung Cloud Platform and provides all-in-one management service as well as SaaS 497
solutions proven successful in many use cases. One of their core capabilities for delivering their service is 498
cybersecurity, and cryptographic technology plays a fundamental role to enhance security. To this end, 499
Samsung SDS is engaged in various cryptographic research and development activities, including the 500
design, implementation, and architecting of cryptographic techniques, including post-quantum 501
cryptography. 502

Thales 503

Thales is the worldwide leader in data security, providing everything an organization needs to protect 504
and manage its data, identities, and intellectual property – through encryption, advanced key 505
management, tokenization, and authentication and access management. Whether it’s securing the 506
cloud, digital payments, blockchain, or IoT, security professionals around the globe rely on Thales to 507
confidently accelerate their organization’s digital transformation. 508

Thales has been actively involved in PQC R&D and various standardization efforts since at least 2013. 509
Thales co-authored the Falcon digital signature algorithm, which was selected by NIST as a candidate for 510
PQC standardization in July 2022. The company is engaged in multiple research projects in the United 511
States, France (RISQ), and across Europe, and is also financing numerous doctoral theses on the subject. 512
Additionally, Thales Trusted Cyber Technologies and the NSA signed a CRADA for evaluating the NIST-513
selected PQC algorithms when operating on an HSM. 514

Thales Digital Identity and Security (DIS) (a global business area) and Thales Trusted Cyber Technologies 515
(TCT) (a U.S.-based business area exclusively serving the U.S. Federal Government) are both participants 516
in the NCCoE’s Migration to PQC Project. Thales has already submitted the products below to the NCCoE 517
lab to help develop practices to ease migration from current algorithms to replacement post-quantum 518
algorithms: 519

 Thales Luna 7 Hardware Security Module (HSM) 520

 Thales TCT Luna T-Series HSM (for the U.S. Government) 521

 Thales CipherTrust Manager for key management 522

 Thales High Speed Encryptors (HSEs) for network encryption 523

Implementing both quantum-vulnerable classical public key algorithms and PQC algorithms, the Thales 524
products contributed to the NCCoE PQC project provide the unique capability to be identified as 525
quantum-vulnerable while also providing platforms for PQC interoperability testing. Thales has long 526

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 9

been an advocate for crypto agility, facilitating it across its product lines. Existing customer product 527
deployments and Thales contributions to the NCCoE lab can be field-updated with NIST-selected PQC 528
algorithms as they mature through the standardization process. Thales has actively prototyped NIST PQC 529
algorithm finalists within its products and is now focusing on the selected PQC algorithms. In keeping 530
with crypto agility, Thales is now accelerating to practical proof of concepts with customers, notably for 531
hybrid algorithms in digital signatures and key exchange mechanisms. 532

At Thales, we recognize organizations must adopt a strong post-quantum crypto-agile strategy. In 533
preparation for the transition, Thales encourages organizations to practice crypto agility now, to help 534
your organization evolve and avoid expensive security retrofitting in the future as quantum computing 535
becomes more established. This design principle facilitates changes to the cryptography even after 536
deployment and allows you to prepare for the transition to quantum-safe solutions once the NIST 537
standardization process is completed. To this end, Thales already offers crypto-agile HSMs, key 538
management, and network encryption solutions that you can take advantage of today. 539

Utimaco 540

Utimaco is a global platform provider of trusted cybersecurity and compliance solutions and services 541
with headquarters in Aachen (Germany) and Campbell, California (USA). Utimaco develops on-premise 542
and cloud-based HSMs, and solutions for key management, data protection, and identity management, 543
as well as data intelligence solutions for regulated critical infrastructures and public warning systems. 544
Utimaco is one of the world’s leading manufacturers in its key market segments. 545

500+ employees around the globe create innovative solutions and services to protect data, identities, 546
and communication networks with responsibility for global customers and citizens. Customers and 547
partners in many different industries value the reliability and long-term investment security of 548
Utimaco‘s high-security products and solutions. 549

Quantum resistance is one of Utimaco´s strategic focus areas. Utimaco´s GP-HSM series “u.trust anchor” 550
and “CryptoServer” provide a trustworthy use of PQC-algorithms and PQC-keys in a secure environment. 551
Hence, Utimaco supports post-quantum relevant use cases either directly or in hybrid mode, to enable a 552
smooth migration of their customers into the post-quantum era. 553

Utimaco is active in various standardization committees like the European Telecommunications 554
Standards Institute (ETSI), Organization for the Advancement of Structured Information Standards 555
(OASIS) PKCS#11, GSM Association (GSMA), and Accredited Standards Committee (ASC) X9. 556

wolfSSL 557

wolfSSL focuses on providing lightweight and embedded security solutions with an emphasis on speed, 558
size, portability, features, and standards compliance. With its SSL/TLS products and crypto library, 559
wolfSSL is supporting high-security designs in automotive, avionics, and other industries. In avionics, 560
wolfSSL supports Radio Technical Commission for Aeronautics Software Considerations in Airborne 561
Systems and Equipment Certification. In automotive, wolfSSL supports MISRA-C capabilities. For 562
government consumers, wolfSSL has a valid FIPS 140-2 certificate. wolfSSL supports industry standards 563
up to the current TLS 1.3 and DTLS 1.3, offers a simple API and an OpenSSL compatibility layer, is backed 564
by the wolfCrypt cryptography library, and provides 24x7 support and much more. wolfSSL’s products 565
are open source, giving customers the ability to examine them. 566

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3389

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 10

The organizations listed above have contributed technologies described in Table 1. Here, we provide the 567
type of component, product name, and the function the technology will serve in the demonstration. 568

Table 1 Products and Technologies 569

Component Product Function

Quantum-ready
Algorithm Imple-
mentation

CryptoNext Quantum
Safe Library (C-QSL)

A fully optimized post-quantum library that provides:
• NIST-selected post quantum ready algorithms se-

curity levels, side-channel protection, and deter-
ministic Random Bit Generator;

• Top performance with optimized implementation
for most common CPU/operating system platforms
and tuning for constrained hardware such as IoT;

• Full crypto-agility with the most comprehensive set
of PQC algorithms, as well as a full set of language
wrappers; and

• Evolutionary support for US/EU standards and cer-
tifications.

Quantum-ready
Protocol Imple-
mentation

CryptoNext Quantum
Safe Crypto Services
(C-QSC)

A set of PQC enabled, optimized, crypto-agile and hy-
bridization-capable implementations of protocols and
crypto-objects, including:
• Communication protocols such as IKE (IPSec), TLS,

and Secure/Multipurpose Internet Mail Extensions
(S/MIME);

• Programming interfaces such as PKCS#11 libraries;
• X.509 post-quantum certificates; and
• Identity management.

Quantum-ready
Tools and Applica-
tion Plugins Im-
plementation

CryptoNext Quantum
Safe Tools (C-QST) and
Application Plugins (C-
QSA)

A set of crypto-agile, pure PQ and PQ hybridization-ca-
pable, user-transparent, quantum safe integration
tools and application plugins for:
• Cryptography toolkits
• Network infrastructure: IPSec VPN, SSL VPN, SSH
• Security infrastructure: PKI, HSM, blockchain
• Proxies/connectors
• Messaging tools
• Web application servers and clients

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 11

Component Product Function

Quantum-ready
Algorithm Imple-
mentation

(Microsoft) Open
Quantum Safe (OQS)
project

An open-source project that aims to support the devel-
opment and prototyping of quantum-resistant cryptog-
raphy. OQS consists of two main lines of work: liboqs,
an open-source C library for quantum-resistant crypto-
graphic algorithms, and prototype integrations into
protocols (TLS and SSH) and applications, including the
widely used OpenSSL library. These tools support re-
search by Microsoft and others.

Quantum-ready
Algorithm Imple-
mentation

aws-lc A software library implementing cryptographic algo-
rithms for AWS use-cases.

Quantum-ready
Algorithm Imple-
mentation

(AWS) s2n-tls A software library implementing the TLS protocol for
AWS use-cases.

Quantum-ready
Algorithm Imple-
mentation

(AWS) s2n-quic A software library implementing the QUIC protocol for
AWS use-cases.

Quantum-ready
Algorithm Imple-
mentation

AWS SSH implementa-
tion

A software library implementing the SSH protocol for
AWS use-cases.

Quantum-ready
Algorithm Imple-
mentation

(crypto4A) QxHSM™

An HSM built around Crypto4A’s FIPS Level 3+ QASM™
cryptographic module that provides built-in quantum-
safe cryptographic agility. The QxHSM comes in an
easy-to-deploy network-attached blade form factor
that can accommodates a variety of deployment topol-
ogies, be it a single instance (development or root pur-
poses) to multiple instances arranged in either local
and/or geo-distributed clusters. The QxHSM can be
called via multiple application programming interface
(API) standards such as Representational State Transfer
(REST), PKCS#11, Key Management Interoperability
Protocol (KMIP), Java Cryptography Extension (JCE),
and Cryptography API Next Generation (CNG).

Quantum-ready
Algorithm Imple-
mentation

(crypto4A) QxEDGE™

A fully integrated and hyper-converged HSP that com-
bines Crypto4A’S FIPS Level 3+ QASM quantum-safe
crypto-agile cryptographic module with both general-
purpose processing engines and confidential compute
engines to deliver highly integrated cybersecurity solu-
tions for a diverse set of cybersecurity use cases. Each
internal server gets access to their cryptographic ser-
vices and individual isolated key stores provided by the
QASM. The QxEDGE comes in a 19-inch rack 1U server
form factor with redundant power supplies.

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 12

Component Product Function

Quantum-ready
Protocol Imple-
mentation

(Samsung SDS) s-pqc-
tls

A software library that provides the functionality of hy-
brid key exchanges with classic and PQC cryptography
algorithms in the TLS protocol version 1.3 for Java ap-
plications, which supports the Java Secure Socket Ex-
tension (JSSE) standard API to integrate with existing
applications.

Quantum-ready
Protocol Imple-
mentation

wolfSSL A software library that implements TLS and DTLS 1.3
supporting quantum-safe symmetric and asymmetric
ciphers to be standardized by NIST.

Quantum-ready
Protocol Imple-
mentation

(wolfSSL) wolfSSH A software library that implements SSHv2 supporting
ecdh-nistp256-kyber-512r3-sha256-d00@openquan-
tumsafe.org for your post-quantum key exchange
needs.

Quantum-ready
Protocol Imple-
mentation

(wolfSSL) wolfMQTT A software library that implements MQTT up to version
5 and runs on top of wolfSSL, thus leveraging its sup-
port for quantum-safe TLS 1.3.

Quantum-ready
Protocol Imple-
mentation

(wolfSSL) NGINX A version of NGINX, a high-performance, high-concur-
rency web server compiled with the wolfSSL crypto-
graphic library.

Quantum-ready
Protocol Imple-
mentation

(wolfSSL) cURL A version of cURL, a command-line tool and library
for transferring data with URLs compiled with the
wolfSSL cryptographic library.

Quantum-ready
Algorithm Imple-
mentation

Thales Luna A/S790
Network HSM

Helps organizations prepare for a post-quantum future
in the following ways:

• With a customizable Functionality Module (FM)
available today that provides several quantum-
resistant algorithms for you to utilize for proto-
typing;

• Using several Thales technology partners that
have created their own FM variants that imple-
ment these algorithms within their own PQC
applications;

• Alternatively, create your own FM implement-
ing any of the available quantum-resistant al-
gorithms.

Quantum-ready
Algorithm Imple-
mentation

Thales TCT Luna T-
5000 Network HSM

A dedicated crypto processor designed to protect cryp-
tographic keys. HSMs serve as the trust anchors to pro-
tect an organization’s cryptographic infrastructure by
securely managing, processing, and storing crypto-
graphic keys inside a hardened, tamper-resistant de-
vice. The Luna T-Series HSM is FIPS 140-2 L3 validated
and CNSS approved. It is the root of trust to numerous
partner integrations utilizing asymmetric keys that are

https://www.nginx.com/
https://curl.se/
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4090

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 13

Component Product Function
at risk to the quantum threat. Thales TCT has released
firmware for the Luna T-Series HSM that includes pre-
standard implementations of NIST-selected PQC algo-
rithms to facilitate PQC interoperability testing.

Quantum-ready
Protocol Imple-
mentation

Thales CipherTrust
Manager & Connectors

Industry-leading enterprise key management solution
enabling organizations to centrally manage encryption
keys, provide granular access control, and configure se-
curity policies. CipherTrust Manager is the central man-
agement point for the CipherTrust Data Security Plat-
form. It manages key lifecycle tasks including genera-
tion, rotation, destruction, import, and export, pro-
vides role-based access control to keys and policies,
supports robust auditing and reporting, and offers de-
veloper-friendly REST API.
CipherTrust Manager is available in both virtual and
physical appliances that integrates with FIPS 140-2
compliant Thales Luna or third-party HSMs for securely
storing keys with a root of trust. These appliances can
be deployed on-premises in physical or virtualized in-
frastructures and in public cloud environments to effi-
ciently address compliance requirements, regulatory
mandates, and industry best practices for data security.
With a unified management console, it makes it easy to
set policies, discover and classify data, and protect sen-
sitive data wherever it resides using the CipherTrust
Data Security Platform products.

Quantum-ready
Algorithm Imple-
mentation

Thales CN Series Net-
work Encryptors

The Thales High Speed Encryptors (HSE) are widely de-
ployed, FIPS-validated network encryption solutions
that encrypt critical network communications and em-
ploy quantum-vulnerable classical public key algo-
rithms. The current release includes pre-standard im-
plementations of the NIST-selected PQC algorithms.
Thales HSE can be deployed in the NCCoE lab and iden-
tified as quantum-vulnerable. Then a firmware upgrade
to the most recent version could be applied and the
encryptors configured to operate using PQC.

Quantum-ready
Algorithm Imple-
mentation

(Entrust) PQ-enabled
nShield HSM

PQ-enabled nShield HSM supports testing and imple-
menting PQC in a secure HSM.

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4208

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 14

Component Product Function

Quantum-ready
Algorithm Imple-
mentation

(Entrust) PKIaaS PQ
Beta, Quantum-safe
Java Toolkit

PKIaaS for Post Quantum Beta is a cloud-based “PKI as
a Service” that supports both composite and pure
quantum certificate authority (CA) hierarchies. In com-
bination with the Quantum-safe Java Toolkit, this gives
the ability to test multi-certificates or composite certifi-
cates with applications.

Quantum-ready
Algorithm Imple-
mentation

(PQShield) PQCryp-
toLib

A generic software library with a C/C++ interface of
FIPS 140-3-ready, post-quantum and classical crypto-
graphic algorithms. It can be used to design your own
software development kit (SDK), or be implemented as
part of PQShield’s SDK, PQSDK. PQCryptoLib is de-
signed to provide post-quantum security using multiple
algorithms, including those supported by NIST. The
goal of PQCryptoLib is to help organizations transition
to quantum-resistant cryptographic schemes by provid-
ing support for classical and hybrid key derivation, as
well as providing an implementation within the TLS key
schedule.

Quantum-ready
Algorithm Imple-
mentation

(PQShield) PQSDK Easy-to-use software implementations of both post-
quantum and classical cryptographic primitives. It con-
sists of an integration of PQShield’s PQCryptoLib library
with popular high-level cryptography libraries. PQSDK
enables you to experiment with deployments of PQC
and to prototype your post-quantum TLS solutions (in-
cluding TLS X.509) and PKI management before pro-
gressing to full deployment.

Quantum-ready
algorithm imple-
mentation

ISC CDKpqc A linkable library providing classical and NIST-selected
quantum-safe algorithms.

Quantum-ready
Certificate Au-
thority

ISC CertAgent A PQC-enabled X.509 CA.

Quantum-ready
Encryption Appli-
cation

ISC SecretAgent A PQC-enabled file encryption and digital signature util-
ity.

Quantum-ready
Algorithm Imple-
mentation

(Kudelski IoT) KSE A hardware Security Enclaves Portfolio that provides a
full range of security and cryptographic services, in-
cluding quantum-resistant cryptography and classical
cryptography, to SoC vendors targeting a high level of
robustness and stringent certification schemes with rig-
orous requirements. The current implementation of
quantum-resistant cryptography is upgradable to facili-
tate adaptation to evolving standards and security
countermeasures that have to be completed.

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 15

Component Product Function

Quantum-ready
Algorithm Imple-
mentation

(Kudelski IoT) Lab Ser-
vices

Kudelski IoT is deeply involved in assessing the security
robustness of algorithms. This includes the evaluation
of quantum-resistant cryptography through the execu-
tion of attacks and the analysis of performance data re-
lated to the implementation of quantum-resistant algo-
rithms, key management, and other aspects.

Quantum-ready
Algorithm Imple-
mentation

(Kudelski IoT) key-
STREAM

The Kudelski IoT Device Security Lifecycle and keys
Management platform for IoT devices. keySTREAM en-
ables provisioning and management of security creden-
tials directly from the cloud to the chipset for the fol-
lowing use-cases: personalization, in-field late provi-
sioning, and in-field credential management. key-
STREAM supports asset provisioning for running cer-
tain quantum-resistant cryptographic algorithms and is
set to undergo an upgrade to cover NIST’s range of
quantum-resistant cryptographic algorithms.

Quantum-ready
Algorithm Imple-
mentation

(Keyfactor) Legion of
the Bouncy Castle
Cryptography APIs

(In partnership with the Legion of the Bouncy Castle
Inc.) The Bouncy Castle libraries (for Java, Kotlin, and
C#) now include support for both classical and quan-
tum-safe algorithms (upcoming NIST standards in-
cluded), together with support for protocols such as
TLS/DTLS, CMS, Time-Stamp Protocol, OpenPGP, and a
variety of protocols around X.509 certificate manage-
ment.

Quantum-ready
Algorithm Imple-
mentation

(Utimaco) u.trust an-
chor

Utimaco’s next-generation HSM is designed with a leap
forward in security and innovation. u.trust Anchor
brings together robust encryption and secure key man-
agement, with unprecedented processing power and
capabilities within tamper-proof hardware for seamless
integrations. Inspired by cloud technology, u.trust An-
chor is designed for containerized HSMs. It supports
important features like load balancing, high availability,
customization of firmware, and total control of each
containerized HSM based on business requirements.
The customer migration journey is assisted with a soft-
ware-simulator as well as a full SDK for firmware en-
hancements.

