
SOFTWARE
SUPPLY CHAIN AND
DEVOPS SECURITY
PRACTICES
Implementing a Risk-Based Approach to
DevSecOps

Karen Scarfone

Scarfone Cybersecurity

Murugiah Souppaya

National Institute of Standards and Technology

DRAFT

July 2022

devsecops-nist@nist.gov

PRO
JECT DESCRIPTIO

N

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of 1
Standards and Technology (NIST), is a collaborative hub where industry organizations, 2
government agencies, and academic institutions work together to address businesses’ most 3
pressing cybersecurity challenges. Through this collaboration, the NCCoE develops modular, 4
adaptable example cybersecurity solutions demonstrating how to apply standards and best 5
practices by using commercially available technology. To learn more about the NCCoE, visit 6
https://www.nccoe.nist.gov/. To learn more about NIST, visit https://www.nist.gov/. 7
This document describes a problem that is relevant to many industry sectors. NCCoE 8
cybersecurity experts will address this challenge through collaboration with a Community of 9
Interest, including vendors of cybersecurity solutions. The resulting reference design will detail 10
an approach that can be incorporated across multiple sectors. 11

ABSTRACT 12
DevOps brings together software development and operations to shorten development cycles, 13
allow organizations to be agile, and maintain the pace of innovation while taking advantage of 14
cloud-native technology and practices. Industry and government have fully embraced and are 15
rapidly implementing these practices to develop and deploy software in operational 16
environments, often without a full understanding and consideration of security. Also, most 17
software today relies on one or more third-party components, yet organizations often have little 18
or no visibility into and understanding of how these components are developed, integrated, and 19
deployed, as well as the practices used to ensure the components’ security. To help improve the 20
security of DevOps practices, the NCCoE is planning a DevSecOps project that will focus initially 21
on developing and documenting an applied risk-based approach and recommendations for 22
secure DevOps and software supply chain practices consistent with the Secure Software 23
Development Framework (SSDF), Cybersecurity Supply Chain Risk Management (C-SCRM), and 24
other NIST, government, and industry guidance. This project will apply these DevSecOps 25
practices in proof-of-concept use case scenarios that will each be specific to a technology, 26
programming language, and industry sector. Both commercial and open source technology will 27
be used to demonstrate the use cases. This project will result in a freely available NIST 28
Cybersecurity Practice Guide. 29

KEYWORDS 30
cloud-native technology; cybersecurity supply chain risk management; DevOps; DevSecOps; 31
secure software development; Secure Software Development Framework (SSDF); supply chain 32
security 33

DISCLAIMER 34
Certain commercial entities, equipment, products, or materials may be identified in this 35
document in order to describe an experimental procedure or concept adequately. Such 36
identification is not intended to imply recommendation or endorsement by NIST or NCCoE, nor 37
is it intended to imply that the entities, equipment, products, or materials are necessarily the 38
best available for the purpose. 39

COMMENTS ON NCCOE DOCUMENTS 40
Organizations are encouraged to review all draft publications during public comment periods 41
and provide feedback. All publications from NIST’s National Cybersecurity Center of Excellence 42
are available at https://www.nccoe.nist.gov/. 43

Comments on this publication may be submitted to devsecops-nist@nist.gov 44

Public comment period: July 21, 2022 to August 22, 202245

https://www.nccoe.nist.gov/
https://www.nist.gov/
https://www.nccoe.nist.gov/
mailto:devsecops-nist@nist.gov

Project Description: Software Supply Chain and DevOps Security Practices 2

TABLE OF CONTENTS 46

1 Executive Summary ... 3 47

Purpose ... 3 48

Scope ... 4 49

Assumptions/Challenges ... 5 50

Background ... 5 51

2 Scenarios ... 5 52

Scenario 1: Free and Open Source Software (FOSS) Development .. 6 53

Scenario 2: Commercial-Off-the-Shelf Software Development .. 6 54

3 High-Level Architecture ... 6 55

Component List ... 6 56

Desired Security Capabilities .. 7 57

4 Relevant Standards and Guidance ... 7 58

5 Security Control Map ... 9 59

Appendix A References .. 16 60

Appendix B Acronyms and Abbreviations ... 17 61

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 3

1 EXECUTIVE SUMMARY 62

Purpose 63

DevOps brings together software development and operations to shorten development cycles, 64
allow organizations to be agile, and maintain the pace of innovation while taking advantage of 65
cloud-native technology and practices. Industry and government have fully embraced and are 66
rapidly implementing these practices to develop and deploy software in operational 67
environments, often without a full understanding and consideration of security. 68

