
NCCoE – DevSecOps practices
Industry Workshop Session



Agenda

� Microsoft’s internal DevSecOps practices
� Security Development Lifecycle
� Secure OSS Consumption

� Distributing Supply Chain Conformance Data
� Today: OCI Registries
� Future: SCITT



Microsoft 
Security 
Development 
Lifecycle (SDL)
SDL defines best practices 
for secure design and 
developing secure code 
throughout the lifecycle of 
software development.

SDL has been extended to 
provide guidance on 
securing the software 
supply chain

§ SDL created in 2004 focused on securing products 
and services we ship, then published in 2006

§ Initially SDL was updated annually
§ Moved to agile release process in 2015
§ Incorporate new requirements to address technology 

changes
§ Cloud Services
§ Open Source Software
§ ML/AI

§ Cross-company SDL Working Group 
§ Most engineering teams represented
§ Team proposes and reviews changes/updates
§ Often in response to incidents

§ SDL has been extended over the years to address 
Secure Software Supply Chain requirements such as 
the SSDF (our approach to EO14028 compliance)

https://www.microsoft.com/en-us/securityengineering/sdl/


Implementing the SDL

Security Requirements
§ Strong preference for controls being built into the platform (no need to “opt in”) and 

automation (zero-config tools)
§ Clear, actionable security guidance for software engineers (security patterns, remediation)

Secure Design
§ Threat modeling, architecture reviews, specialists in areas like cryptography

Tooling & Automation (essential for scale and coverage)
§ SAST (CodeQL, secret/credential scanning, etc.) and DAST (web-based scanners, fuzzing)
§ Supply chain security (open source project detection, scanning, alerting)
§ Inserted at various points (IDE, push, PR build, periodic, etc.) where they make sense
§ Compliance measurement, claim generation, and evidence management (Liquid, SCITT, etc.)



Open Source 
Software (OSS) 
Secure Supply 
Chain (SSC) 
Framework

A recent extension of the 
SDL that defines how to 
securely consume OSS 
dependencies into the 
developer’s workflow

We’ve been implementing 
this since 2019

§ We published the OSS SSC Framework in August 
2022 OSS Secure Supply Chain Framework 
(microsoft.com)

§ It’s a threat-based risk-reduction approach toward 
secure consumption

https://www.microsoft.com/en-us/securityengineering/opensource


Real World OSS Supply Chain Threats

Threats Real examples Mitigation via OSS SSC Framework
Framework requirement 
reference

Accidental vulnerabilities in OSS code or Containers that 
we inherit SaltStack Automated patching, display OSS vulnerabilities as pull requests UPD-2, UPD-3

Intentional vulnerabilities/backdoors added to an OSS 
code base phpMyAdmin Perform proactive security review of OSS SCA-5

A malicious actor compromises a known good OSS 
component and adds malicious code into the repo ESLint incident Ability to block ingestion via malware scan, single feed, all packages are 

scanned for malware prior to download ING-3, ENF-2, SCA-4

A malicious actor creates a malicious package that is 
similar in name to a popular OSS component to trick 
developers into downloading it

Typosquatting OSS provenance analysis, single feed, all packages are scanned for 
malware prior to download AUD-1, ENF-2, SCA-4

A malicious actor compromises the compiler used by 
the OSS during build, adding backdoors CCleaner Rebuilding OSS on trusted build infrastructure ensures that packages 

don’t have anything injected at build time REB-1

Dependency confusion, package substitution attacks Dependency Confusion Single feed, securely configure your package source mapping ENF-1, ENF-2
An OSS component adds new dependencies that are 
malicious Event-Stream incident All packages are scanned for malware prior to download, single feed SCA-4, ENF-2

The integrity of an OSS package is tampered after build, 
but before consumption How to tamper with Electron apps Digital signature or hash verification, SBOM validation AUD-3, AUD-4

Upstream source can be removed or taken down which 
can then break builds that depend on that OSS 
component or container

left-pad
Use package-caching solutions, mirror a copy of OSS source code to an 
internal location for Business Continuity and Disaster Recovery (BCDR) 
scenarios

ING-2, ING-4

OSS components reach end-of-support/end-of-life and 
therefore don’t patch vulnerabilities

log4net
CVE-2018-1285 Scan OSS to determine if it is at end-of-life SCA-3

Vulnerability not fixed by upstream maintainer in 
desired timeframe Prototype Pollution in lodash

Implement a change in the code to address a zero-day vulnerability, 
rebuild, deploy to your organization, and confidentially contribute the fix 
to the upstream maintainer.