5 Secure Shell (SSH) 570

5.1 Interoperability and Performance Discussion 571

SSH is a widely used protocol for management, configuration, and secure file transfers. The PQC SSH 572
testing prioritized protecting against harvest-now-decrypt-later attacks. We tested a set of PQC key 573

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 16

exchange methods to identify gaps and issues. Protecting SSH authentication is considered less urgent 574
since attacks require an active quantum computer during session establishment. 575

As there is no ratified post-quantum SSH Request for Comments (RFC), we decided to code to version 01 576
of the current draft [10] which was submitted to the IETF (and has not been picked up for 577
standardization). This draft specifies how to combine elliptic curve cryptography with Kyber, NIST’s 578
Round 3 key exchange mechanism, to provide hybrid quantum-safe key exchange methods in SSH. All 579
NCCoE collaborator components implemented the conventions in the draft specification. Some 580
implementations included a subset of the methods at the time of testing. 581

The collaborator components used for testing SSH were: 582

 OQS OpenSSH v8 583

 wolfSSH (June 2023) 584

 AWS SSH implementation (also used for Secure File Transfer Protocol [SFTP] in AWS Transfer 585
Family) 586

OQS OpenSSH and wolfSSH were run on Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-72-generic x86_64) with 587
an IntelI XI(R) Gold 6126 CPU @ 2.60 GHz (2 Core) and 32 GB RAM. The AWS SSH implementation was run 588
in Amazon Linux 2 on Intel Xeon Platinum 8175M CPU @ 2.50 GHz with 32 GB RAM. 589

5.2 Interoperability Testing 590

5.2.1 PQC Hybrid Key Exchange Test Profile 591

SSH Testing Profile 1 included the following algorithm parameters: 592

 Kyber-512, Kyber-768, Kyber-1024 593

 P256+Kyber-512, x25519+Kyber-512, P384+Kyber-768, P521+Kyber-1024 594

For each test profile, and for each algorithm supported by both the client and the server, we tested 595
successful SSH connections. Table 2 contains the results of interoperability testing. Key exchange 596
methods not supported by a component at the time of the testing are depicted as “N/A”. Table 2 597
shows that all supported algorithm implementations interoperated between the components. 598

Table 2 Profile 1 interoperability test results for PQC key exchange in SSH with NCCoE collaborator 599
components 600

Algorithm
Parameters Client

Server:
OQS-

OpenSSH

Server:
wolfSSH

Server:
AWS

Kyber-512
OQS-OpenSSH Success N/A N/A
wolfSSH N/A N/A N/A
AWS N/A N/A N/A

Kyber-768
OQS-OpenSSH Success N/A N/A
wolfSSH N/A N/A N/A
s2n-tls N/A N/A N/A

https://github.com/open-quantum-safe/openssh
https://github.com/wolfSSL/wolfssh
https://aws.amazon.com/blogs/security/post-quantum-hybrid-sftp-file-transfers-using-aws-transfer-family/
https://aws.amazon.com/blogs/security/post-quantum-hybrid-sftp-file-transfers-using-aws-transfer-family/

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 17

Algorithm
Parameters Client

Server:
OQS-

OpenSSH

Server:
wolfSSH

Server:
AWS

Kyber-1024
OQS-OpenSSH Success N/A N/A
wolfSSH N/A N/A N/A
AWS N/A N/A N/A

P256-Kyber-512
OQS-OpenSSH Success Success Success
wolfSSH Success Success Success
AWS Success Success Success

X25519-Kyber-
512

OQS-OpenSSH N/A N/A N/A
wolfSSH N/A N/A N/A
AWS N/A N/A Success

P384-Kyber-768
OQS-OpenSSH Success N/A Success
wolfSSH N/A N/A N/A
AWS Success N/A Success

P521-Kyber-1024
OQS-OpenSSH Success N/A Success
wolfSSH N/A N/A N/A
AWS Success N/A Success

5.2.2 PQC Hybrid Key Exchange and Authentication Test Profiles 601

In terms of PQC SSH authentication, we decided to generate two testing profiles, one that would 602
support the CNSA Suite 2.0 for key exchange and authentication, and one that includes other algorithm 603
combinations. 604

Profile 2 used Kyber-1024 and Dilithium-4 at level 5, notably excluding hybrids and complying with CNSA 605
2.0 in the long-term. At the time of the initial testing, only OQS OpenSSH had support for PQC 606
authentication, so we deferred further testing until additional collaborator components had support. 607

Profile 3 was a profile to test PQC and PQC-hybrid KEMs and authentication algorithm combinations. 608
Given that only OQS OpenSSH supported PQC authentication for SSH at the time of the initial testing, we 609
deferred further testing until additional collaborator components had support. 610

5.3 Performance Testing 611

Contrary to TLS 1.3, which was designed to start encryption after one round-trip, SSH as a protocol 612
includes multiple round-trip message exchanges before bringing up the tunnel and exchanging data. 613
That means that most PQC algorithms will not have a significant impact on the overall handshake time, 614
as most of it is spent on the round-trip messages. Even sending more data for authentication will not 615
affect SSH significantly, especially since most SSH connections transfer sizable amounts of data. 616

Sikeridis et al. evaluated the impact of PQC algorithms to SSH in 2020 [11]. Their study confirmed that 617
Kyber-512, Kyber-768, and Dilithium-4 would have single-digit percentage impact on an SSH handshake 618
at the 50th and 95th percentiles. This confirms the intuition that PQC algorithms will not impact SSH 619
significantly, so we decided against duplicating work and further assessing the performance of PQC SSH 620
for the purposes of this testing. 621

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 18

5.4 Lessons Learned 622

While collaborators were performing interoperability testing for Profile 1, they had to work through 623
some issues with their implementation components. Below we summarize the lessons learned: 624

 When working on early implementations of a standard which is not yet ratified, sometimes im-625
plementations have to revisit the version of the standard they implement and make changes as 626
the standard evolves to comply with it. For example, one collaborator’s SSH component was fol-627
lowing an early version of the PQC-hybrid key exchange. After we switched to using the meth-628
ods in a subsequent draft, the collaborator components could not interoperate. This issue would 629
not occur when implementers start from a ratified, stable specification. 630

 Implementers could sometimes interpret draft specification details differently. An example is 631
key encoding in the PQC SSH draft [10]. The draft originally did not specify the exact key encod-632
ings and representations or was slightly ambiguous, so SSH implementers took different ap-633
proaches for encoding the keys. Writing prescriptive and clear specifications can limit such is-634
sues. 635

 Using new SSH names, like ecdh-nistp256-kyber-512-sha256, in our implementations is 636
prone to introducing interoperability issues for implementations that do not get updated at the 637
same time. Someone supporting ecdh-nistp256-kyber-512-sha256 in the -00 version of 638
an early draft specification may not interoperate with an implementation of the -05 version. 639
Backwards compatibility is important because switching to a new draft could mean the early 640
adopters may no longer be able to use PQC SSH. 641

The solution we picked was to use temporary names which are expected to change in the final 642
ratified draft. Every time there is a backwards compatibility breaking change to a method in the 643
draft specification, we introduce a new temporary name specific to the time or the version of 644
the algorithm used. For example, in the first version of the draft which was at the end of Round 645
3 of the NIST PQC Project, we chose to use ecdh-nistp256-kyber-512r3-sha256-d00 for 646
combining Elliptic Curve Diffie Hellman (ECDH) P256 with Kyber-512. If the next version of the 647
draft, while in Round 4 of NIST’s PQC Project, introduced a change which would break existing 648
implementations of ecdh-nistp256-kyber-512r3-sha256-d00, then we would change 649
the SSH method name to ecdh-nistp256-kyber-512r4-sha256-d01. New implementa-650
tions would negotiate with the new method name. Older implementations could still use PQC 651
SSH with implementations that support both the newer and older methods. 652

When the specification is ratified, the final standardized name would be different, something 653
like ecdh-nistp256-kyber-512-sha256. Support for older, temporary method names can 654
be removed in a phased fashion to allow early implementers to switch to the ratified name. 655
More details about this methodology can be found in the relevant OQS OpenSSH git issue. 656

6 Transport Layer Security (TLS) 657

6.1 Interoperability and Performance Discussion 658

The Transport Layer Security (TLS) protocol is arguably the most deployed online security protocol, so it 659
is critical to make sure it supports post-quantum protection. Moreover, its wide use makes it a prime 660
target for harvest-now-decrypt-later attacks. It is therefore no surprise that TLS has been one of the first 661
protocols on which PQC was prototyped (before even the NIST PQC standardization effort) [12], that 662

https://github.com/open-quantum-safe/openssh/issues/134

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 19

numerous academic studies have been performed,1 and that large-scale industrial experiments2 have 663
been conducted to study the feasibility of PQC integration and its performance. 664

Since then, many open-source and commercial TLS 1.3 implementations have added support for PQC 665
and hybrid ciphersuites, even before the availability of the final PQC FIPS standards and their inclusions 666
in the TLS specification. Most implementations (and all the ones by NCCoE collaborating participants) 667
have implemented the draft IETF draft-ietf-tls-hybrid-design-05 [13] specification for hybrid TLS 1.3 key 668
exchange. Our goal was to test interoperability between compliant implementations, and to measure 669
performance between the various algorithms to understand their impact. 670

It is important to note that we only considered PQC and hybrid key exchange and not authentication 671
(except for the Commercial National Security Algorithm Suite [CNSA] 2.0 profile that tested Dilithium-5 672
authentication) for two reasons: 1) the pressing record-now-decrypt-later concern only affects 673
encryption (depending on the key exchange part of the session establishment),3 and 2) there is no 674
industry-wide agreement on how to perform hybrid authentication or if it is necessary (see Section 8). 675

We tested both the client and server capabilities of the following collaborator components: 676

 Open Quantum Safe (OQS) OpenSSL Provider 677

 wolfSSL 678

 AWS s2n-tls 679

 Samsung SDS PQC-TLS (s-pqc-tls) 680

 OQS NGINX 681

The algorithm identifiers we used for post-quantum negotiations in TLS were the ones defined in OQS 682
OpenSSL4. At the time of this testing, draft-ietf-tls-hybrid-design [13] did not have any assigned 683
identifiers, and most collaborator implementations did not support the temporary identifiers defined in 684
draft-kwiatkowski-tls-ecdhe-kyber [14] and draft-tls-westerbaan-xyber768d00 [15], so we chose to only 685
work with the OQS OpenSSL ones. 686

6.2 Interoperability Testing 687

We tested two algorithmic profiles for TLS: the first one only uses the key exchange part of the protocol 688
(PQC and hybrid), while the other follows the CNSA Suite 2.0. Following the efforts of the X.509 689
workstream, we might perform more tests to include PQC and hybrid authentication. 690

The tests were run in Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-72-generic x86_64) with an Intel Xeon Gold 691
6126 CPU @ 2.60 GHz (2 Core), 32 GB for RAM virtual instances in the NCCoE lab. 692

1 See, e.g., Prototyping post-quantum and hybrid key exchange and authentication in TLS and SSH (iacr.org).
2 See, e.g., Google and Cloudflare’s public experiment: TLS Post-Quantum Experiment (cloudflare.com).
3 An attacker would need access to a quantum computer to mount an attack against the authentication portion of
the TLS handshake.
4 https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md#code-points--algorithm-ids

https://github.com/open-quantum-safe/oqs-provider
https://github.com/wolfSSL/wolfssl
https://github.com/aws/s2n-tls
https://www.samsungsds.com/en/etc/contact/contactus-page.html
https://github.com/open-quantum-safe/oqs-demos/tree/main/nginx
https://eprint.iacr.org/2019/858
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md#code-points--algorithm-ids

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 20

6.2.1 PQC Hybrid Key Exchange Test Profile 693

Kyber, the first KEM picked for standardization by NIST, was used in profiles either by itself or in 694
combination with the NIST elliptic prime curve of corresponding strength. The tested key exchange 695
algorithm combinations were: 696

 Kyber-512, Kyber-768, Kyber-1024 697

 P256+Kyber-512, P384+Kyber-768, P521+Kyber-1024 698

For each test profile, and for each supported algorithm by both the client and the server, we tested 699
successful TLS 1.3 connection. Table 3 contains the results of interoperability testing. Key exchange 700
methods not supported by a component at the time of the testing are depicted as “N/A”. Table 3 shows 701
that all supported algorithm implementations interoperated between the components. 702

Table 3 Profile 1 interoperability test results for PQC key exchange in TLS 1.3 with NCCoE collaborator 703
components 704

Profile 1 Client
Server:
OQS-

OpenSSL

Server:
wolfSSL

Server:
AWS

s2n-tls

Server:
OQS

NGINX

Server:
Samsung

SDS
PQC-TLS

Kyber-512

OQS-OpenSSL Success Success N/A Success Success
wolfSSL Success Success N/A Success Success
AWS s2n-tls N/A N/A N/A N/A N/A
Samsung SDS
PQC-TLS

Success Success N/A Success Success

Kyber-768

OQS-OpenSSL Success Success N/A Success Success
wolfSSL Success Success N/A Success Success
AWS s2n-tls N/A N/A N/A N/A N/A
Samsung SDS
PQC-TLS

Success Success N/A Success Success

Kyber-1024

OQS-OpenSSL Success Success N/A Success Success
wolfSSL Success Success N/A Success Success
AWS s2n-tls N/A N/A N/A N/A N/A
Samsung SDS
PQC-TLS

Success Success N/A Success Success

P256+Kyber-512

OQS-OpenSSL Success Success Success Success Success
wolfSSL Success Success Pending Success Success
AWS s2n-tls Success Success Success Success
Samsung SDS
PQC-TLS

Success Success Success Success Success

P384+Kyber-768
OQS-OpenSSL Success Success N/A Success Success
wolfSSL Success Success N/A Success Success
AWS s2n-tls N/A N/A N/A N/A N/A

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 21

Profile 1 Client
Server:
OQS-

OpenSSL

Server:
wolfSSL

Server:
AWS

s2n-tls

Server:
OQS

NGINX

Server:
Samsung

SDS
PQC-TLS

Samsung SDS
PQC-TLS

Success Success N/A Success Success

P521+Kyber-1024

OQS-OpenSSL Success Success N/A Success Success
wolfSSL Success Success N/A Success Success
AWS s2n-tls N/A N/A N/A N/A N/A
Samsung SDS
PQC-TLS

Success Success N/A Success Success

6.2.2 PQC Hybrid Key Exchange and Authentication Test Profile 705

Profile 2 used Kyber-1024 and Dilithium at level 5, notably excluding hybrids and complying with CNSA 706
Suite 2.0 in the long-term. 707

We tested successful TLS 1.3 connection for both the client and the server. Table 4 contains the results 708
of interoperability testing. Methods not supported by a component at the time of the testing are 709
depicted as “N/A”. Table 4 shows that all supported algorithm implementations interoperated between 710
the components. 711

Table 4 Profile 2 interoperability test results for PQC key exchange and authentication in TLS 1.3 with 712
NCCoE collaborator components 713

Profile 2 Client
Server:
OQS-

OpenSSL

Server:
wolfSSL

Server:
AWS

s2n-tls

Server:
OQS

NGINX

Server:
Samsung
SDS PQC-

TLS

Kyber-1024 /
Dilithium5

OQS-OpenSSL Success Success N/A Success N/A
wolfSSL Success Success N/A Success N/A
AWS s2n-tls N/A N/A N/A N/A N/A
Samsung SDS PQC-TLS N/A N/A N/A N/A N/A

6.3 Performance Testing 714

Our performance testing results are discussed below. Note that the goal of this testing is not to compare 715
performance between implementations. We want to compare the impact of the different algorithmic 716
choices within one implementation at a time and observe if the impact of the new algorithms is similar 717
between implementations. 718

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 22

6.3.1 OQS-OpenSSL 719

We tested performance with OQS OpenSSL for Profiles 1 and 2. The tests were performed using the OQS 720
benchmarking server5 on the loopback interface, running on an m5n.large AWS instance (Intel Xeon 721
Platinum 8259CL CPU @ 2.50 GHz with 2 CPU and 8 GB of memory). We measured the maximum TLS 1.3 722
handshake rate, which is shown in Table 5 for Profile 1 and Table 6 for Profile 2. 723

Table 5 Profile 1 performance test results for PQC key exchange and authentication in TLS 1.3 with 724
NCCoE collaborator components 725

Security Level Algorithm (Key Exchange / Auth) handshake / s

1

Elliptic Curve Diffie-Hellman Exchange (ECDHE) P-256 /
Elliptic Curve Digital Signature Algorithm (ECDSA) P-256

1236.67

Kyber-512 / ECDSA P-256 1591.13
P256-Kyber-512 / ECDSA P-256 531.67

3
ECDHE P-384 / ECDSA P-384 223.47
Kyber-768 / ECDSA P-384 681.19
P384-Kyber-768 / ECDSA P-384 184.44

5
ECDHE P-521 / ECDSA P-521 192.19
Kyber-1024 / ECDSA P-521 667.65
P521-Kyber-1024 / ECDSA P-521 109.78

Table 6 Profile 2 performance test results for PQC key exchange and authentication in TLS 1.3 with 726
NCCoE collaborator components 727

Security Level Algorithm (Key Exchange / Auth) handshake / s

5
ECDHE P-521 / ECDSA P-521 192.19
Kyber-1024 / Dilithium-5 1293.23

These tables can be interpreted as measuring the load on a TLS server. The results show that PQC hybrid 728
can have a significant impact on the maximum connection throughput of a heavily loaded server. We 729
can see that Kyber’s performance is high at all security levels. When compared with ECDH with P384 and 730
P521, Kyber-768 and Kyber-1024 render much higher performance. When compared with highly 731
optimized P256, Kyber-512 is slightly less efficient, but of similar performance. In combined PQC hybrid 732
key exchanges, Kyber-512 and ECDH P256 used together have half the handshake throughput, as both 733
algorithms of similar performance are used. When used with non-optimized P384 and P521, Kyber-768 734
and Kyber-1024 have little impact on the slowdown, as the NIST curves were the bottleneck for these 735
connections. 736

5 Handshake performance (openquantumsafe.org)

https://openquantumsafe.org/benchmarking/visualization/handshakes.html

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 23

6.3.2 Samsung SDS PQC-TLS (s-pqc-tls) 737

The same tests for Profile 1 were conducted with s-pqc-tls on an Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-738
72-generic x86_64) with an Intel Xeon Gold 6126 CPU @ 2.60 GHz (2 Core) and 32 GB RAM. The 739
connections were taking place over the loopback interface using the widely adopted JSSE in an 740
enterprise IT environment to assess the impact of PQC on performance. 741

Table 7 Performance test results for PQC key exchange and authentication in TLS 1.3 using Samsung 742
SDS PQC-TLS (s-pqc-tls) 743

Security Level Algorithm (Key Exchange / Auth) handshake / s

1

ECDHE P-256 / ECDSA P-256 333.62
Kyber-512 / ECDSA P-256 419.18
P256-Kyber-512 / ECDSA P-256 301.70
X25519-Kyber-512 / ECDSA P-256 367.86

3

ECDHE P-384 / ECDSA P-384 187.08
Kyber-768 / ECDSA P-384 259.84
P384-Kyber-768 / ECDSA P-384 169.08
X25519-Kyber-768 / ECDSA P-384 242.59

5
ECDHE P-521 / ECDSA P-521 105.35
Kyber-1024 / ECDSA P-521 157.19
P521-Kyber-1024 / ECDSA P-521 99.58

As indicated in Table 8, we observe similar behavior as with OQS OpenSSL. Kyber is efficient and 744
performs faster than ECDH, especially for the higher security curves P384 and P521. Combining ECDH 745
with Kyber decreases throughput but not detrimentally. We also see that combining X25519 with Kyber 746
is slightly more efficient than ECDH with Kyber. It is important to emphasize that these results are 747
specific to the test environment, and actual performance may vary depending on the operational 748
environment. 749

6.3.3 AWS s2n-tls 750

We tested PQC hybrid key exchange with P256 and Kyber-512, and compared it with X25519 key 751
exchange in TLS 1.3 with s2n-tls. The tests were run on an Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-72-752
generic x86_64) with an Intel Xeon Gold 6126 CPU @ 2.60 GHz (2 Core), 32 GB for RAM in the NCCoE lab 753
to test.openquantumsafe.org. The round-trip between client and server was 96 ms. Figure 1 shows the 754
mean handshake time and standard deviation for 1000 sequential connections. The server certificate 755
was ECDSA P256 public key signed by an RSA-2048 CA. 756

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 24

Figure 1 TLS 1.3 PQC hybrid key exchange performance between NCCoE lab s2n-tls clients and OQS 757
server test.openquantumsafe.org 758

We can see that PQC hybrid TLS handshakes with Kyber-512 and ECDH P256 are a few milliseconds 759
slower than classical ECDH P256 ones. The slowdown due to Kyber is within one standard deviation of 760
the classical key exchange. Kyber-512 is an efficient algorithm and although it slows down these 761
handshakes, the absolute additional time is insignificant for a typical Internet connection. For highly 762
optimized and regional connections, a few milliseconds may be more significant, but for average web or 763
machine-to-machine communications over the internet, the PQC connections will perform satisfactorily. 764
If we consider P384 or P512, which are not optimized like P256, Kyber-768 or Kyber-1024 will have even 765
less impact. 766

We then tested higher security levels of Kyber in PQC hybrid key exchange in TLS 1.3 with s2n-tls. We 767
compared it with classical key exchange with P256 and P384. The tests were between a client and server 768
with a simulated delay between them to achieve 133ms round-trip time. The server certificate was an 769
ECDSA P256 public key signed by an RSA-2048 CA. Figure 2 shows the mean handshake time and 770
standard deviation for 1000 sequential connections. The standard deviation was negligible because this 771
was a simulated environment between locally connected client and server. The measurements include 772
an extra round trip compared to Figure 1 because we chose to include the TCP handshake time to 773
represent the actual connection experience. 774

100.521 106.4125

0.0

20.0

40.0

60.0

80.0

100.0

120.0
TL

S
1.

3
Ha

nd
sh

ak
e

Ti
m

e
(m

s)

Key Exchange

X25519

P256+Kyber768

96ms RTT

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 25

Figure 2 TLS 1.3 PQC hybrid key exchange performance between locally connected s2n-tls client and 775
server using simulated round-trip delay 776

The results show there is essentially minimal impact on the handshake time. The PQC hybrid exchange 777
even with Kyber-1024 is just a few milliseconds slower than very efficient P256. Such performance 778
differences will not have a noticeable impact on user experience. Lossy conditions could be affected 779
more as Kyber-1024 or Kyber-768 will include more TCP segments, which means higher total loss 780
probability per packet. 781

To prove this point, we extended the simulation to include a 3% loss probability between the client and 782
the server. The results are in Figure 3. 783

268.43
269.87

268.95
271.1

273.27

130.0

150.0

170.0

190.0

210.0

230.0

250.0

270.0

290.0
TL

S
1.