DevSecOps helps ensure that security is addressed as part of all DevOps practices by integrating 69
security practices and automatically generating security and compliance artifacts throughout the 70
process, including software development, builds, packaging, distribution, and deployment. This 71
is important for several reasons, including: 72

• reducing vulnerabilities, malicious code, and other security issues in released software 73
without slowing down code production and releases; 74

• mitigating the potential impact of vulnerability exploitation throughout the software 75
lifecycle, including when the software is being developed, built, packaged, distributed, 76
deployed, and executed on dynamic hosting platforms; 77

• addressing the root causes of vulnerabilities to prevent recurrences, such as 78
strengthening test tools and methodologies in the toolchain, and improving practices for 79
developing code and operating hosting platforms; and 80

• reducing friction between the development, operation, and security teams in order to 81
maintain the speed and agility needed to support the organization’s mission while 82
taking advantage of modern and innovative technology. 83

There is increasing recognition that DevSecOps should also encompass software supply chain 84
security. Most software today relies on one or more third-party components, yet organizations 85
often have little or no visibility into and understanding of how these software components are 86
developed, integrated, and deployed, as well as the practices used to ensure the components’ 87
security. DevSecOps practices can help identify, assess, and mitigate cybersecurity risk for the 88
software supply chain. [1] 89

This document defines a National Cybersecurity Center of Excellence (NCCoE) project on which 90
we are seeking feedback. This project focuses on developing and documenting an applied risk-91
based approach and recommendations for DevSecOps practices. For the purposes of this 92
project, the term “DevSecOps” refers to integrating security practices developed by the security 93
team into existing pipelines (e.g., continuous integration/continuous delivery [CI/CD]) and 94
existing toolchains used by developers and managed by operations teams. NIST’s proposed 95
approach for this project is similar to those used for the NIST Secure Software Development 96
Framework (SSDF) [2] and the NIST Cybersecurity Framework [3]. This project is intended to help 97
enable organizations to maintain the velocity and volume of software delivery in a cloud-native 98
way and take advantage of automated tools. The project will also determine how the practices 99
and tasks from the NIST SSDF can be implemented as part of a DevSecOps approach. 100

The project’s objective is to produce practical and actionable guidelines that meaningfully 101
integrate security practices into development methodologies. Industry, government, and other 102
organizations could then apply the guidelines when choosing and implementing DevSecOps 103
practices in order to improve the security of the software they develop and operate. That, in 104
turn, would improve the security of the organizations using that software, and so on throughout 105

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 4

the software supply chain. Additionally, the project intends to demonstrate how an organization 106
can generate artifacts as a byproduct of its DevSecOps practices to support and inform the 107
organization’s self-attestation and declaration to conformance to applicable NIST and industry-108
recommended practices for secure software development and cybersecurity supply chain risk 109
management. 110

The project will also strive to demonstrate the use of current and emerging secure development 111
frameworks, practices, and tools to address cybersecurity challenges. Lessons learned during the 112
project will be shared with the security and software development communities to inform 113
improvements to secure development frameworks, practices, and tools. Lessons learned will 114
also be shared with standards developing organizations to inform their DevSecOps-related work. 115

This project will result in a publicly available NIST Cybersecurity Practice Guide, a detailed 116
implementation guide of the practical steps needed to implement a cybersecurity reference 117
design that addresses this challenge. 118

Scope 119

This project will apply DevSecOps practices in multiple proof-of-concept use case scenarios that 120
each involve different technologies, programming languages, industry sectors, etc. The NCCoE 121
project will use commercial and open source technology to demonstrate the use cases. The 122
intention is to demonstrate DevSecOps practices that would apply to organizations of all sizes 123
and from all sectors, and to development for information technology (IT), operational 124
technology (OT), Internet of Things (IoT), and other technology types. This project will not focus 125
on the development of any particular technology type. 126

As part of this project, NIST will bring together and normalize content on DevSecOps practices 127
from existing guidance and practices publications. This content, to be published as part of the 128
project’s NIST Cybersecurity Practice Guide, will be drafted and revised in parallel with the use 129
case implementations. It will provide definitions of fundamental DevSecOps concepts so that 130
developers, security professionals, and operations personnel can all have the same shared 131
understanding of them. Also, it will document key elements that organizations would need to 132
build successful DevSecOps practices, from changing the organization’s culture to automating 133
security practices into existing development pipelines and toolchains to support the concept of 134
continuous authorization to operate (ATO). The guide will also provide all organizations with a 135
way to document their current DevSecOps practices and define their future target practices as 136
part of their continuous improvement processes. The recommendations and practices in the 137
guide will be crafted to provide organizations choosing to adopt them with flexibility and 138
customizability in their implementation. 139

