Software Supply Chain

Understanding and Addressing Risk in OSS

Michael Winser - Google

Three Kinds of Security Attacks

Front door

Back door

Underground

		Microservices Application	
	Monolithic Application		
	SDK	A Mountain of Open Source Dependencies	
I very long time ago	Big Thick Operating System		Michael doesn't code anymore
		Wafer Thin Container	

Correctness

Integrity

Availability

Does the code have vulnerabilities that increase risk

Has the code been modified from source to production

Is the code available to keep building software

What Could Possibly Go Wrong?

npm install foo

Vulnerability management

Provenance, Audit and Enforcement

Regress

Vulnerability management

Provenance, Audit and Enforcement

Transgress

Regress

Vulnerability management

Provenance, Audit and Enforcement

Transgress

Provenance, Audit and Enforcement

What About Right Now?

Alpha-Omega

Joint \$5M investment by Microsoft and Google

Alpha: Direct research and engagement on top OSS projects

Omega: Scaled approach to the next 10,000 projects

Over \$1.3M invested in Node, Python, Rust, Eclipse

10 Vulnerabilities reported, 50% fixed

~100 fully automated security reviews done against npm modules

Open source vulnerability detection toolkit

Resources

Scorecards: https://securityscorecards.dev/

Open Source Vulnerabilities: https://osv.dev/

Sigstore: https://www.sigstore.dev/

Open Source Insights: https://deps.dev/

OSS Fuzz: https://google.github.io/oss-fuzz/

Alpha Omega: https://openssf.org/community/alpha-omega/

Alpha Omega Toolkit https://github.com/ossf/alpha-omega

DORA: https://cloud.google.com/devops/state-of-devops