3
Ha

nd
sh

ak
e

Ti
m

e
(m

s)

Key Exchange

P256

P384

P256+Kyber512

P384+Kyber768

P521+Kyber1024

133ms RTT

395.87
387

412.93
412.93

411.65

130.0

180.0

230.0

280.0

330.0

380.0

430.0

TL
S

1.
3

Ha
nd

sh
ak

e
Ti

m
e

(m
s)

Key Exchange

P256

P384

P256+Kyber512

P384+Kyber768

P521+Kyber1024

133ms RTT

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 26

Figure 3 TLS 1.3 PQC hybrid key exchange performance between locally connected s2n-tls client and 784
server using simulated round-trip delay and 3% loss probability 785

We can see that 3% loss probability leads to almost an extra round-trip’s delay. We can also observe 786
that Kyber-768 and 1024’s bigger key and ciphertext sizes lead to more losses and higher mean 787
handshake time due to higher loss probability (5.9% instead of 3%). Overall, all these connections are 788
significantly affected by the higher loss probability. The post-quantum handshakes do not seem to be 789
more materially impacted than the classical ones. 20 ms in a handshake that takes 400 ms will not likely 790
be noticed. It is also worth noting that variance for these times was as much as the handshake itself. 791
Higher network losses will completely “randomize” handshake performance. Although limited, the 792
results also show that a 3% packet loss leads to another RTT slowdown in the handshake on average. 793

In summary, performance testing showed that Kyber is very efficient and when used by itself can slightly 794
speed up handshakes compared to using ECDH. When combining Kyber with ECDH, there is a slight 795
slowdown which will be unnoticeable for most connections. Given that Kyber-768 or Kyber-1024 could 796
be carried over two TCP packets, Kyber could have more impact on lossy connections. These results 797
generally are in line with other performance studies [11][16][17][18] conducted by academia and 798
industry for Kyber and other, less efficient PQC KEMs. 799

6.4 Lessons Learned 800

While collaborators were performing interoperability testing, they had to work through some issues 801
with their implementation components. Below we summarize the lessons learned: 802

 Compliance with older versions of a draft standard specification could cause interoperability is-803
sues. As RFC drafts evolve over time, tracking changes to implement them in code takes effort 804
and paying attention to incremental differences in the diffs. This was observed with an issue be-805
tween s2n-tls and OQS OpenSSL. s2n-tls key shares were compliant with an older version of the 806
draft, but OQS OpenSSL had switched to a more recent version which ended up failing the hand-807
shake. 808

 Using final names or identifiers in implementations is prone to interoperability issues for early 809
implementations that do not all get updated at the same time. Someone supporting TLS 1.3 810
group 0x2f3a for P256+Kyber-512 in the -00 version of the draft RFC may not interoperate with 811
someone that implements the -05 version. A solution is to use a new temporary group identifier 812
specific to the time or the version of the algorithm, every time there is a backwards compatibil-813
ity breaking change. Examples include X25519Kyber768Draft00 and SecP256r1Ky-814
ber768Draft00 assigned for temporary use by draft specifications draft-tls-westerbaan-815
xyber768d00 [15] and draft-kwiatkowski-tls-ecdhe-kyber [14] until we have the final standards. 816
The shortcoming of this approach is that you may have multiple old codepoints in use which will 817
end up getting deprecated and phased out. 818

 Supported group order and key_shares in the ClientHello could lead to unexpected/non-intu-819
itive key exchanges. For example, a client sending a key_share for only X25519+Kyber-512 and 820
advertising support for X25519+Kyber-512, P256+Kyber-512, X25519, and P256 could negotiate 821
plain X25519 with the server because the server does not support X25519+Kyber-512. This was 822
not a violation of the TLS 1.3 standard, but we were expecting that the client would negotiate 823
P256+Kyber-512 after seeing a Hello Retry Request with P256+Kyber-512. 824

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 27

7 QUIC 825

7.1 Interoperability and Performance Discussion 826

QUIC is a widely used protocol for the web, video, and streaming. Because QUIC uses TLS 1.3 to establish 827
its shared keys, testing QUIC heavily depended on PQC TLS 1.3. Our PQC QUIC testing prioritized 828
protecting against harvest-now-decrypt-later attacks, so we wanted to test a set of PQC key exchange 829
methods to identify gaps and issues. Protecting QUIC authentication is considered less urgent since 830
attacks require an active quantum computer during session establishment. We generated testing 831
profiles for PQC key exchange and authentication, which has not been implemented by all vendors and 832
thus received limited interoperability testing. On the other hand, PQC authentication would have more 833
significant impact on QUIC’s performance, so we focused more on authentication for our performance 834
testing. 835

The collaborator component used for testing QUIC was: 836

 AWS s2n-quic implementation (built with s2n-tls and AWS-LC)837

The algorithm identifiers for post-quantum negotiations in TLS 1.3 (used in QUIC) were the ones defined 838
in OQS OpenSSL6. At the time of this testing, draft-ietf-tls-hybrid-design [13] did not have any assigned 839
identifiers, and collaborator implementations did not support the temporary identifiers defined in draft-840
kwiatkowski-tls-ecdhe-kyber [14] and draft-tls-westerbaan-xyber768d00 [15], so we chose to only work 841
with the OQS OpenSSL ones. 842

7.2 Interoperability Testing 843

7.2.1 PQC Hybrid Key Exchange Test Profile 844

QUIC establishes its encrypted tunnels over UDP with AES-GCM or Chacha20/Poly1305 as the 845
authenticated encryption algorithm. It uses keys negotiated in TLS 1.3 sent over QUIC frames. Thus, we 846
had to use a quantum-safe version of TLS 1.3 to ensure the encryption in QUIC is quantum-safe. As there 847
is no ratified post-quantum TLS 1.3 RFC, we decided to code to the draft IETF draft-ietf-tls-hybrid-design-848
05 [13] specification for hybrid TLS key exchange in QUIC as we did with our TLS testing. 849

The QUIC Profile included the following algorithm parameters: 850

 Kyber-512, Kyber-768, Kyber-1024851

 P256+Kyber-512, x25519+Kyber-512, P384+Kyber-768, P521+Kyber-1024852

At the time of the initial testing, there was only one PQC implementation of the protocol, s2n-quic. Thus, 853
we were not able to complete any interoperability testing. oqs-demos/quic may be tested with s2n-quic 854
in the future as a QUIC integration with OQS. 855

6 https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md#code-points--algorithm-ids

https://github.com/aws/s2n-quic
https://github.com/aws/s2n-tls
https://github.com/aws/aws-lc
https://github.com/aws/s2n-quic
https://github.com/open-quantum-safe/oqs-demos/tree/main/quic
https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md#code-points--algorithm-ids

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 28

7.2.2 PQC Hybrid Key Exchange and Authentication Test Profiles 856

In terms of PQC authentication, we decided to generate one more testing profile which supports both 857
PQC hybrid key exchange and authentication combinations. The QUIC Profile 2 included: 858

 ECDHE-Kyber hybrid (L1: P256-512, L3: P384-768, L5: P521-1024). 859

 Auth: Dilithium-2, Dilithium-3, Dilithium-4 860

We were not able to complete any interoperability testing for this profile at the time of the initial testing 861
because only one collaborator component, s2n-quic, supported PQC QUIC. oqs-demos/quic may be 862
tested with s2n-quic in the future as a QUIC integration with OQS. 863

7.3 Performance Testing 864

Post-quantum key exchange has been extensively tested in TLS 1.3 connections with Kyber. The impact 865
of 0.8-1.2 KB with Kyber-512 or Kyber-768 key shares will be insignificant for regular TLS or QUIC 866
connections. Thus, we wanted to evaluate the impact of post-quantum authentication in QUIC 867
performance. Post-quantum authentication adds more complexity to QUIC connections, as it interferes 868
with QUIC Amplification Protection and Congestion Control mechanisms. As this had not been evaluated 869
before, to the best of our knowledge, we chose to use s2n-quic’s netbench benchmarking tool. Our 870
measurements evaluated the following QUIC key exchange and authentication options: 871

 client-server with X25519+Kyber-512 and 2048-bit RSA certificates with one intermediate CA 872

 client-server with X25519+Kyber-512 and 18 KB PEM encoded cert chain (Dilithium-2 WebPKI 873
equivalent with one intermediate CA) 874

 client-server with X25519+Kyber-512 and 10 KB PEM encoded cert chain (Dilithium-2 WebPKI 875
equivalent omitting the intermediate CA) 876

 client-server with X25519+Kyber-512 and 22 KB PEM encoded cert chain (Dilithium-3 WebPKI 877
equivalent with one intermediate CA) 878

Note that due to lack of support of Dilithium in s2n-tls/s2n-quic at the time of the testing, the big 879
certificate chains were using specially crafted, bloated RSA certificates of similar size to Dilithium-2, 3 880
WebPKI certificates (with 2 Signed Certificate Timestamps [SCTs]). Given the performance of Dilithium, 881
this emulation is expected to be very close to using Dilithium certificates themselves. 882

The parameters tweaked while testing included: 883

 QUIC’s initial congestion window (initcwnd), which can introduce a round-trip if the Dilithium 884
authentication data from the server exceeds ~14 KB 885

 QUIC’s amplification window, which can introduce a round-trip if the Dilithium authentication 886
data from the server exceeds ~3.6 KB 887

 QUIC’s initial round-trip estimate (kInitialRtt), which could cause connection slowdowns due 888
to packet pacing (Section 7.7 of RFC 9002 [19]). This parameter was not part of the initial test-889
ing, but we observed pacing was affecting these connections and decided to study it more. 890

Our experiments measured the QUIC handshake time for the connect netbench scenario, which 891
creates 1000 connections with 1-byte bidirectional streams before it closes each connection down. The 892

https://github.com/aws/s2n-quic
https://github.com/open-quantum-safe/oqs-demos/tree/main/quic
https://github.com/aws/s2n-quic
https://www.rfc-editor.org/rfc/rfc9002.html#name-pacing
https://github.com/aws/s2n-quic/blob/main/netbench/netbench-scenarios/src/connect.rs

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 29

client and server were run in Amazon Linux 2 running on Intel Xeon Platinum 8175M CPU @ 2.50 GHz 893
with 32 GB RAM. s2n’s benchmark utility, netbench, plotted the results for the scenario. Figure 4 894
shows the handshake time for: 895

 a classical handshake with RSA-2048 certificate chains with one intermediate CA; 896

 a handshake with ~10 KB authentication data which corresponds to a Dilithium-2 leaf WebPKI 897
certificate (assuming the ICA was omitted to trim down the data as per draft-kampanakis-tls-898
scas-latest-03 [20] or draft-jackson-tls-cert-abridge-00 [21]; 899

 a handshake with an 18 KB Dilithium-2 leaf WebPKI certificate chain with one intermediate CA; 900
and 901

 a handshake with a 22 KB Dilithium-3 leaf WebPKI certificate chain with one intermediate CA. 902

The client-server round-trip for the experiments was about 60 ms. 903

Figure 4 QUIC handshake time with classical and Dilithium-2, 3 WebPKI with QUIC’s default congestion 904
control (~14 KB), default initial round-trip kInitialRtt (333 ms), and amplification protection (3x) 905

We can see that the classical handshake completes in just one round trip (typical TLS 1.3 1-RTT). The 10 906
KB cert introduces one extra round trip due to QUIC’s amplification window (~3.6 KB). Amplification 907
protection also introduces a round trip for the 18 KB chain. Congestion control does not add a second 908
round-trip in this case because the initial congestion window has not filled up after the client 909
acknowledges the first 3.6 KB. The 22 KB chain ends up including two round trips, one from amplification 910
protection and one from congestion control. 911

We then wanted to evaluate how tweaking QUIC network parameters could speed up these handshakes 912
by eliminating the round trips. Figure 5 shows the times for PQC QUIC handshakes with a Dilithium-3 913
WebPKI certificate chain with one intermediate CA. We measured the handshake time with the 914
following combinations of amplification window (depicted as Amp), initial congestion window initcwnd 915
(depicted as icwnd), and the initial QUIC RTT kInitialRtt (depicted as irtt). 916

 Amp=3.6 KB, icwnd=14 KB, irtt=333 917

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 30

 Amp=20 KB, icwnd=14 KB, irtt=333 918

 Amp=3.6 KB, icwnd=25 KB, irtt=333 919

 Amp=20 KB, icwnd=25 KB, irtt=333 920

 Amp=20 KB, icwnd=25 KB, irtt=50 921

The default corresponding values are 3x the client request size (~3.6 KB), 10x the maximum datagram 922
size (~14 KB) as per Section 7.2 of RFC 9002 [19], and 333 ms as per Section 6.2.2 of RFC 9002 [19]. 923

Figure 5 PQC QUIC handshake time with PQC hybrid key exchange and Dilithium-3 WebPKI equivalent 924
signatures with various QUIC amplification window, initcwnd and kInitialRtt 925

We can see that the amplification window adds a round-trip, and increasing it eliminates the extra 926
round-trip. The same goes for the initial congestion window. We notice that when increasing both Amp 927
and icwnd, we still see an extra 65 ms slowdown. This is due to irtt and QUIC’s packet pacing. Packet 928
pacing is built to prevent packet bursts which could trigger short-term packet loss. While the server does 929
not know the RTT from the client, it uses the initial default value of 333 ms and calculates the time 930
needed to pause after sending 10 packets. The pausing time ends up amounting to 65-70 ms. The effects 931
of packet pacing are not experienced when we have an extra round trip due to amplification protection 932
or congestion control because the server has a more accurate estimate of the RTT after it observes the 933
round trip, and packet pacing has little impact on the handshake. When dropping irtt to a more realistic 934
value (50 ms), packet pacing pauses much less and thus the handshake completes in almost one round-935
trip as expected. 936

It is clear that QUIC’s network parameters affect the impact that PQC authentication will have on these 937
handshakes. To prevent the extra round trips, we would need to significantly increase the amplification 938
window, which increases amplification attack risks. We would also need to increase the initial 939
congestion window, which could affect network congestion. We would need to increase the initial RTT 940
to a more realistic value instead of the default assumed 333 ms, so that packet pacing does not affect 941
the handshake by 65 ms or more. Other mechanisms to alleviate these handshakes include trimming the 942
authentication data sent or using validation tokens. These changes, although possible, should not be 943

https://www.rfc-editor.org/rfc/rfc9002.html#name-initial-and-minimum-congest
https://www.rfc-editor.org/rfc/rfc9002.html#pto-handshake

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 31

taken lightly, as they have tradeoffs. Some of these options are also discussed in Section 2 of a recent 944
vision paper [22]. 945

At the time of the initial testing, we focused on experimenting with PQC certificate sizes and QUIC 946
network parameters. Future testing could include varying the network hops and loss probabilities 947
between client and server to investigate performance in different network conditions. We may also look 948
into the time-to-last-byte per QUIC connection instead of time-to-first-byte (handshake time) to more 949
accurately evaluate the impact PQC certs would have on user experience. 950

7.4 Lessons Learned 951

While experimenting with QUIC performance, we identified issues we had not anticipated. Below we 952
summarize the lessons learned: 953

 Although we expected the extra round trips due to QUIC amplification protection and conges-954
tion control, we did not anticipate that the initial RTT would add 65 ms to the handshake after 955
eliminating the other round trips. We learned that experimentation can sometimes reveal issues 956
which theoretical intuition does not. Hands-on experiments should be used before evaluating 957
technical solutions. 958

 While testing QUIC connections with s2n-quic’s netbench, we noticed that when the data trans-959
ferred was much larger than the authentication data in the handshake, the impact of PQC de-960
creased. We did not collect the results of these experiments because netbench did not fully sup-961
port them, but we noticed this while capturing data. So far, like we also did in the experiments 962
above, researchers have been measuring the handshake time for a PQC connection and compar-963
ing it to classical connections. We have been showing that in the worst of these connections, 964
PQC affects the handshake more, which could be inaccurate. The tail-ends of these measure-965
ments may be overestimating the impact. For example, mobile clients perform ~12 connections 966
per page to fetch ~2 MB of total data on average. That means that each TCP connection carries 967
~160 KB of data. A bad connection, which suffers from 20 KB extra PQC authentication data, is 968
likely to be suffering already carrying all 160 KB per connection. We may just not be measuring it 969
because we have been focusing on the time-to-first-byte. Our research efforts, when evaluating 970
PQC impact on transport protocols, should focus on the time-to-last-byte or the time-to-mid-971
byte, which will be more indicative of what a user would notice. 972

8 X.509 973

8.1 Interoperability and Performance Discussion 974

8.1.1 Introduction 975

X.509 certificates will be important artifacts in the migration process towards PQC, as they are the main 976
way to transport and communicate public keys between endpoints. X.509 certificates can be used to 977
carry signature or encryption keys and are therefore used in protocols such as TLS/SSL, QUIC, S/MIME, 978
and IPsec. 979

Many formats have been proposed to adapt the current X.509 certificate structure to PQC. Some of 980
them are pure PQC artifacts transporting only a PQC public key and signed by a PQC signature algorithm, 981

https://httparchive.org/reports/state-of-the-web#bytesTotal

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 32

while others are hybrid artifacts including both traditional and PQC public keys and signed by both 982
traditional and PQC signature algorithms. 983

The different X.509 certificate formats that have been tested are clarified in Section 8.1.2. 984

8.1.2 X.509 Certificate Formats 985

8.1.2.1 PURE PQC 986

This X.509 certificate is a pure PQC certificate, meaning that it only contains the PQC material (PQC key 987
and PQC signature). It uses the legacy X.509 structure and replaces with traditional objects with 988
quantum-safe objects ones: 989

 For the algorithm identifier, new OIDs for post-quantum algorithms and parameter sets are 990
used. 991

 Keys and signatures follow the usual ASN.1 syntax, except the byte string corresponds to a post-992
quantum object. 993

The details of this format can be found in the following documents: 994

 RFC 5280 [23] 995

 draft-ietf-lamps-dilithium-certificates [24] 996

 draft-ietf-lamps-kyber-certificates [25] 997

8.1.2.2 HYBRID CONCATENATED 998

This X.509 certificate is a hybrid certificate. It basically concatenates the classic and post-quantum 999
objects without changing the structure of the ASN.1 tree: 1000

 For the algorithm identifier, a specific OID for the selected combination of traditional + post-1001
quantum algorithm is used. 1002

 Keys and signatures follow the usual ASN.1 syntax, except the byte string corresponds to the 1003
concatenation of a traditional and a post-quantum object. 1004

There is no specification available so far. 1005

8.1.2.3 HYBRID BOUND 1006

This X.509 certificate is a hybrid certificate. It uses two certificates, one traditional and one post-1007
quantum. The traditional certificate is built as usual, and the post-quantum certificate is built according 1008
to the PURE PQC model (see Section 8.1.2.1). In addition, the post-quantum certificate contains an 1009
extension that links itself to the traditional certificate. The traditional certificate may contain a similar 1010
extension linking to the post-quantum certificate, so that each certificate has an authenticated pointer 1011
to the other. 1012

The details of this format can be found in the following: 1013

 draft-becker-guthrie-cert-binding-for-multi-auth [26] 1014

https://www.rfc-editor.org/rfc/rfc5280
https://datatracker.ietf.org/doc/draft-ietf-lamps-dilithium-certificates/
https://datatracker.ietf.org/doc/draft-ietf-lamps-kyber-certificates/
https://datatracker.ietf.org/doc/draft-becker-guthrie-cert-binding-for-multi-auth/

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 33

8.1.2.4 HYBRID COMPOSITE 1015

This X.509 certificate is a hybrid certificate. This version is a refinement of the previous HYBRID 1016
CONCATENATED format (see Section 8.1.2.2) that uses ASN.1 encoding to separate the traditional and 1017
post-quantum objects. 1018

 The algorithm identifier is a special OID for “composite”. 1019

 Keys and signatures are “composite” objects: a composite public key is an ASN.1 sequence of 1020
public key fields, each with its own algorithm identifier and contents (and similarly for the signa-1021
ture). 1022

The details of this format can be found in the following documents: 1023

 draft-ounsworth-pq-composite-sigs [27] 1024

 draft-ietf-lamps-pq-composite-kem [28] 1025

8.1.2.5 HYBRID USING EXTENSIONS (Catalyst) 1026

This X.509 certificate is a hybrid certificate. This format stores the post-quantum objects in X.509 1027
extensions. Except for these extensions, the certificate looks exactly like a traditional X.509 certificate, 1028
so an unmodified tool should be able to parse and verify it, assuming it treats unknown non-critical 1029
extensions as opaque data. In principle, this format is therefore retro-compatible. 1030

The details of this format can be found in the following documents: 1031

 draft-truskovsky-lamps-pq-hybrid-x509 [29] 1032

 ITU-T X.509 (10/2019) [30] 1033

8.1.2.6 HYBRID DELTA EXTENSIONS (Chameleon) 1034

This X.509 certificate is a hybrid certificate. This format encodes the differences between two 1035
certificates in a single extension. One certificate is the “base” or outer certificate, and the second one is 1036
the “delta” or inner certificate. Only the differences between the base and delta certificate are 1037
contained in the extension. Except for the extension, the certificate looks exactly like a traditional X.509 1038
certificate, so an unmodified tool should be able to parse and verify it, assuming it treats unknown non-1039
critical extensions as opaque data. In principle, this format is therefore retro-compatible. A delta 1040
certificate can be reconstructed by the base certificate into a fully verifiable secondary certificate. 1041