Selected NIST guidance most closely related to DevOps and supply chain security, such as NIST 140
Special Publication (SP) 800-218 [2], SP 800-190 [4], and SP 800-161 [1], will be leveraged for the 141
use case implementations and may be updated during the course of the project based on 142
lessons learned from the implementations. There are many existing security guidance and 143
practices publications from NIST and others, but they have not yet been put into the context of 144
DevOps or DevSecOps. Industry, standards developing organizations, government agencies, and 145
others are already performing DevSecOps. Their efforts would be leveraged to provide a 146
community-developed set of recommended practices. Updating affected NIST publications so 147
they reflect DevSecOps principles would also help organizations to make better use of their 148
recommendations. 149

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 5

Assumptions/Challenges 150

Readers are assumed to understand basic DevOps and secure software development concepts. 151

Background 152

A software development life cycle (SDLC)1 is a formal or informal methodology for designing, 153
creating, and maintaining software (including code built into hardware). There are many models 154
for SDLCs, including waterfall, spiral, agile, and – in particular – agile combined with software 155
development and IT operations (DevOps) practices. Few SDLC models explicitly address software 156
security in detail, so secure software development practices usually need to be added to and 157
integrated into each SDLC model. Regardless of which SDLC model is used, secure software 158
development practices should be integrated throughout it for three reasons: to reduce the 159
number of vulnerabilities in released software, to reduce the potential impact of the 160
exploitation of undetected or unaddressed vulnerabilities, and to address the root causes of 161
vulnerabilities to prevent recurrences. Vulnerabilities include not just bugs caused by coding 162
flaws, but also weaknesses caused by security configuration settings, incorrect trust 163
assumptions, and outdated or incorrect risk analysis. [5] 164

Most aspects of security can be addressed at multiple places within an SDLC, typically with some 165
differences in cost, effectiveness, and ease of integration. However, in general, the earlier in the 166
SDLC that security is addressed, the less effort and cost is ultimately required to achieve the 167
same level of security. This principle, known as shifting left, is critically important regardless of 168
the SDLC model. Shifting left minimizes any technical debt that would require remediating early 169
security flaws late in development or after the software is in production. Shifting left can also 170
result in software with stronger security. 171

With today’s software, the responsibility for implementing security practices is often distributed 172
among multiple organizations based on the delivery mechanism (e.g., infrastructure as a service, 173
software as a service, platform as a service, container as a service, serverless). In these 174
situations, it likely follows a shared responsibility model involving the platform/service providers 175
and the tenant organization that is consuming those platforms/services. The parties will need to 176
agree on what security practices need to be performed based on the organization’s defined 177
policy, regulations, and mandates, which party is responsible for each practice, and how each 178
party will attest to their conformance with the agreement. 179

Another aspect of today’s software is that it often uses one or more software components 180
developed by other organizations. Some of those components may also use components from 181
other organizations, and so on. Managing cybersecurity risk from third-party software 182
components, as part of cybersecurity supply chain risk management (C-SCRM), involves 183
identifying, assessing, selecting, and implementing processes and mitigating controls. This risk 184
management can largely be integrated into DevSecOps through its automation capabilities. 185

2 SCENARIOS 186

The use case scenarios we are considering for this project are described below. 187

1 Note that SDLC is also widely used for “system development life cycle.” All usage of “SDLC” in this
document is referencing software, not systems.

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 6

Scenario 1: Free and Open Source Software (FOSS) Development 188

This scenario involves a small FOSS community that wants to improve the security of their 189
software. The FOSS community is all volunteer-based. They also want to provide better 190
security transparency for others who want to use the software, including provenance 191
information and mechanisms for confirming software integrity. This community already uses 192
a cloud-based, publicly accessible version control repository for its software development, 193
packaging, and distribution. The software itself relies on multiple open source components 194
from other communities. 195