FIX-1

Bad actor compromises a package manager account 
(e.g. npm), with no change to the corresponding open 
source repo, and uploads a new malicious version of a 
package

Ua-parser-js OSS provenance analysis, single feed, scan OSS for malware AUD-1, ENF-2, SCA-4

https://www.helpnetsecurity.com/2020/05/04/saltstack-salt-vulnerabilities/
https://arstechnica.com/information-technology/2012/09/questions-abound-as-malicious-phpmyadmin-backdoor-found-on-sourceforge-site/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://www.securityweek.com/checkmarx-finds-threat-actor-fully-automating-npm-supply-chain-attacks
https://blog.morphisec.com/morphisec-discovers-ccleaner-backdoor
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://github.com/jonmest/How-To-Tamper-With-Any-Electron-Application
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://github.com/apache/logging-log4net/
https://nvd.nist.gov/vuln/detail/CVE-2018-1285
https://hackerone.com/reports/712065
https://www.truesec.com/hub/blog/uaparser-js-npm-package-supply-chain-attack-impact-and-response


OSS SSC 
Framework 
Maturity Model

Our guide is published here: 
GitHub - microsoft/oss-ssc-
framework: Open Source 
Software Secure Supply 
Chain Framework

§ The guide lists out the requirements and organizes it 
into a maturity model, where each level has different 
themes

https://github.com/microsoft/oss-ssc-framework


Supply Chain 
Conformance 
Data Exchange 
- Today
Industry specifications –
CBOR Object Signing and 
Encryption (COSE) and 
Open Container Initiative 
(OCI) Registries

§ Conformance data can be exchanged today
using OSS client implementations (Notary, ORAS)
based on industry specifications (COSE, OCI 
Distribution Specification)

Notary v2 client
w/COSE

OCI Registry as 
Storage (ORAS) 

client

Signing
Service

OCI Data 
Stores

SSDF Attestation

Evidence

SBOM
1 2

3 4

Identity

https://notaryproject.dev/
https://oras.land/
https://cose-wg.github.io/cose-spec/
https://github.com/opencontainers/distribution-spec/blob/main/spec.md


Supply Chain 
Conformance 
Data Exchange 
- Future
Industry Standards - Supply 
Chain Integrity Transparency 
and Trust (SCITT)

Notary v2 client
w/COSE

OCI Registry as 
Storage (ORAS) 

client

Signing
Service

OCI Data 
Stores

SSDF Attestation

Evidence

SBOM
1 2

5 6

§ SCITT standards being developed within the Internet 
Engineering Task Force (IETF) add support for immutable 
record of activity using decentralized transparency services

SCITT
Transparency

Service

3 4

SCITT
Client

Identity

https://github.com/ietf-scitt


Resources

� Evidence Signing
� COSE Specification RFC 8152 - CBOR Object Signing and Encryption (COSE) (ietf.org)
� Notary Client https://notaryproject.dev/

� Evidence Store
� OCI Distribution Specification https://github.com/opencontainers/distribution-

spec/blob/main/spec.md
� ORAS Client https://oras.land/

� SCITT
� IETF-SCITT GitHub Repository
� IETF-SCITT Mailing List

https://datatracker.ietf.org/doc/html/rfc8152
https://notaryproject.dev/
https://github.com/opencontainers/distribution-spec/blob/main/spec.md
https://oras.land/
https://github.com/ietf-scitt
https://www.ietf.org/mailman/listinfo/Scitt


Thank you