The details of this format can be found in the following: 1042

 draft-bonnell-lamps-chameleon-certs [31] 1043

8.2 Interoperability Testing 1044

8.2.1 Testing Procedure 1045

An interoperability test aims at verifying that: 1046

 all the public keys contained in the X.509 certificate can be extracted and used by another ven-1047
dor application; and 1048

https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/
https://datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-kem
https://datatracker.ietf.org/doc/draft-truskovsky-lamps-pq-hybrid-x509/
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=14033&lang=en
https://datatracker.ietf.org/doc/draft-bonnell-lamps-chameleon-certs/

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 34

 all the signatures contained in the X.509 certificate can be verified by another vendor applica-1049
tion. 1050

The most basic interoperability testing between applications A and B consists of the following steps: 1051

In case of a SIG algorithm: 1052

1. Application A generates a Root CA certificate (self-signed). 1053

2. Application B verifies the Root CA certificate. 1054

This test checks both the PQC public key usability and the PQC signature correctness. 1055

In case of a KEM algorithm: 1056

1. Application A generates an end-entity certificate holding a KEM key. This certificate is signed by 1057
the private key of the Root CA certificate generated in the signature algorithm test case. 1058

2. Application B verifies the end-entity certificate holding the KEM key. 1059

See https://github.com/IETF-Hackathon/pqc-certificates/tree/master#zip-format-r3. 1060

8.2.2 Test Profiles 1061

8.2.2.1 PURE_PQ_SIG 1062

The PURE_PQ_SIG test profile tests a PURE PQ X.509 certificate transporting a PQC signature key. This 1063
test profile includes the algorithm configurations listed in Table 8: 1064

Table 8 Algorithm configurations included in the PURE_PQ_SIG test profile 1065

X.509 Public Key Algorithm X.509 Signature Algorithm
Dilithium-2 (ML-DSA-44-ipd) Dilithium-2 (ML-DSA-44-ipd)
Dilithium-3 (ML-DSA-65-ipd) Dilithium-3 (ML-DSA-65-ipd)
Dilithium-5 (ML-DSA-87-ipd) Dilithium-5 (ML-DSA-87-ipd)
Falcon-512 Falcon-512
Falcon-1024 Falcon-1024
SPHINCS+-SHAKE-128f (SLH-DSA-SHAKE-128f-ipd) SPHINCS+-SHAKE-128f (SLH-DSA-SHAKE-128f-ipd)
SPHINCS+-SHAKE-192f (SLH-DSA-SHAKE-192f-ipd) SPHINCS+-SHAKE-192f (SLH-DSA-SHAKE-192f-ipd)
SPHINCS+-SHAKE-256f (SLH-DSA-SHAKE-256f-ipd) SPHINCS+-SHAKE-256f (SLH-DSA-SHAKE-256f-ipd)
SPHINCS+-SHA2-128f (SLH-DSA-SHA2-128f-ipd) SPHINCS+-SHA2-128f (SLH-DSA-SHA2-128f-ipd)
SPHINCS+-SHA2-192f (SLH-DSA-SHA2-192f-ipd) SPHINCS+-SHA2-192f (SLH-DSA-SHA2-192f-ipd)
SPHINCS+-SHA2-256f (SLH-DSA-SHA2-256f-ipd) SPHINCS+-SHA2-256f (SLH-DSA-SHA2-256f-ipd)

8.2.2.2 PURE_PQ_KEM 1066

The PURE_PQ_KEM test profile tests a PURE PQ X.509 certificate transporting a PQC KEM key. This test 1067
profile includes the algorithm configurations listed in Table 9: 1068

https://github.com/IETF-Hackathon/pqc-certificates/tree/master#zip-format-r3

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 35

Table 9 Algorithm configurations included in the PURE_PQ_KEM test profile 1069

X.509 Public Key Algorithm X.509 Signature Algorithm
Kyber-512 Dilithium-2 (ML-DSA-44-ipd)
Kyber-768 Dilithium-3 (ML-DSA-65-ipd)
Kyber-1024 Dilithium-5 (ML-DSA-87-ipd)

8.2.2.3 HYBRID_CONCATENATED 1070

The HYBRID_CONCATENATED test profile tests a HYBRID CONCATENATED X.509 certificate transporting 1071
a PQC SIG key. This test profile includes the algorithm configurations listed in Table 10: 1072

Table 10 Algorithm configurations included in the HYBRID_CONCATENATED test profile 1073

X.509 Public Key Algorithm X.509 Signature Algorithm
RSA (3072)+Dilithium-2 RSA_PKCSv1.5_SHA256 (3072)+Dilithium-2
ECDSA (P-256)+Dilithium-2 ECDSA_SHA256 (P-256)+Dilithium-2
ECDSA (P-521)+Dilithium-5 ECDSA_SHA512 (P-521)+Dilithium-5

8.2.2.4 HYBRID_BOUND 1074

The HYBRID_BOUND test profile tests a HYBRID BOUND X.509 certificate transporting a PQC SIG key. 1075
This test profile includes the algorithm configurations listed in Table 11: 1076

Table 11 Algorithm configurations included in the HYBRID_BOUND test profile 1077

X.509 Public Key Algorithm X.509 Signature Algorithm
RSA (3072)+Dilithium-2 RSA_PKCSv1.5_SHA256 (3072)+Dilithium-2
ECDSA (P-256)+Dilithium-2 ECDSA_SHA256 (P-256)+Dilithium-2
ECDSA (P-521)+Dilithium-5 ECDSA_SHA512 (P-521)+Dilithium-5

8.2.2.5 HYBRID_COMPOSITE 1078

The HYBRID_COMPOSITE test profile tests a HYBRID COMPOSITE X.509 certificate transporting a PQC SIG 1079
key. This test profile includes the algorithm configurations listed in Table 12: 1080

Table 12 Algorithm configurations included in the HYBRID_COMPOSITE test profile 1081

X.509 Public Key Algorithm X.509 Signature Algorithm
RSA (3072)+Dilithium-2 RSA_PKCSv1.5_SHA256 (3072)+Dilithium-2
ECDSA (P-256)+Dilithium-2 ECDSA_SHA256 (P-256)+Dilithium-2
ECDSA (P-521)+Dilithium-5 ECDSA_SHA512 (P-521)+Dilithium-5

8.2.2.6 HYBRID_CATALYST 1082

The HYBRID_CATALYST test profile tests a HYBRID USING EXTENSIONS X.509 certificate transporting a 1083
PQC SIG key. This test profile includes the algorithm configurations listed in Table 13: 1084

Table 13 Algorithm configurations included in the HYBRID_CATALYST test profile 1085

X.509 Public Key Algorithm X.509 Signature Algorithm
RSA (3072)+Dilithium-2 RSA_PKCSv1.5_SHA256 (3072)+Dilithium-2

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 36

X.509 Public Key Algorithm X.509 Signature Algorithm
ECDSA (P-256)+Dilithium-2 ECDSA_SHA256 (P-256)+Dilithium-2
ECDSA (P-521)+Dilithium-5 ECDSA_SHA512 (P-521)+Dilithium-5

8.2.2.7 HYBRID_CHAMELEON 1086

The HYBRID_CHAMELEON test profile tests a HYBRID DELTA EXTENSIONS X.509 certificate transporting a 1087
PQC SIG key. This test profile includes the algorithm configurations listed in Table 14: 1088

Table 14 Algorithm configurations included in the HYBRID_CHAMELEON test profile 1089

X.509 Public Key Algorithm X.509 Signature Algorithm
RSA (3072)+Dilithium-2 RSA_PKCSv1.5_SHA256 (3072)+Dilithium-2
ECDSA (P-256)+Dilithium-2 ECDSA_SHA256 (P-256)+Dilithium-2
ECDSA (P-521)+Dilithium-5 ECDSA_SHA512 (P-521)+Dilithium-5

8.2.3 Test Results 1090

All interoperability tests have been performed within the IETF PQC X.509 Hackathon. The results can be 1091
found here: IETF Hackathon Results. [32] 1092

8.2.3.1 PURE_PQ_SIG 1093

See IETF Hackathon Results. 1094

8.2.3.2 PURE_PQ_KEM 1095

See IETF Hackathon Results. 1096

8.2.3.3 HYBRID_CONCATENATED 1097

See IETF Hackathon Results. 1098

8.2.3.4 HYBRID_BOUND 1099

See IETF Hackathon Results. 1100

8.2.3.5 HYBRID_COMPOSITE 1101

See IETF Hackathon Results. 1102

8.2.3.6 HYBRID_CATALYST 1103

See IETF Hackathon Results. 1104

8.2.3.7 HYBRID_CHAMELEON 1105

See IETF Hackathon Results. 1106

8.3 Performance Testing 1107

Performance was not investigated during this first testing phase. It will be investigated in future phases 1108
of interoperability testing. 1109

https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 37

8.4 Lessons Learned 1110

While collaborators were going through interoperability testing, they had to work through issues with 1111
their implementation components. Below we summarize the lessons learned: 1112

 Falcon signature has variable size and caused some issues. 1113

 There is a lot of interest in hybrid certificate formats. For example, we have seen many imple-1114
mentations of composite signature signed certificates. There is also interest in using certificate 1115
structures to convey hybrid information in the following X.509 certificate components: 1116

• New V3Extensions types: 1117

o The Chameleon Delta Certificate Descriptor Extension (DCD) 1118

o The RelatedCertificate Extension for multi-certificate authentication 1119

o The Catalyst AltSignature and AltPublicKey extension 1120

• Existing V3Extensions: 1121

o Using the Subject Info Access (SIA) extension for certificate discovery 1122

• SubjectPublicKey 1123

o Composite keys 1124

o An external public key structure 1125

• Signature structures 1126

o Composite signatures 1127

 ASN.1 encoding issues – some specifications had different encodings for Dilithium keys (for ex-1128
ample). We settled on using OCTET_STRING, which looks like the way the standards are going. 1129

 Having OIDs to reference specification versions is critical. Changing specifications has required 1130
numerous updates to the prototype OIDs to try and avoid compatibility issues. See OID Mapping 1131
table for the latest prototype OIDs. 1132

 PEM and Distinguished Encoding Rules (DER) encoding issues sometimes caused edge cases, 1133
which required special parsers. 1134

 X509-related issues like basic constraints rules and encodings sometimes came into play. We 1135
recognized that these are not PQ algorithm-related; it just means X.509 in general can be diffi-1136
cult to implement and work together. 1137

9 Hardware Security Modules (HSMs) 1138

9.1 Discussion about Interoperability and Performance 1139

HSMs serve as foundational elements in establishing the online trust required to facilitate digital 1140
commerce and identity in today’s connected world. They provide hardware-based protection for high-1141
value cryptographic assets and perform complicated cryptographic processing using those assets. Given 1142
their foundational nature and the value of the assets they protect, it is imperative that we be able to 1143
migrate HSMs from the current classic cryptographic mechanisms such as RSA and ECC over to the next 1144

https://github.com/IETF-Hackathon/pqc-certificates/blob/master/docs/oid_mapping.md

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 38

generation of PQC algorithms such as Kyber, Dilithium, Falcon, eXtended Merkle Signature Scheme 1145
(XMSS)/Multi-Tree eXtended Merkle Signature Scheme (XMSSMT), Leighton-Micali Signature 1146
(LMS)/Hierarchical Signature System (HSS), and SPHINCS+. 1147

HSMs are available from a number of vendors, all of whom must ensure the cryptographic keys they are 1148
generating and consuming, as well as the cryptographic algorithms they are performing, are compatible 1149
with HSMs from other vendors to ensure the system as a whole can function, providing a solid and 1150
secure foundation for many of the digital systems we rely on today. 1151

As such, we have endeavored to validate the ability for HSMs to interoperate in the following ways: 1152

 Public keys generated on one vendor’s HSMs can be successfully exported and then imported 1153
into another vendor’s HSM to create a valid public key object. 1154

 Digital signatures generated on one vendor’s HSMs can be successfully read and verified on an-1155
other vendor’s HSMs. 1156

 A key encapsulated on one vendor’s HSMs can be successfully read and decapsulated on an-1157
other vendor’s HSMs, with both HSMs generating the same shared secret key value. 1158

Performance was not investigated during this initial effort, nor was interoperability across specific APIs 1159
such as PKCS#11. These will be investigated in future phases of interoperability testing. 1160

9.1.1 OID Usage 1161

One detail that deserves mention is the OID allocation used during the interoperability validation effort. 1162
Currently, new PQC algorithms such as Kyber, Dilithium, Falcon, and SPHINCS+ do not have official OIDs 1163
allocated to them. NIST will request official values once the standardization process is completed. In the 1164
meantime, temporary OIDs have been identified and we have leveraged the following OID allocation 1165
sources for the purposes of this interoperability testing exercise: 1166

 Kyber, Dilithium, Falcon, SPHINCS+ SHA2 variants: IETF Hackathon7 1167

 SPHINCS+ SHAKE variants: libOQS 1168

 LMS, HSS, XMSS, XMSSMT: C509 Signature Algorithms 1169

The OID allocations are summarized in Table 15. 1170

Table 15 Summary of OID allocations 1171

 Algorithm & Variant OID

PQ
C

H
ac

ka
th

on
/

lib
O

Q
S Kyber-512 1.3.6.1.4.1.22554.5.6.1

Kyber-768 1.3.6.1.4.1.22554.5.6.2
Kyber-1024 1.3.6.1.4.1.22554.5.6.3
Dilithium-2 1.3.6.1.4.1.2.267.7.4.4
Dilithium-3 1.3.6.1.4.1.2.267.7.6.5
Dilithium-5 1.3.6.1.4.1.2.267.7.8.7
Falcon-512 1.3.9999.3.6

Falcon-1024 1.3.9999.3.9

7 Note that this list appears to have been extracted from the libOQS mappings.

https://github.com/IETF-Hackathon/pqc-certificates/blob/master/docs/oid_mapping.md
https://github.com/open-quantum-safe/oqs-provider/blob/main/oqs-template/oqs-sig-info.md
https://www.ietf.org/id/draft-ietf-cose-cbor-encoded-cert-05.html

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 39

 Algorithm & Variant OID
SPHINCS+-SHA2-128fs 1.3.9999.6.4.4
SPHINCS+-SHA2-128ss 1.3.9999.6.4.10
SPHINCS+-SHA2-192fs 1.3.9999.6.5.3
SPHINCS+-SHA2-192ss 1.3.9999.6.5.7
SPHINCS+-SHA2-256fs 1.3.9999.6.6.3
SPHINCS+-SHA2-256ss 1.3.9999.6.6.7

lib
O

Q
S

SPHINCS+-SHAKE-128fs 1.3.9999.6.7.4
SPHINCS+-SHAKE-128ss 1.3.9999.6.7.10
SPHINCS+-SHAKE-192fs 1.3.9999.6.8.3
SPHINCS+-SHAKE-192ss 1.3.9999.6.8.7
SPHINCS+-SHAKE-256fs 1.3.9999.6.9.3
SPHINCS+-SHAKE-256ss 1.3.9999.6.9.7

C5
09

 HSS (all variants) 1.2.840.113549.1.9.16.3.17
XMSS (all variants) 0.4.0.127.0.15.1.1.13.0

XMSSMT (all variants) 0.4.0.127.0.15.1.1.14.0

9.1.2 Algorithm Versions Tested 1172

The specific PQC algorithm versions that were used for this exercise are summarized in Table 16, which 1173
includes hyperlinks to the relevant reference documents. 1174

Table 16 Algorithm versions tested 1175

Algorithm Version Tested (w/hyperlink)
Kyber v3.02 (August 4, 2021)

Dilithium v3.1 (February 8, 2021)
SPHINCS+ v3.1 (June 10, 2022)
LMS/HSS RFC 8554

XMSS/XMSSMT RFC 8391

9.2 Interoperability Test Results 1176

This section contains the detailed test results from all of the interoperability testing that was performed 1177
as part of this exercise. The following subsections describe the vendor-declared list of basic capabilities 1178
for each of their implementations, as well as the detailed results from performing interoperability tests 1179
on key import/export, digital signature generation/verification, and key encapsulation/decapsulation. 1180

9.2.1 Basic Capabilities 1181

Each HSM vendor provided an outline of the PQC capabilities that they supported, which are 1182
summarized in the tables below using three generic categories: key generation (Table 17), digital 1183
signatures (Table 18), and key encapsulation (Table 19). Each category is organized by algorithm and 1184
variant, for which the vendors marked their capability using the following notation: 1185

  = available/supported 1186

  = supported but not tested 1187

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://datatracker.ietf.org/doc/html/rfc8554
https://datatracker.ietf.org/doc/html/rfc8391

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 40

  = not supported at this time 1188

Table 17 Key generation capabilities by HSM vendor 1189

Key Generation Algorithm and
Parameters

Crypto4A Entrust Thales DIS Thales
TCT

Utimaco8

Kyber L1: 512 Success Success Success Success Not tested
Kyber L3: 768 Success Success Success Success Not tested
Kyber L5: 1024 Success Success Success Success Not tested
Dilithium L2 Success Success Success Success Not tested
Dilithium L3 Success Success Success Success Not tested
Dilithium L5 Success Success Success Success Not tested
Falcon L1: 512 N/A Success Success Success N/A
Falcon L5: 1025 N/A Success Success Success N/A
SPHINCS+-SHAKE-128ss Success Success Success N/A N/A
SPHINCS+-SHAKE-128fs Success Success Success N/A N/A
SPHINCS+-SHAKE-192ss Success Success Success N/A N/A
SPHINCS+-SHAKE-192fs Success Success Success N/A N/A
SPHINCS+-SHAKE-256ss Success Success Success N/A N/A
SPHINCS+-SHAKE-256fs Success Success Success N/A N/A
SPHINCS+-SHA2-128ss Success Success Success N/A N/A
SPHINCS+-SHA2-128fs Success Success Success N/A N/A
SPHINCS+-SHA2-192ss Success Success Success N/A N/A
SPHINCS+-SHA2-192fs Success Success Success N/A N/A
SPHINCS+-SHA2-256ss Success Success Success N/A N/A
SPHINCS+-SHA2-256fs Success Success Success N/A N/A
XMSS-SHA2_10_256 Success N/A Success N/A Not tested
XMSS-SHA2_16_256 Success N/A Success N/A Not tested
XMSS-SHA2_20_256 Success N/A Not tested N/A Not tested
XMSSMT-SHA2_20/2_256 Success N/A Success N/A Not tested
XMSSMT-SHA2_40/2_256 Success N/A Not tested N/A Not tested
XMSSMT-SHA2_60/3_256 Success N/A Not tested N/A Not tested
LMS/HSS {L, hi, wi, ni} = {1, 10, 8,
32}

Success N/A Success Success Not tested

LMS/HSS {L, hi, wi, ni} = {1, 20, 8,
32}

Success N/A Not tested N/A Not tested

LMS/HSS {L, hi, wi, ni} = {1, 10, 8,
24}

Success N/A Success Success Not tested

LMS/HSS {L, hi, wi, ni} = {1, 20, 8,
24}

Success N/A Not tested N/A Not tested

LMS/HSS {L, hi, wi, ni} = {1, 5, 8, 32} Success N/A Success Success Not tested
LMS/HSS {L, hi, wi, ni} = {1, 5, 8, 24} Success N/A Success Success Not tested
LMS/HSS {L, hi, wi, ni} = {2, {10, 8,
32}, {10, 8, 32}}

Success N/A Success Success Not tested

8 We have documented the capabilities reported by Utimaco because the test results were not fully available at
the deadline of this document. The full set of test results will be added to a future version of this document.