Scenario 2: Commercial-Off-the-Shelf Software Development 196

This scenario involves a medium- or large-size organization that has an existing cloud-based 197
application for its global customers. The organization is actively developing, maintaining, 198
and supporting the application, which utilizes multiple commercial and open source 199
components. The application’s production environment is in the public cloud and is 200
microservices-based. The development and build environments, version control systems, 201
code repositories, and other parts of the toolchain are spread across private clouds and 202
Software-as-a-Service (SaaS)-hosted applications. In this scenario, the organization wants to 203
ensure its DevSecOps approach addresses all applicable practices in the SSDF for its cloud 204
environments, as well as generates artifacts to support and inform its self-attestation and 205
declaration to conformance to applicable NIST and industry-recommended practices for 206
secure software development and cybersecurity supply chain risk management. 207

For each scenario, we will perform one or more build implementations. Each build 208
implementation will be significantly different from the others, such as using different technology 209
stacks and programming languages. Each build implementation will rely on automation to the 210
extent feasible, such as using existing capabilities or adding automated features into existing 211
platforms and tools. Also, each build implementation will address security throughout the entire 212
software development life cycle, to include the security of developer, integration, build, 213
deployment, and distribution systems. 214

3 HIGH-LEVEL ARCHITECTURE 215

Component List 216

The high-level architecture of the development and hosting environments may include, but is 217
not limited to, the following components: 218

• Developer endpoints, including PCs (desktops or laptops) and virtual environments, both 219
PC-based and cloud-based 220

• Network/infrastructure devices 221
• Services and applications, both on-premises and cloud-based 222

o Toolchains and their tools (build tools, packaging tools, repositories, etc.) 223
o Vulnerability management (patch and configuration) 224
o Version control software and services 225
o Software security review, analysis, and testing tools (e.g., static and dynamic 226

code analyzers, fuzzers, just-in-time secure coding training for developers) 227
o Secure software design tools (e.g., threat modeling tools) 228

• Build systems (test, integration, production) 229

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 7

• Distribution/delivery systems 230
• Production systems that host apps 231
• Hardware-enabled security capabilities for protecting private keys 232

Desired Security Capabilities 233

This project seeks to develop reference designs and implementations using commercially 234
available technology and open source technology that meet the following characteristics: 235

• Security practices as presented in Table 1 are applied throughout the entire software 236
development lifecycle. 237

• Automation is used whenever feasible. 238

4 RELEVANT STANDARDS AND GUIDANCE 239

The following resources and references provide additional information that could be leveraged 240
to help develop this solution: 241

NIST Frameworks 242

• Framework for Improving Critical Infrastructure Cybersecurity, Version 1.1 243

• Risk Management Framework (RMF) Overview 244

• Secure Software Development Framework (SSDF) Version 1.1 245

• Workforce Framework for Cybersecurity (NICE Framework) 246

NIST Technology Projects 247

• Hardware Roots of Trust 248

• National Checklist Program 249

• Online Informative References (OLIR) 250

• Open Security Controls Assessment Language 251

• Security Content Automation Protocol (SCAP) 252

• Software Assurance Reference Dataset (SARD) 253

NIST Technology Guidelines 254

• Application Container Security Guide (SP 800-190) 255

• Building Secure Microservices-based Applications Using Service-Mesh Architecture (SP 256
800-204A) 257

• Cybersecurity Supply Chain Risk Management Practices for Systems and Organizations 258
(SP 800-161 Rev. 1) 259

• Developing Cyber-Resilient Systems: A Systems Security Engineering Approach (SP 800-260
160 Vol. 2 Rev. 1) 261

• Guide to Enterprise Patch Management Planning: Preventive Maintenance for 262
Technology (SP 800-40 Rev. 4) 263

• Guide to Security for Full Virtualization Technologies (SP 800-125) 264

https://csrc.nist.gov/publications/detail/white-paper/2018/04/16/cybersecurity-framework-v11/final
https://csrc.nist.gov/projects/risk-management/rmf-overview
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://csrc.nist.gov/publications/detail/sp/800-181/rev-1/draft
https://csrc.nist.gov/projects/hardware-roots-of-trust
https://csrc.nist.gov/projects/national-checklist-program
https://csrc.nist.gov/projects/olir
https://csrc.nist.gov/projects/open-security-controls-assessment-language
https://csrc.nist.gov/projects/security-content-automation-protocol
https://samate.nist.gov/SARD/
https://csrc.nist.gov/publications/detail/sp/800-190/final
https://csrc.nist.gov/publications/detail/sp/800-204a/final
https://doi.org/10.6028/NIST.SP.800-161r1
https://doi.org/10.6028/NIST.SP.800-160v2r1
https://csrc.nist.gov/publications/detail/sp/800-40/rev-4/final
https://csrc.nist.gov/publications/detail/sp/800-40/rev-4/final
https://csrc.nist.gov/publications/detail/sp/800-125/final