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 41

Key Generation Algorithm and
Parameters

Crypto4A Entrust Thales DIS Thales
TCT

Utimaco8

LMS/HSS {L, hi, wi, ni} = {2, {10, 8,
32}, {20, 8, 32}}

Success N/A Not tested N/A Not tested

LMS/HSS {L, hi, wi, ni} = {2, {20, 8,
32}, {20, 8, 32}}

Success N/A Not tested N/A Not tested

For the digital signature capabilities, the vendors indicated their ability to generate (i.e., sign) and verify 1190
signatures separately for each algorithm and variant. 1191

Table 18 Digital signature capabilities by HSM vendor 1192

Digital Signature Generation/Verification
Algorithm Cr

yp
to

4A

En
tr

us
t

Th
al

es
 D

IS

Th
al

es
 T

CT

U
tim

ac
o9

• Dilithium
o L2
o L3
o L5

• Falcon
o L1: 512
o L5: 1024

• SPHINCS+
o SPHINCS+-SHAKE-128ss
o SPHINCS+-SHAKE-128fs
o SPHINCS+-SHAKE-192ss
o SPHINCS+-SHAKE-192fs
o SPHINCS+-SHAKE-256ss
o SPHINCS+-SHAKE-256fs
o SPHINCS+-SHA2-128ss
o SPHINCS+-SHA2-128fs
o SPHINCS+-SHA2-192ss
o SPHINCS+-SHA2-192fs
o SPHINCS+-SHA2-256ss
o SPHINCS+-SHA2-256fs

• XMSS/XMSSMT
o XMSS-SHA2_10_256
o XMSS-SHA2_16_256
o XMSS-SHA2_20_256
o XMSSMT-SHA2_20/2_256
o XMSSMT-SHA2_40/2_256
o XMSSMT-SHA2_60/3_256

(S/V)
/
/
/

/
/

/
/
/
/
/
/
/
/
/
/
/
/

/
/
/
/
/
/

(S/V)
/
/
/

/
/

/
/
/
/
/
/
/
/
/
/
/
/

/
/
/
/
/
/

(S/V)
/
/
/

/
/

/
/
/
/
/
/
/
/
/
/
/
/

/
/
/
/
/
/

(S/V)
/
/
/

/
/

/
/
/
/
/
/
/
/
/
/
/
/

/
/
/
/
/
/

(S/V)
/
/
/

/
/

/
/
/
/
/
/
/
/
/
/
/
/

/
/
/
/
/
/

9 We have documented the capabilities reported by Utimaco because the test results were not fully available at
the deadline of this document. The full set of test results will be added to a future version of this document.

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 42

Digital Signature Generation/Verification
Algorithm Cr

yp
to

4A

En
tr

us
t

Th
al

es
 D

IS

Th
al

es
 T

CT

U
tim

ac
o9

• LMS/HSS
o {L, hi, wi, ni} = {1, 10, 8, 32}
o {L, hi, wi, ni} = {1, 20, 8, 32}
o {L, hi, wi, ni} = {1, 10, 8, 24}
o {L, hi, wi, ni} = {1, 20, 8, 24}
o {L, hi, wi, ni} = {1, 5, 8, 32}
o {L, hi, wi, ni} = {1, 5, 8, 24}
o {L, hi, wi, ni} = {2, {10, 8, 32}, {10, 8, 32}}
o {L, hi, wi, ni} = {2, {10, 8, 32}, {20, 8, 32}}
o {L, hi, wi, ni} = {2, {20, 8, 32}, {20, 8, 32}}

/
/
/
/
/
/
/
/
/

/
/
/
/
/
/
/
/
/

/
/
/
/
/
/
/
/
/

/
/
/
/
/
/
/
/
/

/
/
/
/
/
/
/
/
/

Similarly, for key encapsulation mechanisms, the vendors indicated their ability to perform 1193
encapsulation and decapsulation operations separately as well for each algorithm and variant. 1194

Table 19 Key encapsulation capabilities by HSM vendor 1195

Key Encapsulation Mechanism
Algorithm Cr

yp
to

4A

En
tr

us
t

Th
al

es
 D

IS

Th
al

es
 T

CT

U
tim

ac
o10

• Kyber
o L1: 512
o L3: 768
o L5: 1024

(E/D
/
/
/

(E/D)
/
/
/

(E/D)
/
/
/

(E/D)
 /
 /
 /

(E/D)
/
/
/

9.2.2 PQC Key Generation, Export, and Import 1196

The first set of interoperability tests involved having each HSM vendor generate a variety of public key 1197
objects which they then exported in a PEM-based format. These public keys were then imported into 1198
other vendors’ HSMs to see if they would result in valid public key objects that could be used for digital 1199
signature verification and key encapsulation. 1200

The results of these tests are summarized in Table 20 where each row summarizes whether or not the 1201
given vendor’s HSM was able to generate and export the given algorithm’s public key, and if the other 1202
HSM vendors were able to import the key successfully, using the notation: 1203

  = successfully imported the public key object 1204

10 We have documented the capabilities reported by Utimaco because the test results were not fully available at
the deadline of this document. The full set of test results will be added to a future version of this document.

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 43

  = unable to import the public key object 1205

  = supported but not tested 1206

  = not supported at this time 1207

Table 20 Test results for HSM key generation, export, and import 1208

Export Import:
Crypto4A

Import:
Entrust

Import:
Thales

DIS

Import:
Thales

TCT

Import:
Utimaco11

Kyber-512 (L1)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
Kyber-768 (L3)
Crypto4A     
Entrust     
Thales     
Thales TCT     
Utimaco     
Kyber-1024 (L5)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
Dilithium-2 (L2)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
Dilithium-3 (L3)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
Dilithium-5 (L5)
Crypto4A     

11 We have documented the capabilities reported by Utimaco because the test results were not fully available at
the deadline of this document. The full set of test results will be added to a future version of this document.

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 44

Export Import:
Crypto4A

Import:
Entrust

Import:
Thales

DIS

Import:
Thales

TCT

Import:
Utimaco11

Entrust     
Thales DIS     
Thales TCT     
Utimaco     
Falcon-512 (L1)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
Falcon-1024 (L5)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHAKE-128ss
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHAKE-128fs
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHAKE-192ss
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHAKE-192fs
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHAKE-256ss

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 45

Export Import:
Crypto4A

Import:
Entrust

Import:
Thales

DIS

Import:
Thales

TCT

Import:
Utimaco11

Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHAKE-256fs
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHA2-128ss
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHA2-128fs
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHA2-192ss
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHA2-192fs
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHA2-256ss
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 46

Export Import:
Crypto4A

Import:
Entrust

Import:
Thales

DIS

Import:
Thales

TCT

Import:
Utimaco11

SPHINCS+-SHA2-256fs
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
XMSS-SHA2_10_256
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
XMSS-SHA2_16_256
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
XMSS-SHA2_20_256
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
XMSSMT-SHA2_20/2_256
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
XMSSMT-SHA2_40/2_256
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
XMSSMT-SHA2_60/3_256
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 47

Export Import:
Crypto4A

Import:
Entrust

Import:
Thales

DIS

Import:
Thales

TCT

Import:
Utimaco11

Utimaco     
LMS/HSS {L, hi, wi, ni} = {1, 10, 8, 32}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {1, 20, 8, 32}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {1, 10, 8, 24}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {1, 20, 8, 24}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {1, 5, 8, 32}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {1, 5, 8, 24}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {2, {10, 8, 24}, {10, 8, 24}}
Crypto4A     
Entrust     
Thales DIS     

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 48

Export Import:
Crypto4A

Import:
Entrust

Import:
Thales

DIS

Import:
Thales

TCT

Import:
Utimaco11

Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {2, {10, 8, 24}, {20, 8, 24}}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {2, {20, 8, 24}, {20, 8, 24}}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     

9.2.3 PQC Signature Generation and Verification 1209

The second set of interoperability tests performed involved having an HSM vendor perform a digital 1210
signature and export the public key component of the signing key (a.k.a., the verification key). The other 1211
HSM vendors then attempted to import the verification key and verify the generated signature using the 1212
same message that was signed. 1213

The results of these tests are summarized in Table 21 where each row summarizes whether or not the 1214
given vendor’s HSM was able to generate a digital signature for the corresponding algorithm, and if the 1215
other HSM vendors were able to import the verification key and verify the generated signature 1216
successfully, using the notation: 1217

  = successfully imported the verifying key and verified the digital signature 1218

  = did NOT successfully import the key and verify the digital signature 1219

  = supported but not tested 1220

  = not supported at this time 1221

Table 21 Test results for HSM signature generation and verification 1222

Signer Verifier:
Crypto4A

Verifier:
Entrust

Verifier:
Thales

DIS

Verifier:
Thales

TCT

Verifier:
Utimaco12

Dilithium-2 (L2)
Crypto4A     

12 We have documented the capabilities reported by Utimaco because the test results were not fully available at
the deadline of this document. The full set of test results will be added to a future version of this document.

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 49

Signer Verifier:
Crypto4A

Verifier:
Entrust

Verifier:
Thales

DIS

Verifier:
Thales

TCT

Verifier:
Utimaco12

Entrust     
Thales DIS     
Thales TCT     
Utimaco     
Dilithium-3 (L3)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
Dilithium-5 (L5)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
Falcon-512 (L1)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
Falcon-1024 (L5)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHAKE-128ss
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHAKE-128fs
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHAKE-192ss
Crypto4A     
Entrust     

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 50

Signer Verifier:
Crypto4A

Verifier:
Entrust

Verifier:
Thales

DIS

Verifier:
Thales

TCT

Verifier:
Utimaco12

Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHAKE-192fs
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHAKE-256ss
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHAKE-256fs
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHA2-128ss
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHA2-128fs
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHA2-192ss
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHA2-192fs
Crypto4A     
Entrust     
Thales DIS     

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 51

Signer Verifier:
Crypto4A

Verifier:
Entrust

Verifier:
Thales

DIS

Verifier:
Thales

TCT

Verifier:
Utimaco12

Thales TCT     
Utimaco     
SPHINCS+-SHA2-256ss
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
SPHINCS+-SHA2-256fs
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
XMSS-SHA2_10_256
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
XMSS-SHA2_16_256
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
XMSS-SHA2_20_256
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
XMSSMT-SHA2_20/2_256
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
XMSSMT-SHA2_40/2_256
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 52

Signer Verifier:
Crypto4A

Verifier:
Entrust

Verifier:
Thales

DIS

Verifier:
Thales

TCT

Verifier:
Utimaco12

Utimaco     
XMSSMT-SHA2_60/3_256
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {1, 10, 8, 32}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {1, 20, 8, 32}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {1, 10, 8, 24}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {1, 20, 8, 24}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {1, 5, 8, 32}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {1, 5, 8, 24}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 53

Signer Verifier:
Crypto4A

Verifier:
Entrust

Verifier:
Thales

DIS

Verifier:
Thales

TCT

Verifier:
Utimaco12

LMS/HSS {L, hi, wi, ni} = {2, {10, 8, 24}, {10, 8, 24}}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {2, {10, 8, 24}, {20, 8, 24}}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
LMS/HSS {L, hi, wi, ni} = {2, {20, 8, 24}, {20, 8, 24}}
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     

9.2.4 PQC Key Encapsulation and Decapsulation 1223

The last set of interoperability tests performed involved having an HSM vendor (a.k.a., HSMA) perform a 1224
key encapsulation operation by importing another HSM vendor’s (a.k.a., HSMB) public encapsulation key 1225
to generate the required ciphertext and shared secret value. HSMB then performs a key decapsulation 1226
on the ciphertext generated by HSMA, and verifies that the generated shared secret matches the one 1227
produced by HSMA during the encapsulation operation. 1228

The results of these tests are summarized in Table 22 where each row summarizes whether or not the 1229
given vendor’s HSM was able to successfully perform the encapsulation and decapsulation operations 1230
described in the previous paragraph, using the notation: 1231

  = successfully imported encapsulation ciphertext and generated valid shared secret 1232

  = did NOT successfully generate the correct shared secret 1233

  = supported but not tested 1234

  = not supported at this time 1235

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 54

Table 22 Test results for HSM key encapsulation and decapsulation 1236

Encapsulate

De
ca

ps
ul

at
e:

Cr

yp
to

4A

De
ca

ps
ul

at
e:

En

tr
us

t

De
ca

ps
ul

at
e:

Th

al
es

 D
IS

De
ca

ps
ul

at
e:

Th

al
es

 T
CT

De
ca

ps
ul

at
e:

U

tim
ac

o13

Kyber-512 (L1)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
Kyber-768 (L3)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     
Kyber-1024 (L5)
Crypto4A     
Entrust     
Thales DIS     
Thales TCT     
Utimaco     

9.3 Summary of Results 1237

No single vendor at this time has a complete offering of PQC algorithm support that has been validated. 1238
However, a high degree of interoperability was achieved for the capabilities that are currently supported 1239
across the whole suite of HSM vendors who participated in this exercise. 1240

At this point in time, the only incompatibility that was found was with Entrust’s SPHINCS+ SHA2-based 1241
variants, which couldn’t be verified by either Crypto4A or Thales DIS (and vice versa). 1242

The high degree of interoperability is a good indicator of the level of effort that HSM vendors have put 1243
into providing properly functioning PQC capabilities in their next generation of products. Having a high 1244
degree of interoperability between HSM vendors is an essential element of minimizing the difficulty of 1245
migrating our existing quantum-vulnerable cryptographic capabilities to quantum-safe variants, though 1246
there is still an enormous amount of work to be done. 1247

13 We have documented the capabilities reported by Utimaco because the test results were not fully available at
the deadline of this document. The full set of test results will be added to a future version of this document.

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 55

10 Overall Status and Themes 1248

Migration to post-quantum cryptography is a complex effort. Fortunately, the activities performed by 1249
the NCCoE project participants will help the ecosystem prepare for quantum readiness. 1250

Thanks to early prototyping by academia and industry, we observed only a few challenges with the 1251
collaborator’s core TLS and SSH protocol implementations, giving confidence that migrating to the new 1252
PQC standards will be straightforward for most implementations. The implementations used draft 1253
versions of the protocols that have been proposed by experimenters versus the standard bodies 1254
themselves (e.g., the IETF) who have been waiting for the final FIPS documents. These drafts are likely to 1255
serve as a basis for the respective working groups to define PQC integration, and the interoperability 1256
experiments in this publication can serve as supporting material to accelerate their adoption. 1257

Few implementations for derived protocols (DTLS, MQTT, QUIC, etc.) were available; these will be tested 1258
in later phases of the project as more partners add support to their components. 1259

The performance testing conducted demonstrated that the cost of Kyber, the recommended algorithm 1260
for key exchange, is competitive when compared with the current elliptic curve state of the art, and 1261
even their hybrid combination would be practical for most use cases. This is encouraging for 1262
organizations planning to transition sooner than later, wishing to add quantum resistance on top of 1263
existing standards. 1264

Our workstream is planning many more activities, including testing more algorithms and parameter sets 1265
and more protocols, onboarding more partner implementations in both hardware and software, and 1266
demonstrating more scenarios. In tandem, we will start to release a more detailed technical view of our 1267
testbed so that interested parties can replicate our test procedures.1268

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 56

1269 Appendix A List of Acronyms
AES-GCM Advanced Encryption Standard with Galois/Counter Mode

AI Artificial Intelligence

API Application Programming Interface

ASC Accredited Standards Committee

ASN.1 Abstract Syntax Notation One

AWS Amazon Web Services

C-QSA CryptoNext Quantum Safe Application Plugins

C-QSC CryptoNext Quantum Safe Crypto Services

C-QSL CryptoNext Quantum Safe Library

C-QSR CryptoNext Quantum Safe Remediation

C-QST CryptoNext Quantum Safe Tools

CA Certificate Authority

CFRG (IRTF) Crypto Forum Research Group

CISA Cybersecurity & Infrastructure Security Agency

CMS Cryptographic Message Syntax

CNG Cryptography API Next Generation

CNSA Commercial National Security Algorithm Suite

CPU Central Processing Unit

CRADA Cooperative Research and Development Agreement

CRQC Cryptanalytically Relevant Quantum Computer

DCD Delta Certificate Descriptor

DER Distinguished Encoding Rules

DIS (Thales) Digital Identity and Security

DTLS Datagram Transport Layer Security

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie Hellman

ECDHE Elliptic Curve Diffie-Hellman Exchange

ECDSA Elliptic Curve Digital Signature Algorithm

EdDSA Edwards-Curve Digital Signature Algorithm

ETSI European Telecommunications Standards Institute

FIPS Federal Information Processing Standard

FM (Thales) Functionality Module

GB Gigabyte

GHz Gigahertz

GSMA Groupe Speciale Mobile Association

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 57

HSE High Speed Encryptor

HSM Hardware Security Module

HSP Hardware Security Platform

HSS Hierarchical Signature System

IETF Internet Engineering Task Force

IKEv2 Internet Key Exchange Version 2

IoT Internet of Things

IPsec Internet Protocol Security

IRTF Internet Research Task Force

ISA Instruction Set Architecture

ISC Information Security Corporation

JCE Java Cryptography Extension

JSSE Java Secure Socket Extension

KB Kilobyte

KEM Key Encapsulation Mechanism

KMIP Key Management Interoperability Protocol

LAMPS (IETF) Limited Additional Mechanisms for PKIX and SMIME

LMS Leighton-Micali Signature

MB Megabyte

MQTT Message Queuing Telemetry Transport

NCCoE National Cybersecurity Center of Excellence

NIAP National Information Assurance Partnership

NSA National Security Agency

OASIS Organization for the Advancement of Structured Information Standards

OCSP Online Certificate Status Protocol

OID Object Identifier

OMB Office of Management and Budget

OQS (Microsoft) Open Quantum Safe

PKCS Public-Key Cryptography Standard

PKI Public Key Infrastructure

PQC Post-Quantum Cryptography

PQSDK PQShield Software Development Kit

R&D Research and Development

RAM Random Access Memory

REST Representational State Transfer

RFC Request for Comments

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 58

RTT Round-Trip Time

S/MIME Secure/Multipurpose Internet Mail Extensions

SCT Signed Certificate Timestamp

SDK Software Development Kit

SFTP Secure File Transfer Protocol

SHA2 Secure Hash Algorithm 2

SHAKE Secure Hash Algorithm and KECCAK

SIA Subject Info Access

SP Special Publication

SSH Secure Shell

TCP Transmission Control Protocol

TCT (Thales) Trusted Cyber Technologies

TLS Transport Layer Security

TPM Trusted Platform Module

TSA Time Stamp Authority

UDP User Datagram Protocol

WG Working Group

XMSS eXtended Merkle Signature Scheme

XMSSMT Multi-Tree eXtended Merkle Signature Scheme

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 59

1270 Appendix B References
[1] "National Cybersecurity Center of Excellence (NCCoE) Migration to Post-Quantum Cryptography; 1271

Notice,” 86 Federal Register 56898 (October 13, 2021), pp. 56898-56900. 1272
https://www.federalregister.gov/d/2021-22223 1273

[2] Cybersecurity & Infrastructure Security Agency, National Security Agency, and National Institute 1274
of Standards and Technology (2023) Quantum-Readiness: Migration to Post-Quantum 1275
Cryptography. (CISA, Arlington, Virginia), August 21, 2023. Available at 1276
https://www.cisa.gov/resources-tools/resources/quantum-readiness-migration-post-quantum-1277
cryptography 1278

[3] Office of Management and Budget (2022) Migrating to Post-Quantum Cryptography. (The White 1279
House, Washington, DC), OMB Memorandum M-23-02, November 18, 2022. Available at 1280
https://www.whitehouse.gov/wp-content/uploads/2022/11/M-23-02-M-Memo-on-Migrating-1281
to-Post-Quantum-Cryptography.pdf 1282

[4] Cooper DA, Apon D, Dang QH, Davidson MS, Dworkin MJ, Miller CA (2020) Recommendation for 1283
Stateful Hash-Based Signature Schemes. (National Institute of Standards and Technology, 1284
Gaithersburg, MD), NIST Special Publication (SP) 800-208. https://doi.org/10.6028/NIST.SP.800-1285
208 1286

[5] Crockett E, Paquin C, Stebila D (2019) Prototyping post-quantum and hybrid key exchange and 1287
authentication in TLS and SSH. Available at https://eprint.iacr.org/2019/858 1288

[6] Weibel A (2020) Round 2 Hybrid Post-Quantum TLS Benchmarks. Available at 1289
https://aws.amazon.com/blogs/security/round-2-hybrid-post-quantum-tls-benchmarks/ 1290

[7] Salz R, Aviram N (2023) TLS 1.2 is in Feature Freeze. (Internet Engineering Task Force (IETF)), 1291
Internet-Draft draft-rsalz-tls-tls12-frozen. Available at https://datatracker.ietf.org/doc/draft-1292
rsalz-tls-tls12-frozen/ 1293

[8] Bae S, Chang Y, Park H, Kim M, Shin Y (2022) A Performance Evaluation of IPsec with Post-1294
Quantum Cryptography. Information Security and Cryptology - ICISC 2022 (Springer, Seoul, South 1295
Korea), pp. 249-266. https://doi.org/10.1007/978-3-031-29371-9 1296

[9] Gazdag SL, Grundner-Culemann S, Heider T, Herzinger D, Schartl F, Cho JY, Guggemos T, 1297
Loebenberger D (2023) Quantum-Resistant MACsec and IPsec for Virtual Private Networks. 1298
International Conference on Research in Security Standardization (Springer), pp. 1-21. 1299
https://doi.org/10.1007/978-3-031-30731-7_1 1300

[10] Kampanakis P, Stebila D, Hansen T (2023) Post-quantum Hybrid Key Exchange in SSH. (Internet 1301
Engineering Task Force (IETF)), Internet-Draft draft-kampanakis-curdle-ssh-pq-ke-01. Available 1302
at https://datatracker.ietf.org/doc/draft-kampanakis-curdle-ssh-pq-ke/01/ 1303

[11] Sikeridis D, Kampanakis P, Devetsikiotis M (2020) Assessing the overhead of post-quantum 1304
cryptography in TLS 1.3 and SSH. CoNEXT '20: Proceedings of the 16th International Conference 1305
on emerging Networking EXperiments and Technologies, pp. 145-156. 1306
https://doi.org/10.1145/3386367.3431305 1307

https://www.federalregister.gov/d/2021-22223
https://www.cisa.gov/resources-tools/resources/quantum-readiness-migration-post-quantum-cryptography
https://www.cisa.gov/resources-tools/resources/quantum-readiness-migration-post-quantum-cryptography
https://www.whitehouse.gov/wp-content/uploads/2022/11/M-23-02-M-Memo-on-Migrating-to-Post-Quantum-Cryptography.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/11/M-23-02-M-Memo-on-Migrating-to-Post-Quantum-Cryptography.pdf
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.6028/NIST.SP.800-208
https://eprint.iacr.org/2019/858
https://aws.amazon.com/blogs/security/round-2-hybrid-post-quantum-tls-benchmarks/
https://datatracker.ietf.org/doc/draft-rsalz-tls-tls12-frozen/
https://datatracker.ietf.org/doc/draft-rsalz-tls-tls12-frozen/
https://doi.org/10.1007/978-3-031-29371-9
https://doi.org/10.1007/978-3-031-30731-7_1
https://datatracker.ietf.org/doc/draft-kampanakis-curdle-ssh-pq-ke/01/
https://doi.org/10.1145/3386367.3431305

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 60

[12] Bos JW, Costello C, Naehrig M, Stebila D (2014) Post-quantum key exchange for the TLS protocol 1308
from the ring learning with errors problem. Proc. IEEE Symposium on Security and Privacy (S&P) 1309
2015, pp. 553-570. https://eprint.iacr.org/2014/599 1310

[13] Stebila D, Fluhrer S, Gueron S (2022) Hybrid key exchange in TLS 1.3. (Internet Engineering Task 1311
Force (IETF)), Internet-Draft draft-ietf-tls-hybrid-design-05. Available at 1312
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-05 1313

[14] Kwiatkowski K, Kampanakis P (2023) Post-quantum hybrid ECDHE-Kyber Key Agreement for 1314
TLSv1.3. (Internet Engineering Task Force (IETF)), Internet-Draft draft-kwiatkowski-tls-ecdhe-1315
kyber. Available at https://datatracker.ietf.org/doc/html/draft-kwiatkowski-tls-ecdhe-kyber 1316

[15] Westerbaan BE, Stebila D (2023) X25519Kyber768Draft00 hybrid post-quantum key agreement. 1317
(Internet Engineering Task Force (IETF)), Internet-Draft draft-tls-westerbaan-xyber768d00. 1318
Available at https://datatracker.ietf.org/doc/html/draft-tls-westerbaan-xyber768d00 1319

[16] Paquin C, Stebila D, Tamvada G (2020) Benchmarking Post-Quantum Cryptography in TLS. 1320
Available at https://eprint.iacr.org/2019/1447.pdf 1321

[17] Kwiatkowski K, Valenta L (2019) The TLS Post-Quantum Experiment. Available at 1322
https://blog.cloudflare.com/the-tls-post-quantum-experiment/ 1323

[18] Sikeridis D, Kampanakis P, Devetsikiotis M (2020) Post-Quantum Authentication in TLS 1.3: A 1324
Performance Study. Network and Distributed Systems Security (NDSS) Symposium 2020. 1325
Available at https://www.ndss-symposium.org/wp-content/uploads/2020/02/24203-paper.pdf 1326

[19] Iyengar J, Swett I (2021) QUIC Loss Detection and Congestion Control. (Internet Engineering Task 1327
Force (IETF)), IETF Request for Comments (RFC) 9002. https://doi.org/10.17487/RFC9002 1328

[20] Kampanakis P, Bytheway C, Westerbaan BE, Thomson M (2023) Suppressing CA Certificates in 1329
TLS 1.3. (Internet Engineering Task Force (IETF)), Internet-Draft draft-kampanakis-tls-scas-latest-1330
03. Available at https://datatracker.ietf.org/doc/html/draft-kampanakis-tls-scas-latest-03 1331

[21] Jackson D (2023) Abridged Compression for WebPKI Certificates. (Internet Engineering Task 1332
Force (IETF)), Internet-Draft draft-jackson-tls-cert-abridge-00. Available at 1333
https://datatracker.ietf.org/doc/html/draft-jackson-tls-cert-abridge-00 1334

[22] Kampanakis P, Lepoint T (2023) Vision Paper: Do We Need to Change Some Things? SSR 2023: 1335
International Conference on Research in Security Standardization (Springer), pp. 78-102. 1336
https://doi.org/10.1007/978-3-031-30731-7_4 1337

[23] Cooper D, Santesson S, Farrell S, Boeyen S, Housley R, Polk W (2008) Internet X.509 Public Key 1338
Infrastructure Certificate and Certificate Revocation List (CRL) Profile. (Internet Engineering Task 1339
Force (IETF)), IETF Request for Comments (RFC) 5280. https://doi.org/10.17487/RFC5280 1340

[24] Massimo J, Kampanakis P, Turner S, Westerbaan BE (2023) Internet X.509 Public Key 1341
Infrastructure: Algorithm Identifiers for Dilithium. (Internet Engineering Task Force (IETF)), 1342
Internet-Draft draft-ietf-lamps-dilithium-certificates. Available at 1343
https://datatracker.ietf.org/doc/draft-ietf-lamps-dilithium-certificates/ 1344

https://eprint.iacr.org/2014/599
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-05
https://datatracker.ietf.org/doc/html/draft-kwiatkowski-tls-ecdhe-kyber
https://datatracker.ietf.org/doc/html/draft-tls-westerbaan-xyber768d00
https://eprint.iacr.org/2019/1447.pdf
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24203-paper.pdf
https://doi.org/10.17487/RFC9002
https://datatracker.ietf.org/doc/html/draft-kampanakis-tls-scas-latest-03
https://datatracker.ietf.org/doc/html/draft-jackson-tls-cert-abridge-00
https://doi.org/10.1007/978-3-031-30731-7_4
https://doi.org/10.17487/RFC5280
https://datatracker.ietf.org/doc/draft-ietf-lamps-dilithium-certificates/

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 61

[25] Turner S, Kampanakis P, Massimo J, Westerbaan BE (2023) Internet X.509 Public Key 1345
Infrastructure: Algorithm Identifiers for Kyber. (Internet Engineering Task Force (IETF)), Internet-1346
Draft draft-ietf-lamps-kyber-certificates. Available at https://datatracker.ietf.org/doc/draft-ietf-1347
lamps-kyber-certificates/ 1348

[26] Becker A, Guthrie R, Jenkins M (2023) Related Certificates for Use in Multiple Authentications 1349
within a Protocol. (Internet Engineering Task Force (IETF)), Internet-Draft draft-becker-guthrie-1350
cert-binding-for-multi-auth. Available at https://datatracker.ietf.org/doc/draft-becker-guthrie-1351
cert-binding-for-multi-auth/ 1352

[27] Ounsworth M, Gray J, Pala M, Klaubner J (2023) Composite Signatures For Use in Internet PKI. 1353
(Internet Engineering Task Force (IETF)), Internet-Draft draft-ounsworth-pq-composite-sigs. 1354
Available at https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/ 1355

[28] Ounsworth M, Gray J (2023) Composite KEM For Use in Internet PKI. (Internet Engineering Task 1356
Force (IETF)), Internet-Draft draft-ietf-lamps-pq-composite-kem. Available at 1357
https://datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-kem 1358

[29] Truskovsky A, Van Geest D, Fluhrer S, Kampanakis P, Ounsworth M, Mister S (2023) Multiple 1359
Public-Key Algorithm X.509 Certificates. (Internet Engineering Task Force (IETF)), Internet-Draft 1360
draft-truskovsky-lamps-pq-hybrid-x509. Available at https://datatracker.ietf.org/doc/draft-1361
truskovsky-lamps-pq-hybrid-x509/ 1362

[30] International Telecommunication Union Telecommunication Standardization Sector (ITU-T) 1363
(2019) ITU-T X.509 – Information technology – Open Systems Interconnection – The Directory: 1364
Public-key and attribute certificate frameworks (ITU-T, Geneva, Switzerland). Available at 1365
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=14033&lang=en 1366

[31] Bonnell C, Gray J, Hook D, Okubo T, Ounsworth M (2023) A Mechanism for Encoding Differences 1367
in Paired Certificates. (Internet Engineering Task Force (IETF)), Internet-Draft draft-bonnell-1368
lamps-chameleon-certs. Available at https://datatracker.ietf.org/doc/draft-bonnell-lamps-1369
chameleon-certs/ 1370

[32] IETF PQC Hackathon Interoperability Results. Available at https://ietf-hackathon.github.io/pqc-1371
certificates/pqc_hackathon_results_certs_r3.html 1372

[33] Kampanakis P, Panburana P, Curcio M, Shroff C, Alam MM (2021) Post-Quantum LMS and 1373
SPHINCS+ Hash-Based Signatures for UEFI Secure Boot. Available at 1374
https://eprint.iacr.org/2021/041 1375

[34] McGrew D, Curcio M, Fluhrer S (2019) Leighton-Micali Hash-Based Signatures. (Internet 1376
Engineering Task Force (IETF)), IETF Request for Comments (RFC) 8554. 1377
https://doi.org/10.17487/RFC8554 1378

[35] Huelsing A, Butin D, Gazdag S, Rijneveld J, Mohaisen A (2018) XMSS: eXtended Merkle Signature 1379
Scheme. (Internet Engineering Task Force (IETF)), IETF Request for Comments (RFC) 8391. 1380
https://doi.org/10.17487/RFC8391 1381

https://datatracker.ietf.org/doc/draft-ietf-lamps-kyber-certificates/
https://datatracker.ietf.org/doc/draft-ietf-lamps-kyber-certificates/
https://datatracker.ietf.org/doc/draft-becker-guthrie-cert-binding-for-multi-auth/
https://datatracker.ietf.org/doc/draft-becker-guthrie-cert-binding-for-multi-auth/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/
https://datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-kem
https://datatracker.ietf.org/doc/draft-truskovsky-lamps-pq-hybrid-x509/
https://datatracker.ietf.org/doc/draft-truskovsky-lamps-pq-hybrid-x509/
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=14033&lang=en
https://datatracker.ietf.org/doc/draft-bonnell-lamps-chameleon-certs/
https://datatracker.ietf.org/doc/draft-bonnell-lamps-chameleon-certs/
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://ietf-hackathon.github.io/pqc-certificates/pqc_hackathon_results_certs_r3.html
https://eprint.iacr.org/2021/041
https://doi.org/10.17487/RFC8554
https://doi.org/10.17487/RFC8391

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 62

[36] Kakvi S (2020) SoK: Comparison of the Security of Real World RSA Hash-and-Sign Signatures. 1382
International Conference on Research in Security Standardization (Springer), pp. 91-113. 1383
https://doi.org/10.1007/978-3-030-64357-7_5 1384

[37] Josefsson S, Liusvaara I (2017) Edwards-Curve Digital Signature Algorithm (EdDSA). (Internet 1385
Engineering Task Force (IETF)), IETF Request for Comments (RFC) 8032. 1386
https://doi.org/10.17487/RFC8032 1387

[38] Bernstein DJ, Josefsson S, Lange T, Schwabe P, Yang B-Y (2015) EdDSA for more curves. Available 1388
at http://ed25519.cr.yp.to/eddsa-20150704.pdf 1389

[39] Mattsson J, Migault D (2018) ECDHE_PSK with AES-GCM and AES-CCM Cipher Suites for TLS 1.2 1390
and DTLS 1.2. (Internet Engineering Task Force (IETF)), IETF Request for Comments (RFC) 8442. 1391
https://doi.org/10.17487/RFC8442 1392

[40] Rescorla E (2018) The Transport Layer Security (TLS) Protocol Version 1.3. (Internet Engineering 1393
Task Force (IETF)), IETF Request for Comments (RFC) 8446. https://doi.org/10.17487/RFC8446 1394

[41] Josefsson S, Schaad J (2018) Algorithm Identifiers for Ed25519, Ed448, X25519, and X448 for Use 1395
in the Internet X.509 Public Key Infrastructure. (Internet Engineering Task Force (IETF)), IETF 1396
Request for Comments (RFC) 8410. https://doi.org/10.17487/RFC8410 1397

[42] Nir Y (2018) Using the Edwards-Curve Digital Signature Algorithm (EdDSA) in the Internet Key 1398
Exchange Protocol Version 2 (IKEv2). (Internet Engineering Task Force (IETF)), IETF Request for 1399
Comments (RFC) 8420. https://doi.org/10.17487/RFC8420 1400

[43] Harris B, Velvindron L (2020) Ed25519 and Ed448 Public Key Algorithms for the Secure Shell 1401
(SSH) Protocol. (Internet Engineering Task Force (IETF)), IETF Request for Comments (RFC) 8709. 1402
https://doi.org/10.17487/RFC8709 1403

[44] Liusvaara I (2017) CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in JSON Object 1404
Signing and Encryption (JOSE). (Internet Engineering Task Force (IETF)), IETF Request for 1405
Comments (RFC) 8037. https://doi.org/10.17487/RFC8037 1406

[45] Housley R (2018) Use of Edwards-Curve Digital Signature Algorithm (EdDSA) Signatures in the 1407
Cryptographic Message Syntax (CMS). (Internet Engineering Task Force (IETF)), IETF Request for 1408
Comments (RFC) 8419. https://doi.org/10.17487/RFC8419 1409

[46] Myers M, Ankney R, Malpani A, Galperin S, Adams C (1999) X.509 Internet Public Key 1410
Infrastructure Online Certificate Status Protocol – OCSP. (Internet Engineering Task Force (IETF)), 1411
IETF Request for Comments (RFC) 2560. https://doi.org/10.17487/RFC2560 1412

[47] Zimman C, Bong D (2020) PKCS #11 Cryptographic Token Interface Current Mechanisms 1413
Specification Version 3.0 (OASIS Open, Boston, Massachusetts). Available at https://docs.oasis-1414
open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html 1415

[48] Xiao J, Ito T (2020) Performance Comparisons and Migration Analyses of Lattice-based 1416
Cryptosystems on Hardware Security Module. Available at https://eprint.iacr.org/2020/990.pdf 1417

https://doi.org/10.1007/978-3-030-64357-7_5
https://doi.org/10.17487/RFC8032
http://ed25519.cr.yp.to/eddsa-20150704.pdf
https://doi.org/10.17487/RFC8442
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8410
https://doi.org/10.17487/RFC8420
https://doi.org/10.17487/RFC8709
https://doi.org/10.17487/RFC8037
https://doi.org/10.17487/RFC8419
https://doi.org/10.17487/RFC2560
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html
https://eprint.iacr.org/2020/990.pdf

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 63

1418 Appendix C Hash and Sign Analysis
NIST’s Post-Quantum Cryptography Project is in the process of standardizing new, quantum-safe 1419
signatures. These signatures operate on arbitrary size messages, which is different than traditional uses 1420
of classical signatures which were digesting the message and signing the digest. As we proceed with 1421
standardizing and adopting the use of quantum-safe signatures, we ought to evaluate which choice is 1422
more suitable for various common use-cases and what implications it would have. This appendix 1423
analyzes the options and summarizes public discussions on the topic in various fora. The goal is for 1424
engineers or standards bodies that will use these signatures to make informed decisions between using 1425
the quantum-safe signatures as they are or choosing an option which digests the message before signing 1426
it. 1427

This analysis finds that most use-cases can leverage post-quantum signatures as they are without pre-1428
digesting the message. This approach offers better collision resistance than digesting before signing. 1429
Some contexts could still benefit from pre-digesting, particularly cases that cannot tolerate holding an 1430
entire large message in memory or where digesting can speed up performance. Pre-digesting could still 1431
remain possible for uses which can offer a protocol-level signature envelope. 1432

1433 C.1 Introduction of the Digest-then-Sign Dilemma
Asymmetric cryptographic primitives have generally been limited to fixed-size inputs, typically a few 1434
hundred bytes, that are mapped to a particular mathematical object. To construct signature schemes 1435
with arbitrarily sized input, the natural approach is to first hash the message, then sign the resulting 1436
digest. Traditional signature schemes like RSA/PKCS#1 (RFC 8017) and ECDSA (FIPS 186-5) are 1437
constructed in such a way that it is easy to separate the digesting step from the asymmetric primitive. 1438
This approach is commonly called digest-then-sign or hash-then-sign. 1439

Newer signature algorithms use a slightly different method by injecting a random nonce or data from 1440
the public key into the digest. This may bring additional security properties, such as improved resistance 1441
against hash collisions or exclusive ownership and message bindings. In this approach, it is no longer 1442
possible to separate the digesting step from the public/private key operation. EdDSA (RFC 8032) is a 1443
notable example of a signature scheme using this method. 1444

In all three quantum-safe signatures picked in Round 3 of NIST’s Post-Quantum Project, the digest step 1445
is intrinsically linked to the asymmetric primitive. Before generating the signature, the input message is 1446
hashed with additional algorithm-specific data. More precisely, 1447

 Dilithium takes the whole message M as input and hashes it with tr, a hash of the public key {ρ, 1448
t}, to create a digest μ=SHAKE256(tr||M). It then proceeds to sign that value. Dilithium requires 1449
collision resistance for the digest function, but collisions are specific to a given public key. 1450

 Falcon calculates the HashToPoint(r||M, q, n) of message M where r is a random value and q, n 1451
are Falcon parameters. HashToPoint hashes r||M to a point in the lattice which is then used to 1452
generate the signature. This randomized hashing does not require collision resistance for the 1453
hash function. 1454

 SPHINCS+ calculates a proper output size digest of the message M by using 1455
(R||PK.seed||PK.root||M) as inputs to a variable/extendable output function (e.g., SHAKE256, 1456

https://eprint.iacr.org/2020/1525.pdf

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 64

MGF1-SHA256). R is a random value generated from a secret random value and the message. 1457
PK.seed and PK.root are public values for the signer. This randomized hashing does not require 1458
collision resistance for the digest function. The calculated digest is then used to generate the 1459
SPHINCS+ signature. Note that SPHINCS+ does two passes on the message, one to generate R 1460
and a second to digest the message. Two passes could affect performance for large messages. 1461

Thus, the digest step and the public/private key operation cannot be separated in the case of these 1462
quantum-safe signatures. This change causes difficulties when migrating solutions based on RSA or 1463
ECDSA to PQC. For example, a paper from 2021 on hash-based signatures for secure boot [33] came 1464
across an OpenSSL API incompatibility between classical ECDSA signatures, which were assuming a 1465
digest, and SPHINCS+, which includes the message digest in the signature parameter itself. 1466

Note that the analysis below applies to stateful hash-based signatures [4] (RFC 8554 [34], RFC 8391 1467
[35]), as they also digest the message internally by using a pseudorandom value in order to generate the 1468
one-time signature which is included in the message signature. 1469

1470 C.1.1 Terminology
To avoid any confusion, this rest of this appendix will use the following terminology: 1471

 “message” denotes the raw data to be signed (contents of a file, attributes in a certificate, etc.). 1472

 “Internal Digest” denotes the hashing done as part of the post-quantum signature algorithm, for 1473
example the step μ=SHAKE256(tr||M) in Dilithium, as explained above. 1474

 “Signed Data” denotes the actual input to the signature algorithm. The Signed Data may or may 1475
not be the same as the Message. For example, in a hash-then-sign scenario, the Signed Data 1476
would be the hash of the Message. 1477

Notice that the Internal Digest is always performed on the Signed Data, so in a hash-then-sign scenario 1478
there would be two consecutive hashes: first a plain hash (e.g., SHAKE256) of the Message to generate 1479
the Signed Data, then the Internal Digest (randomized, as above) on the Signed Data during the 1480
signature. 1481

1482 C.2 Performance for PQC Signatures
First, we analyze performance of the quantum-safe signatures and compare it against digesting the 1483
messages before signing. Table 23 was generated using liboqs 0.8.0-rc1 and OpenSSL 1.1.1 (see 1484
Appendix D.4 for additional details). We used absolute times instead of CPU cycles in our 1485
measurements, as these are only provided for comparison in this context. 1486