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 8

• Hardware-Enabled Security: Enabling a Layered Approach to Platform Security for Cloud 265
and Edge Computing Use Cases (IR 8320) 266

• Secure Virtual Network Configuration for Virtual Machine (VM) Protection (SP 800-125B) 267

• Security Recommendations for Server-based Hypervisor Platforms (SP 800-125A Rev. 1) 268

• Security Strategies for Microservices-based Application Systems (SP 800-204) 269

• Systems Security Engineering: Considerations for a Multidisciplinary Approach in the 270
Engineering of Trustworthy Secure Systems (SP 800-160 Vol. 1) 271

• Zero Trust Architecture (SP 800-207) 272

Government, Industry, Academia, and Community Guidance and Practices 273

• BSA | The Software Alliance 274

• Carnegie Mellon University (CMU) Software Engineering Institute (SEI) DevSecOps Blog 275

• Center for Internet Security (CIS) Benchmarks 276

• Cloud Security Alliance (CSA) DevSecOps Working Group 277

• Consortium for Information & Software Quality (CISQ) Standards to Automate Software 278
Measurement 279

• Cybersecurity & Information Systems Information Analysis Center (CSIAC) 280

• Defense Information Systems Agency (DISA) Security Technical Implementation Guides 281
(STIGs) 282

• Department of Defense (DoD) Enterprise DevSecOps Initiative 283

• General Services Administration (GSA) Tech Guides on DevSecOps 284

• Michael Scovetta in collaboration with the Open Source Security Coalition, Threats, 285
Risks, and Mitigations in the Open Source Ecosystem 286

• Microsoft and Sogeti, Securing Enterprise DevOps Environments 287

• Open Source Security Foundation (OpenSSF) resources, including: 288

o The Alpha-Omega Project 289

o Existing Guidelines for Developing and Distributing Secure Software 290

o Guide to Security Tools 291

o One-page Guide for Developing More Secure Software 292

o Open Source Security Metrics 293

o OpenSSF Best Practices Badge Program 294

o Package Manager Best Practices 295

o Security Reviews (of open source software) 296

o Security Scorecards – Security health metrics for Open Source 297

o sigstore 298

https://doi.org/10.6028/NIST.IR.8320
https://doi.org/10.6028/NIST.IR.8320
https://csrc.nist.gov/publications/detail/sp/800-125b/final
https://csrc.nist.gov/publications/detail/sp/800-125a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-204/final
https://csrc.nist.gov/publications/detail/sp/800-160/vol-1/final
https://csrc.nist.gov/publications/detail/sp/800-160/vol-1/final
https://csrc.nist.gov/publications/detail/sp/800-207/final
https://www.bsa.org/
https://insights.sei.cmu.edu/blog/topics/devsecops/
https://www.cisecurity.org/cis-benchmarks/
https://cloudsecurityalliance.org/research/working-groups/devsecops
https://www.it-cisq.org/standards/
https://www.it-cisq.org/standards/
https://www.csiac.org/
https://public.cyber.mil/stigs/
https://public.cyber.mil/stigs/
https://software.af.mil/dsop/documents/
https://tech.gsa.gov/guides/#devsecops
https://github.com/ossf/wg-identifying-security-threats/raw/main/publications/threats-risks-mitigations/v1.1/Threats%2C%20Risks%2C%20and%20Mitigations%20in%20the%20Open%20Source%20Ecosystem%20-%20v1.1.pdf
https://github.com/ossf/wg-identifying-security-threats/raw/main/publications/threats-risks-mitigations/v1.1/Threats%2C%20Risks%2C%20and%20Mitigations%20in%20the%20Open%20Source%20Ecosystem%20-%20v1.1.pdf
https://azure.microsoft.com/en-us/resources/securing-enterprise-devops-environments/
https://openssf.org/
https://openssf.org/community/alpha-omega/
https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Existing%20Guidelines%20for%20Developing%20and%20Distributing%20Secure%20Software.md
https://github.com/ossf/wg-security-tooling/blob/main/guide.md
https://docs.google.com/document/d/16jUqTEFG-wscZUGR-NGa_3a81GF3YILtH9XgOSkLCTM
https://metrics.openssf.org/
https://bestpractices.coreinfrastructure.org/en
https://github.com/ossf/package-manager-best-practices
https://github.com/ossf/security-reviews
https://github.com/ossf/scorecard
https://www.sigstore.dev/