Table 23 Mean time (μs) of post-quantum signature sign and verify for plaintext sizes of 1K, 10K, 100K, 1487
1MB, 100MB on Intel(R) Xeon(R) Platinum 8175M CPU @ 2.50GHz 1488

Time (μs) for 1KB message

 1KB 10KB 100KB 1MB 100MB
SHA256 2.64 25.07 253.9 2496 250000
SHA512 1.84 17.00 166.7 1669 167778
SHAKE256 3.52 32.88 304.4 3046 306000

https://openquantumsafe.org/liboqs/

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 65

Dilithium-3 sign 267.5 299.55 615.1 3421 306767
Dilithium-3 verify 123.9 156.10 470.4 3308 305914
Dilithium-5 sign 359.6 393.2 707.0 3498 306448
Dilithium-5 verify 203.6 236.7 549.2 3361 306240
Falcon-512 sign 2373 2399 2671 5428 313660
Falcon-512 verify 1972 1997 2273 5013 307683
Falcon-1024 sign 6711 6749 7022 9768 312870
Falcon-1024 verify 6080 6045 6336 9071 312147
SPHINCS+-SHA2-192f-simple sign 15119 15149 15435 18455 351220
SPHINCS+-SHA2-192f-simple verify 1060 1079 1228 2725 169114
SPHINCS+-SHAKE-192s-simple sign 590634 590486 591140 602835 1202268
SPHINCS+-SHAKE-192s-simple
verify 671 692 988 3721 306412

Table 23 shows that Dilithium and Falcon signing and verification performance is affected by the 1489
message size increases. The flavor of randomized hashing (i.e., SHAKE256, HashToPoint) these 1490
algorithms use ends up showing up as the message exceeds 1 MB. In absolute numbers, even for 100 1491
MB plaintexts, both Falcon and Dilithium performance stayed below 400 ms in our platform, which is 1492
acceptable. 1493

The two SPHINCS+ parameters we tested were at NIST’s Level 3. One used SHAKE256 as the hash and 1494
was optimized for size. The other parameter was using SHA512 and was optimized for performance. We 1495
notice that with SPHINCS+-SHAKE-192s-simple, signing is barely affected by smaller message sizes. That 1496
is because signing is dominated by the FORS and WOTS+ hash calculations and not by the two SHAKE256 1497
internal hashes (i.e., Hmsg, PRFmsg), especially for small message sizes (1, 10, 100, and 1000 KB). At 1MB, 1498
the internal hash’s cost increases and affects signing. Since verification is faster, the cost of the internal 1499
SHAKE256 digest becomes noticeable for messages of 1 MB and 100 MB. The observations are 1500
essentially the same for the SPHINCS+-SHA2-192f-simple sign parameter set. Signing and verification 1501
show noticeable slowdowns at 100 MB message sizes when SHA512 is used in the Hmsg and PRFmsg 1502
calculation of the message and is significant compared to the rest of the FORS and WOTS+ hashing in 1503
SPHINCS+. In absolute performance numbers, signing stayed within the same magnitude, so if the signer 1504
could afford SPHINCS+ signing performance, it could afford signing bigger messages. Similarly, SPHINCS+ 1505
verification performance stayed within acceptable levels even for big messages. 1506

When evaluating SHA-256, SHA512, and SHAKE256 performance in a hash-then-sign scenario, we can 1507
see that it is highly efficient even for 100 MB. Ιf someone was following the digest-then-sign paradigm 1508
with the post-quantum signatures, they would get better overall performance when using more efficient 1509
SHA256 or SHA512 than a slower Internal Digest function like SHAKE256. Using SHAKE256 pre-digests, 1510
the improvement will be insignificant. For example, if the function used to digest the message was 1511
SHAKE256, which is also used internally in the Dilithium μ calculation, then digesting before signing 1512
would not have a significant performance impact. Note that in absolute numbers, even for 100MB 1513
plaintexts, Falcon and Dilithium performance stays below 400 ms in our platform, which is acceptable. 1514
Using digest-then-sign in SPHINCS+ would improve signing and verification performance when SHA256 1515

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 66

or SHA512 is used to pre-hash the message, especially for the SPHINCS+-SHAKE parameter sets, but 1516
overall the improvement will be noticeable only for large messages. 1517

1518 C.3 The EdDSA Precedent
Although hash-then-sign has been the status quo, the message digest was traditionally specified in the 1519
use-case itself (e.g., X.509, CMS, TLS), not internally in the signature. RSA and ECDSA signature 1520
specifications themselves have been used with a hash function which digested the message. The 1521
message digest was subsequently signed by the RSA or ECDSA primitive. Digesting was decoupled from 1522
signing with the private key operation. The paper SoK: Comparison of the Security of Real World RSA 1523
Hash-and-Sign Signatures [36] lays out all the standardized hash-then-sign RSA signatures, which mostly 1524
were what all RSA signature variants used. 1525

This paradigm changed with EdDSA. The EdDSA signature was relatively recently standardized in RFC 1526
8032 [37]. Initially it was specified taking the whole message as input, but later was ratified with two 1527
versions, Pure and Prehash. The former takes the whole message as input and passes through it twice in 1528
order to sign. The latter takes the digest of the message as input. To explain the rationale, RFC 8032 1529
states: 1530

Choosing which variant to use depends on which property is deemed to be more important 1531
between 1) collision resilience and 2) a single-pass interface for creating signatures. The collision 1532
resilience property means EdDSA is secure even if it is feasible to compute collisions for the hash 1533
function. The single-pass interface property means that only one pass over the input message is 1534
required to create a signature. PureEdDSA requires two passes over the input. Many existing 1535
APIs, protocols, and environments assume digital signature algorithms only need one pass over 1536
the input and may have API or bandwidth concerns supporting anything else. 1537

The Ed25519ph and Ed448ph variants are prehashed. This is mainly useful for interoperation 1538
with legacy APIs, since in most of the cases, either the amount of data signed is not large or the 1539
protocol is in the position to do digesting in ways better than just prehashing (e.g., tree hashing 1540
or splitting the data). The prehashing also makes the functions greatly more vulnerable to 1541
weaknesses in hash functions used. These variants SHOULD NOT be used. 1542

Additionally, the EdDSA paper [38] explains that pre-digesting the messages with PrehashEdDSA 1543
introduces collision concerns by saying: 1544

PureEdDSA is resilient to collisions in the underlying hash function H. HashEdDSA is not resilient 1545
to collisions in H0: if the attacker finds messages M1 and M2 with H0(M1)=H0(M2), and 1546
convinces the legitimate H0-EdDSA signer to sign M1, then the attacker can forge the same 1547
signature as a signature of M2. Modern hash functions are designed to resist collisions, and in 1548
principle it should be safe to design signature systems to rely on this, but it is more conservative 1549
to design signature systems so that collisions serve merely as early-warning signals. PureEdDSA 1550
is therefore recommended by default. 1551

Many common use-cases that sign small size messages (a few KB) use the PureEdDSA version: 1552

 RFC 8442 [39] defines only PureEdDSA for TLS 1.2 and earlier. 1553

 RFC 8446 [40] specifies only the use of PureEdDSA to sign the TLS 1.3 transcript. 1554

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 67

 RFC 8410 [41] standardizes the use of PureEdDSA in X.509 certificates. 1555

 RFC 8420 [42] defines usage in the Internet Key Exchange Protocol Version 2 (IKEv2). 1556

 RFC 8709 [43] defines usage in Secure Shell (SSH). 1557

 RFC 8037 [44] defines usage in JOSE JWS Signatures. 1558

 For Cryptographic Message Syntax (CMS), RFC 8419 [45] defines a digest of the message by say-1559
ing: 1560

[...] In most situations, the CMS SignedData includes signed attributes, including the 1561
message digest of the content. Since HashEdDSA offers no benefit when signed 1562
attributes are present, only PureEdDSA is used with the CMS. 1563

XML Signatures also include a digest of the message to be signed. In OCSP and OCSP staples (RFC 2560 1564
[46]), the signature is “computed on the hash of the DER encoding ResponseData.” What’s more, 1565
OpenPGP digests the message before signing it. So these use-cases all sign the full message or a digest of 1566
it and do not depend on a Prehash version of the signature itself. The size of the data is small enough for 1567
the signature to be generated or verified on the fly without issues. 1568

Regarding APIs, traditionally crypto APIs were assuming digests as inputs to a signature. OpenSSL 1569
historically had only one API EVP_PKEY_sign which assumed digest-then-sign. Of course, that did not satisfy 1570
the PureEdDSA variant, so BoringSSL and OpenSSL, two popular open-source cryptographic libraries, 1571
distinguish between the PureEdDSA and other hash-then-sign signature schemes in their EVP_MD, 1572
EVP_DigestSign*, and EVP_PKEY_Sign and EVP_PKEY_SignInit APIs. For more details, refer to the 1573
relevant github discussion. 1574

1575 C.4 The PKCS#11 Challenge
In PKCS#11, RSA and ECDSA signatures can be used with or without pre-hashing. According to the 1576
PKCS#11 specification for ECDSA [47], the CKM_ECDSA mechanism assumes a digest of the message or a 1577
message truncated to the right size. Arbitrary-length messages are signed with the CKM_ECDSA_SHA256 1578
mechanism, which digests and then signs the message. In either case, ECDSA signs a “short version” of 1579
the message. It is either digested externally to the signer (CKM_ECDSA) or inside the signer 1580
(CKM_ECDSA_SHA256). RSA is used in similar ways with more legacy options. Note that if the signer is a 1581
FIPS-certified module, digesting usually takes place in the signer FIPS boundary as required by the FIPS 1582
140 certification. In this context, 2020/990 [48] proposed for HSMs to use different boundaries for the 1583
randomized message digesting and asymmetric signing/verification which is up to the HSM vendor. 1584

PKCS#11 includes a multi-part/incremental API when large messages cannot be stored in memory for 1585
the signer and uses C_SignUpdate to incrementally digest the message in chunks until it completes the 1586
digest and signs it (C_SignFinal). The CKM_ECDSA_SHA256 mechanism is used with the incremental API 1587
which allows the signer/verifier to take the message piece by piece until it completes the digest and 1588
signs/verifies it. In a typical large message scenario, streaming the message to the signer can affect 1589
performance. For example, an HSM attached to a network could see significant performance impact for 1590
large messages using the incremental API. 1591

If PKCS#11 was taking arbitrary-size as inputs without digesting them beforehand, the incremental API 1592
would not work for big messages that cannot be buffered. The whole input would not be available at the 1593

https://github.com/awslabs/aws-lc/blob/b632a56ef69366b27a77f461e8768f9a2f26a950/include/openssl/ssl.h#L1119
https://github.com/awslabs/aws-lc/blob/a5059b198e7280ee9d62e597afbfbb305a8671ea/include/openssl/evp.h#L289
https://github.com/awslabs/aws-lc/blob/a5059b198e7280ee9d62e597afbfbb305a8671ea/include/openssl/evp.h#L564
https://github.com/awslabs/aws-lc/blob/a5059b198e7280ee9d62e597afbfbb305a8671ea/include/openssl/evp.h#L297
https://github.com/openssl/openssl/pull/5880

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 68

signer (C_SignInit/Update/Final) before signing or the verifier (C_VerifyInit/Update/Final) who 1594
receives the signature after the message. PureEdDSA would suffer from that probem. The EdDSA paper 1595
[38] explains cases like PKCS#11 where PureEdDSA would not work with the incremental API by saying: 1596

The main motivation for HashEdDSA is the following storage issue (which is irrelevant to most 1597
well-designed signature applications). Computing the PureEdDSA signature of M requires 1598
reading through M twice from a buffer as long as M, and therefore does not support a small-1599
memory “Init-Update-Final” interface for long messages. Every common hash function H0 1600
supports a small-memory “Init-Update-Final” interface for long messages, so H0-EdDSA signing 1601
also supports a small-memory “Init-Update-Final” interface for long messages. 1602

The PKCS#11 specification also acknowledges the issue by stating: 1603

Note that for EdDSA in pure mode, Ed25519 and Ed448 the data must be processed twice. 1604
Therefore, a token might need to cache all the data, especially when used with 1605
C_SignUpdate/C_VerifyUpdate. If tokens are unable to do so they can return 1606
CKR_TOKEN_RESOURCE_EXCEEDED. 1607

The latest PKCS#11 API includes only one mechanism for EdDSA, CKM_EDDSA. CKM_EDDSA takes 1608
optional CK_EDDSA_PARAMS which indicates if it is the Pure or Prehash variant. PureEdDSA is used by 1609
default, which assumes arbitrary message inputs. In cases where the message is big and can’t be cached, 1610
CKM_EDDSA is used in its Prehash version. The signer/verifier can keep taking the message as input 1611
piece by piece with the incremental API (C_SignUpdate / C_VerifyUpdate) until it can complete the digest 1612
used for PrehashEdDSA signing/verification. Thales seems to also have created its own digest EdDSA 1613
mechanisms like CKM_SHA256_EDDSA which hard-codes PrehashEdDSA and its digest function, but no 1614
further information is available about these mechanisms. 1615

1616 C.5 Options for Standardization
As new PQC signatures are getting standardized, adopters will need to decide if they want to follow the 1617
digest-then-sign paradigm. The options available are: 1618

 All digest operations are handled internally to the sign/verify operation, which is what the three 1619
PQC signatures are doing. 1620

 Using a digest-then-sign methodology with or without randomized metadata 1621

• Digesting takes place before passing the digest to the signature algorithm 1622

• Digesting takes place inside the signing operation (Prehash signature mode) 1623

 Digest-then-sign by externalizing the PQC signature Internal Digest (which has security implica-1624
tions) 1625

This section describes these options, giving possible use-cases, pros, and cons for each one. 1626

1627 C.5.1 No-digest Before Signing
One option, since post-quantum signatures support it, is to not digest the message and just feed it 1628
whole to the signing operation. Without digests, we do not need to depend on collision resistance for 1629
the hash function for Falcon and SPHINCS+. We still need collision resistance of the hash function for 1630

https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html
https://thalesdocs.com/dpod/services/luna_cloud_hsm/extern/client_guides/Content/sdk/luna_cloud_mechanisms/CKM_SHA256_EDDSA.htm

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 69

Dilithium. This approach also allows for easier security analysis of the signature scheme. Additionally, as 1631
shown in section C.5.2, digesting before signing may only have noticeable impact with large messages 1632
when the pre-digest function is more efficient than the Internal Digest. For more details on the 1633
advantages of this approach, refer to the discussions in Appendix D. 1634

We expect post-quantum signatures that do not digest to be the default approach for standardization 1635
and adoption in most use-cases. An example where this method worked is with PureEdDSA, which got 1636
adopted although previous cryptographic APIs assumed a digest for RSA and ECDSA. Most uses of post-1637
quantum signatures (e.g., TLS, SSH, X.509, SSH, IKEv2) will operate fine with signing the whole message, 1638
as they typically sign relatively short messages. They adopted PureEdDSA for the same reason. 1639
Standards like CMS and OpenPGP also sign relatively short data called “signed attributes,” so this 1640
method can be used there as well. Since the signed attributes contain a digest of the message, these 1641
standards can be considered as an instance of the digest-then-sign paradigm, but they would still make 1642
use of a PQC signature primitive that does not pre-digest. 1643

A potential shortcoming of not digesting the message before signing would be the cost of streaming it to 1644
the signing entity if it was different than the holder of the message. For example, the cost of I/O for an 1645
HSM getting streamed a large message over PCKS#11’s multi-part API could affect signing performance. 1646

PKCS#11 could provide mechanisms corresponding to the pure signature paradigm for each algorithm 1647
(e.g., CKM_DILITHIUM, CKM_FALCON, CKM_SPHINCSPLUS). To avoid the challenge with long messages 1648
explained in section C.4, PKCS#11 could assume a relatively short input for these mechanisms, for 1649
example up to a few tens of kilobytes. These mechanisms would work mainly with the one-part 1650
interface (C_Sign / C_Verify). 1651

Vendors may also support the multi-part/incremental API (C_SignInit/Update/Final) in the same 1652
CKM_DILITHIUM mechanism only for Dilithium with a complication. Dilithium digests the message as 1653
SHAKE256(tr||M) where tr is the public key. A big input message could be streamed piece by piece 1654
when calculating SHAKE256(tr||M) since tr is known to the signer/verifier before receiving the message. 1655
This would work well if PKCS#11 adopted only the Dilithium signature. However, doing the same thing 1656
for the multi-part interface for Falcon or SPHINCS+ would impose challenges to a Falcon or SPHINCS+ 1657
verifier because the nonce is not available at C_VerifyInit, and to a SPHINCS+ signer that requires two 1658
passes on the message. A multi-part interface for the same mechanism for Falcon and SPHINCS+ (e.g., 1659
CKM_FALCON, CKM_SPHINCSPLUS) would require buffering the message, which imposes hard size 1660
limits. If PKCS#11 pure PQC signature mechanisms support the incremental API, it may need to be done 1661
consistently for all signatures (not just CKM_DILITHIUM) to prevent confusion and inadvertent mistakes 1662
for users, and the size constraints should be clearly documented. 1663

1664 C.5.2 Digest-then-sign
Other use-cases may need a hash-then-sign for performance reasons, especially if the message is large. 1665
For example, certain applications have messages in the MB or GB range (e.g., firmware and software, 1666
large legal documents, CAD files, high-resolution images and scans, video surveillance artifacts). If the 1667
pre-hash is faster than the Internal Digest (e.g., SHA2-512 vs SHAKE256), then digest-then-sign would 1668
perform better than no-digest before signing for these messages. Using two different primitives 1669
increases code size, on the other hand. Similarly, if signing or verification happens in a constrained 1670
device, then pre-hashing the message locally and sending only the digest to the signing module may be 1671

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 70

more efficient. Use-cases that combine classical with post-quantum signatures could also benefit from 1672
calculating just one digest for both signatures instead of two. 1673

Although it has generally worked well in the past, digest-then-sign has some issues. One is the potential 1674
collision risk if the digest function is found to have collisions. Falcon and SPHINCS+ are naturally resistant 1675
to collisions. Introducing a pre-hash re-introduces these risks. Dilithium can be affected by collision 1676
attacks but is less vulnerable than plain hash-then-sign since its collisions are specific to a given public 1677
key. 1678

To ease the concern, we could use an appropriately large output digest like SHA2-512 or SHAKE256 with 1679
64-byte output size. Arguably, collisions are not a realistic risk, as the SHA-2 and SHA-3 families are 1680
unlikely to be found weak against collision attacks and the crypto community knows how to design hash 1681
functions now more than it did 20 or 30 years ago. Although it seems unlikely for SHA-2 or SHA-3 to fall 1682
victim of new collision attacks, no one can be certain of what the future holds for newer hash functions. 1683
Additionally, not requiring collision resistance for the digest simplifies the security proofs for these 1684
signatures which use the whole message as input. For more details on the concerns of the digest-then-1685
sign approach, refer to the discussions in Appendix D. 1686

Optionally, the local pre-hashing step may process additional metadata to improve security against 1687
collision attacks. That is the digest-with-something-then-sign idea discussed in Appendix D. This must be 1688
carefully specified for each use-case. There are two ways to implement digest-with-something-then-1689
sign: 1690

1. Sign a randomized hash of the message with a proper hash function. Schemes could sign the 1691
H(nonce||M) where nonce is a random value and M is the message. Given that the nonce is a 1692
random value, such an approach would require it to be included as part of the signature enve-1693
lope. The security would depend on the nonce generation process using proper entropy. 1694

2. Sign an H(pk||M) where pk is the public key of the signer and M is the message which only pro-1695
tects from collisions against multiple signers. That means that we no longer need to include a 1696
new nonce value in the signature envelope. The benefit of this approach would be potentially 1697
better performance for pre-calculating the hash, but it does not offer general collision re-1698
sistance. 1699

The first digest-with-something-then-sign option would generally require changes for implementers that 1700
now need to parse a nonce along with a signature. It would not work with large messages signed in the 1701
context of PKCS#11 because the signature is provided after the message, which means the message is 1702
not available to the verifier at the time the nonce is available. Both approaches would also require a 1703
change in signing APIs and seem challenging to adopt for the general case. 1704

C.5.2.1 Externally to the Signing Operation 1705

Digest-then-sign or digest-with-something-then-sign can be implemented outside of the signature and 1706
fed as input to the signing or verification operation. This has been the approach for RSA and ECDSA in 1707
various use-cases. The process can be broken into three steps: 1708

1. Digest the message and protocol-defined metadata (if any). 1709

2. Optionally, append protocol-defined attributes to the digest. 1710

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 71

3. Sign the digest and the attributes using the general method (Signed Data is short). 1711

Certain standards, like CMS, S/MIME, and OpenPGP, explicitly require hashing the message and some 1712
metadata before signing. These uses follow the digest-then-sign approach, but they would still make use 1713
of a signature primitive that does not pre-hash. 1714

The digest-then-sign approach can also be used as an additional PKCS#11 mechanism (e.g., 1715
CKM_DILITHIUM_SHAKE256, CKM_FALCON_SHAKE256, CKM_SPHINCSPLUS_SHAKE256) similar to 1716
CKM_ECDSA_SHA256. Only hash functions with conservative collision resistance (such as SHA2-512 or 1717
SHAKE256 with 64-byte output size) should be supported to alleviate the collision concern. These 1718
mechanisms would be readily compatible with both the one-part and the multi-part APIs. Note that 1719
hash-with-something-then-sign could also be achieved in PKCS#11 by streaming the signing public key to 1720
the module before the message. 1721

Specifically for Dilithium, PCKS#11 could use one mechanism for both the one-part and the multi-part 1722
API as explained in Appendix C.5.1. 1723

C.5.2.2 Internally (Prehash signature mode) 1724

Alternatively, pre-hashing could take place in the signature algorithm like with PrehashEdDSA. Specific 1725
standardization of a Prehash variant of each post-quantum signature scheme would be necessary by 1726
NIST. 1727

The difference between PureEdDSA and PrehashEdDSA lies in the Internal Digest step: 1728

 With PureEdDSA, the Internal Digest is H(r, PK, M). 1729

 With PrehashEdDSA, the Internal Digest is H(str, r, PK, PH(M)), where str is some domain separa-1730
tion string, and PH denotes the pre-hash function. 1731

The additional input in Prehash mode provides domain separation between digest-then-sign and direct 1732
signature use-cases. As this requires a modification in the Internal Digest, it is not a generic 1733
transformation that would use the signature algorithm as a black box. 1734

This approach prevents the use of improper hashes and ensures the digest is performed inside the 1735
crypto module without user manipulation. 1736

The issue with offering two options, one with digesting in the signature itself and one without, is that it 1737
reduces interoperability. It also increases technical debt for implementers that now need to support two 1738
variants. The wide adoption of PureEdDSA and the limited use of PrehashEdDSA demonstrate that. What 1739
is more, giving the option to use a signature that pre-hashes internally could be an unnecessary 1740
impediment. If there is no hard-coded digest option in the signature, then a use-case would need to 1741
consciously choose the slightly less secure digest-then-sign option. 1742

If it was standardized, use-cases requiring a digest-then-sign workflow should use it within the Prehash 1743
variant of the signature scheme. One use-case that could make use of this with large messages is 1744
PKCS#11. Support for the Pure and Prehash variants in PKCS#11 could be achieved similarly to what was 1745
done for CKM_EDDSA by using different mechanism parameters (like CK_EDDSA_PARAMS). For 1746
example, CKM_FALCON would mean pure Falcon by default, and it would support an optional 1747

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 72

parameter CK_FALCON_PARAMS = { prehash: SHAKE256 } to switch to hash-then-sign. Obviously, the 1748
Prehash variant would support the multi-part API without size constraints, unlike the pure variant. 1749

C.5.2.3 By Externalizing the Internal Digest 1750

To avoid streaming a large message to a constrained crypto module, it may be tempting to separate the 1751
internal randomized digest from the post-quantum signature. Then the randomized digest could be 1752
computed locally, and only the short result would be sent to the crypto module for signing. More 1753
precisely, the signer could compute the following: 1754

 μ=SHAKE256(tr||M) locally for Dilithium; send μ to the crypto module for signing. 1755

 P=HashToPoint(r||M, q, n) locally for Falcon; send P to the crypto module for signing. 1756

 d=H_msg(R||PK.seed||PK.root||M) locally for SPHINCS+; send d to the crypto module. 1757

However, this paradigm changes the security model for these signatures by splitting the operation over 1758
two separate suboperations. Doing so will most likely be incompatible with cryptographic certifications 1759
like FIPS or Common Criteria. Moreover, in the case of Falcon and SPHINCS+, the possibility of 1760
malformed digests even introduces a mathematical flaw that makes the algorithms insecure. More 1761
details on the implications are given in Appendix D. 1762

1763 C.6 Conclusion
In this appendix, we evaluated the pros and cons of signing a message digest with a post-quantum 1764
signature scheme which can sign arbitrary messages. Some use-cases could prefer to digest the message 1765
before passing the digest to the signing algorithm for various reasons. We evaluated the alternatives 1766
and concluded that the pure post-quantum signatures without any sort of digest will probably be the 1767
choice for most use-cases. For some applications, digesting before signing may still make sense. 1768

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 73

1769 Appendix D Hash then Sign Previous Discussions

1770 D.1 Internet Research Task Force (IRTF) Crypto Forum Research Group
1771 (CFRG)

The Internet Research Task Force (IRTF) Crypto Forum Research Group (CFRG) discussed the topic in a 1772
long thread. Various thoughts were expressed which mainly focused around the security concerns of 1773
digest-then-sign and alternatives. One message argued that the Internal Digest in Dilithium limits the 1774
usability of any found collision to a specific public key but does not frustrate a collision attack against a 1775
specific public key. Someone described current HSM use-cases that leverage digests before signing like 1776
firmware signing (PKC#11), trusted platform modules (TPMs), and Time Stamp Authorities (TSAs). 1777

The collision resistance requirement of digest-then-sign approach was also discussed. Some argued that 1778
if the hash / digest function is broken in terms of collision, then we would have more problems with our 1779
post-quantum signatures and that we generally can trust the SHA-2 and SHA-3 families as collision 1780
resistant. Some proposed the digesting to be in the envelope, out of the signature. Another response 1781
made the point that we could hash and randomize but not move that out of the signature. It also argued 1782
that HSMs trusting the digest can be dangerous, and using the randomization in the signature allows for 1783
better security analysis. 1784

One more argument for the advantage of binding the signature to the public key was also brought up in 1785
the thread. Someone also made the point that the EdDSA went through the exercise of defining two 1786
versions, Pure and Prehash, which did not lead to interoperability as only the former was predominantly 1787
implemented. There were concerns voiced regarding the size of the message input for HSMs and other 1788
use-cases. Different approaches to message streaming digesting were also discussed. 1789

The topic was brought up in another thread in IETF’s CFRG WG, where similar arguments were made. 1790
The collision resistance concern was discussed again in that thread. One response stressed the 1791
importance of using a conservative hash function like SHA2-512 or SHAKE256 for digest-then-sign, and 1792
others pointed out that hashes of today are secure and give us sufficient collision resistance. Another 1793
response stressed that taking the randomizing digest out of Falcon is a dangerous idea. 1794

In summary of these discussions, signing without digesting first is a more secure approach which allows 1795
better security analysis of signature schemes that can take arbitrary size messages as input. Digest-then-1796
sign comes with a collision resistance requirement for the digest function, which can generally be 1797
assumed for modern digest functions. So the collision requirement is not a strong one. Taking the 1798
randomized hashing out of the signature is probably a bad idea in terms of cryptographic risk. Digesting 1799
very large messages can be a concern for some use-cases that incrementally digest the message. 1800

1801 D.2 IETF LAMPS (Limited Additional Mechanisms for PKIX and SMIME)
1802 Working Group (LAMPS WG)

The topic was also discussed in two threads (PT7jTztNfI1K6DkS7bQ_SkljoVI, 1803
xchLLz0kdM1sUjlCBYNZaPj4jt4) in IETF’s LAMPS WG, which deals with certificates and CMS. The former 1804
thread overlaps with the CFRG thread summarized in Appendix D.1. In the latter, a few participants 1805
expressed support for pre-hashing in principle but without laying out the actual mainstream use-cases. 1806

https://mailarchive.ietf.org/arch/msg/cfrg/eYnEUnuGsEYgJuISIhxLIZTNXy8/
https://mailarchive.ietf.org/arch/msg/spasm/gQ6OM7lX_W9WTWvZ4LgDINszAVA/
https://mailarchive.ietf.org/arch/msg/cfrg/8vgOkeuwwklvWN2Z7PAN-FC9FB0/
https://mailarchive.ietf.org/arch/msg/cfrg/qX_3nlSF6UcvW2DK1ADJ7bTS340/
https://mailarchive.ietf.org/arch/msg/cfrg/jqRuA_88riKvVACVhcGreTQyelU/
https://mailarchive.ietf.org/arch/msg/cfrg/jqRuA_88riKvVACVhcGreTQyelU/
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/eAaiJO1qzkA/m/K66R_ftNBwAJ
https://mailarchive.ietf.org/arch/msg/cfrg/JRmgT5PFz4kXFiXQXarVO88V5uY/
https://mailarchive.ietf.org/arch/msg/cfrg/qdeYWxyGeHlb4A9tuKZsbTBnqGY/
https://mailarchive.ietf.org/arch/msg/cfrg/nqLykaoT2oA3ULF3XxUqIc62Ty8/
https://mailarchive.ietf.org/arch/msg/cfrg/IivvaRNFm4zzSmu-RSCvwto_3-4/
https://mailarchive.ietf.org/arch/msg/cfrg/IivvaRNFm4zzSmu-RSCvwto_3-4/
https://mailarchive.ietf.org/arch/msg/spasm/PT7jTztNfI1K6DkS7bQ_SkljoVI/
https://mailarchive.ietf.org/arch/msg/spasm/xchLLz0kdM1sUjlCBYNZaPj4jt4/
https://datatracker.ietf.org/wg/lamps/about/

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 74

1807 D.3 NIST PQC Forum
The digest-then-sign discussion also took place in a long thread in NIST’s PQC email list. The trigger for 1808
this discussion was the PKCS#11 incremental API incompatibility with big messages and the current 1809
arbitrary message signing approach of post-quantum signatures. 1810

The initial message pointed out that PKCS#11 uses a one-part C_Sign, C_Verify and multi-part APIs 1811
C_SignInit/Update/Final, C_VerifyInit/Update/Final which traditionally assumed you can receive and 1812
hash the whole message before signing it with RSA and ECDSA. The multi-part API digests the message 1813
incrementally until it completes the hash and signs it. So, to make it work for quantum-safe signatures, 1814
you would need sign the hash of the message with the new signature. The thread pointed out the 1815
collision concern with digest-then-sign and proposed various approaches by changing the way 1816
randomized hashing takes place in PQC signatures, but that would affect their security. One could also 1817
randomize the hash of the message H(nonce, M) to improve the collision concern, but that would not 1818
work because the nonce is part of the signature which comes after the message. That means that the 1819
nonce will not be available along with the whole message as the verifier starts incremental verification 1820
of very big messages that can’t be buffered. Reversing the order in randomized hashing of the message 1821
does not work because of collision concerns due to length extension attacks. 1822

Another approach would be taking the randomized hashing of these signatures out of the signature and 1823
doing it independently. As it was pointed out, that could have detrimental effects on security, so it is not 1824
a good option. Another approach would be to digest the message only for the multi-part APIs and not 1825
the one-part ones. The challenge with that would be that there would be two different approaches for 1826
the incremental and one-part method. That seemed to be the case with ECDSA as well in PKCS#11 with 1827
the CKM_ECDSA and CKM_ECDSA_SHA256 mechanisms. 1828

One more idea mentioned was for the incremental interface only to digest H(pk||m) as the PK will be 1829
available before starting the incremental verification and incrementally calculating the digest would be 1830
possible. The counterargument against that was the one-part and incremental interface should use the 1831
same signing method, and not one without pre-hashing and one with pre-hashing H(pk||m). 1832

The NIST PQC alias saw three more threads (PLAkpoagAQAJ, BuZZpWLaAgAJ, 4MBurXr58Rs) on the topic 1833
which overlap with the aforementioned long thread in NIST’s PQC email list and the IETF threads 1834
discussed in Appendix D above. One comment supported digesting in the signature because we don’t 1835
have to expose the hash in the API, test vectors are comprehensive, and improper hash functions are 1836
not a concern. 1837

1838 D.4 Liboqs and OpenSSL 1.1.1 Signature Performance Platform Details
model name : on Intel(R) Xeon(R) Platinum 8175M CPU @ 2.50GHz 1839
Target platform: x86_64-Linux-5.4.241-160.348-aws 1840
Compiler: gcc (7.3.1) 1841
Compile options: [-Wa,--noexecstack;-O3;-fomit-frame-pointer;-fdata-sections;-ffunction-1842
sections;-Wl,--gc-sections;-Wbad-function-cast] 1843
OQS version: 0.8.0-rc1 1844
Git commit: unknown 1845
OpenSSL enabled: Yes (OpenSSL 1.1.1g FIPS 21 Apr 2020) 1846
AES: NI 1847
SHA-2: OpenSSL 1848

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/CO8cfknSqwA/m/3oSaTDPQAgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cIsc6tUY9Rw/m/PLAkpoagAQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/yg9z4keaEf4/m/BuZZpWLaAgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/CO8cfknSqwA/m/3oSaTDPQAgAJ

PRELIMINARY DRAFT

NIST SP 1800-38C: Migration to Post-Quantum Cryptography 75

SHA-3: OpenSSL 1849
OQS build flags: OQS_DIST_BUILD OQS_OPT_TARGET=generic CMAKE_BUILD_TYPE=Release 1850
CPU exts active: ADX AES AVX AVX2 AVX512 BMI1 BMI2 PCLMULQDQ POPCNT SSE SSE2 SSE3 1851
 1852
OpenSSL 1.1.1g 21 Apr 2020 1853
built on: Mon May 8 16:50:49 2023 UTC 1854
options:bn(64,64) md2(char) rc4(16x,int) des(int) aes(partial) idea(int) blowfish(ptr) 1855
compiler: gcc -fPIC -pthread -m64 -Wa,--noexecstack -Wall -O3 -O2 -g -pipe -Wall -Wp,-1856
D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector-strong --param=ssp-buffer-size=4 -grecord-1857
gcc-switches -m64 -mtune=generic -Wa,--noexecstack -DOPENSSL_USE_NODELETE -DL_ENDIAN -1858
DOPENSSL_PIC -DOPENSSL_CPUID_OBJ -DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -1859
DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -1860
DKECCAK1600_ASM -DRC4_ASM -DMD5_ASM -DAESNI_ASM -DVPAES_ASM -DGHASH_ASM -DECP_NISTZ256_ASM -1861
DX25519_ASM -DPOLY1305_ASM -DZLIB -DNDEBUG -DPURIFY -DDEVRANDOM="\"/dev/urandom\"" 1862

1863 D.5 Security Issues when Externalizing the Internal Digest
Externalizing the Internal Digest out of the signature updates the security model, which increases the 1864
attack surface by allowing an attacker to send malicious specially crafted “digests” to the crypto module. 1865
Such an attack would mathematically break Falcon and SPHINCS+. For instance: 1866

 Multiple Falcon signatures of the same point P=HashToPoint(r||M, q, n) may reveal information 1867
about the private key (hence the randomization of the digest). If the client is responsible for 1868
computing HashToPoint, an attacker could send the same point multiple times to obtain multi-1869
ple valid signatures, and extract the private key. 1870

 If the internal SPHINCS+ digest is an attacker-controlled string, instead of the output of a hash 1871
function, then an attacker would be able to choose which parts of the FORS tree it learns at each 1872
signature. Sending some specially crafted fake digests would be enough to forge a valid signa-1873
ture for a target message. 1874

Additionally, delegating the randomized hash to the client application means the client must access 1875
resources it normally shouldn’t, such as parts of the private key or sampling randomness, which is not 1876
always a safe assumption. For instance: 1877

 For Falcon, the Internal Digest is P=HashToPoint(r||M, q, n) where r is a random nonce. This 1878
means the client application has to sample its own randomness. 1879

 For SPHINCS+, the Internal Digest is d=H_msg(R||PK.seed||PK.root||M). The issue is with R. 1880
Normally, it is generated by hashing a part of the private key, a random seed, and the message. 1881
The most obvious issue here is the access to the part of the private key. A single-pass SPHINCS+ 1882
variant where R would be sampled randomly would partially solve this, but it would mean that 1883
the client application has to sample its own randomness instead. 1884

Such changes would most likely be forbidden in certified implementations. 1885

For Dilithium, the Internal Digest is µ=H(tr||M) where tr=H(pk) is normally precomputed as part of the 1886
private key. This is non-sensitive information, so the client could read this field (or recompute it itself 1887
from the public key). Decoupling the calculation of μ and the rest of the signature would make 1888
implementations more complicated. It would also mean the cryptographic boundary is split between 1889
two entities, but the implications are not as serious as for Falcon and SPHINCS+. 1890

	NIST SP 1800-38C: Quantum-Resistant Cryptography Technology Interoperability and Performance Report
	1 Introduction
	2 Project Scope
	3 Testing Scope
	3.1 Selected Post-Quantum Algorithms
	3.2 Protocols, Standards, and Use-Cases
	3.3 Out of Scope

	4 Collaborators and Their Contributions
	5 Secure Shell (SSH)
	5.1 Interoperability and Performance Discussion
	5.2 Interoperability Testing
	5.2.1 PQC Hybrid Key Exchange Test Profile
	5.2.2 PQC Hybrid Key Exchange and Authentication Test Profiles

	5.3 Performance Testing
	5.4 Lessons Learned

	6 Transport Layer Security (TLS)
	6.1 Interoperability and Performance Discussion
	6.2 Interoperability Testing
	6.2.1 PQC Hybrid Key Exchange Test Profile
	6.2.2 PQC Hybrid Key Exchange and Authentication Test Profile

	6.3 Performance Testing
	6.3.1 OQS-OpenSSL
	6.3.2 Samsung SDS PQC-TLS (s-pqc-tls)
	6.3.3 AWS s2n-tls

	6.4 Lessons Learned

	7 QUIC
	7.1 Interoperability and Performance Discussion
	7.2 Interoperability Testing
	7.2.1 PQC Hybrid Key Exchange Test Profile
	7.2.2 PQC Hybrid Key Exchange and Authentication Test Profiles

	7.3 Performance Testing
	7.4 Lessons Learned

	8 X.509
	8.1 Interoperability and Performance Discussion
	8.1.1 Introduction
	8.1.2 X.509 Certificate Formats
	8.1.2.1 PURE PQC
	8.1.2.2 HYBRID CONCATENATED
	8.1.2.3 HYBRID BOUND
	8.1.2.4 HYBRID COMPOSITE
	8.1.2.5 HYBRID USING EXTENSIONS (Catalyst)
	8.1.2.6 HYBRID DELTA EXTENSIONS (Chameleon)

	8.2 Interoperability Testing
	8.2.1 Testing Procedure
	8.2.2 Test Profiles
	8.2.2.1 PURE_PQ_SIG
	8.2.2.2 PURE_PQ_KEM
	8.2.2.3 HYBRID_CONCATENATED
	8.2.2.4 HYBRID_BOUND
	8.2.2.5 HYBRID_COMPOSITE
	8.2.2.6 HYBRID_CATALYST
	8.2.2.7 HYBRID_CHAMELEON

	8.2.3 Test Results
	8.2.3.1 PURE_PQ_SIG
	8.2.3.2 PURE_PQ_KEM
	8.2.3.3 HYBRID_CONCATENATED
	8.2.3.4 HYBRID_BOUND
	8.2.3.5 HYBRID_COMPOSITE
	8.2.3.6 HYBRID_CATALYST
	8.2.3.7 HYBRID_CHAMELEON

	8.3 Performance Testing
	8.4 Lessons Learned

	9 Hardware Security Modules (HSMs)
	9.1 Discussion about Interoperability and Performance
	9.1.1 OID Usage
	9.1.2 Algorithm Versions Tested

	9.2 Interoperability Test Results
	9.2.1 Basic Capabilities
	9.2.2 PQC Key Generation, Export, and Import
	9.2.3 PQC Signature Generation and Verification
	9.2.4 PQC Key Encapsulation and Decapsulation

	9.3 Summary of Results

	10 Overall Status and Themes
	Appendix A List of Acronyms
	Appendix B References
	Appendix C Hash and Sign Analysis
	C.1 Introduction of the Digest-then-Sign Dilemma
	C.1.1 Terminology

	C.2 Performance for PQC Signatures
	C.3 The EdDSA Precedent
	C.4 The PKCS#11 Challenge
	C.5 Options for Standardization
	C.5.1 No-digest Before Signing
	C.5.2 Digest-then-sign
	C.5.2.1 Externally to the Signing Operation
	C.5.2.2 Internally (Prehash signature mode)
	C.5.2.3 By Externalizing the Internal Digest

	C.6 Conclusion

	Appendix D Hash then Sign Previous Discussions
	D.1 Internet Research Task Force (IRTF) Crypto Forum Research Group (CFRG)
	D.2 IETF LAMPS (Limited Additional Mechanisms for PKIX and SMIME) Working Group (LAMPS WG)
	D.3 NIST PQC Forum
	D.4 Liboqs and OpenSSL 1.1.1 Signature Performance Platform Details
	D.5 Security Issues when Externalizing the Internal Digest