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 9

o SLSA (Supply-chain Levels for Software Artifacts) 299

o Supply Chain Integrity WG 300

o Vulnerability Disclosures 301

o WG Securing Critical Projects 302

• Papers and presentations from the International Workshop on Secure Software 303
Engineering in DevOps and Agile Development 304

• Software Assurance Forum for Excellence in Code (SAFECode) publications on secure 305
software development, including Managing Security Risks Inherent in the Use of Third-306
Party Components 307

5 SECURITY CONTROL MAP 308

Table 1 maps the characteristics of the commercial and open source products that the NCCoE 309
will apply to this cybersecurity challenge, as represented by SSDF practices and tasks, to the 310
applicable standards and recommended practices described in the Framework for Improving 311
Critical Infrastructure Cybersecurity, SP 800-53, SP 800-161, and Executive Order (EO) 14028. 312
The mappings indicate how performing SSDF practices and tasks can help satisfy elements of 313
these other publications. This exercise is meant to demonstrate the real-world applicability of 314
standards and best practices but does not imply that products with these characteristics will 315
meet an industry’s requirements for regulatory approval or accreditation. 316

Table 1 uses the following abbreviations for mapped publications: 317

• EO14028: EO 14028, Executive Order on Improving the Nation’s Cybersecurity [6] 318
• NISTCSF: NIST Cybersecurity Framework (Framework for Improving Critical Infrastructure 319

Cybersecurity) [3] 320
• SP80053: SP 800-53 Revision 5, Security and Privacy Controls for Information Systems 321

and Organizations [7] 322
• SP800161: SP 800-161 Revision 1, Cybersecurity Supply Chain Risk Management 323

Practices for Systems and Organizations [1] 324

https://github.com/slsa-framework/slsa
https://github.com/ossf/wg-supply-chain-integrity
https://github.com/ossf/wg-vulnerability-disclosures
https://github.com/ossf/wg-securing-critical-projects
http://secse.org/
http://secse.org/
https://safecode.org/category/resource-publications/
https://safecode.org/category/resource-publications/
https://safecode.org/resource-secure-development-practices/managing-security-risks-inherent-in-the-use-of-third-party-components/
https://safecode.org/resource-secure-development-practices/managing-security-risks-inherent-in-the-use-of-third-party-components/

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 10

Table 1: Security Control Map 325

Practices Tasks References
Define Security Requirements for Software
Development (PO.1): Ensure that security
requirements for software development are
known at all times so that they can be taken into
account throughout the SDLC and duplication of
effort can be minimized because the
requirements information can be collected once
and shared. This includes requirements from
internal sources (e.g., the organization’s policies,
business objectives, and risk management
strategy) and external sources (e.g., applicable
laws and regulations).

PO.1.1: Identify and document all security
requirements for the organization’s software
development infrastructures and processes, and
maintain the requirements over time.

EO14028: 4e(ix)
NISTCSF: ID.GV-3
SP80053: SA-1, SA-8, SA-15, SR-3
SP800161: SA-1, SA-8, SA-15, SR-3

PO.1.2: Identify and document all security
requirements for organization-developed software to
meet, and maintain the requirements over time.

EO14028: 4e(ix)
NISTCSF: ID.GV-3
SP80053: SA-8, SA-8(3), SA-15, SR-3
SP800161: SA-8, SA-15, SR-3

PO.1.3: Communicate requirements to all third parties
who will provide commercial software components to
the organization for reuse by the organization’s own
software. [Formerly PW.3.1]

EO14028: 4e(vi), 4e(ix)
NISTCSF: ID.SC-3
SP80053: SA-4, SA-9, SA-10, SA-10(1), SA-15,
SR-3, SR-4, SR-5
SP800161: SA-4, SA-9, SA-9(1), SA-9(3), SA-10,
SA-10(1), SA-15, SR-3, SR-4, SR-5

Implement Roles and Responsibilities (PO.2):
Ensure that everyone inside and outside of the
organization involved in the SDLC is prepared to
perform their SDLC-related roles and
responsibilities throughout the SDLC.

PO.2.1: Create new roles and alter responsibilities for
existing roles as needed to encompass all parts of the
SDLC. Periodically review and maintain the defined
roles and responsibilities, updating them as needed.

EO14028: 4e(ix)
NISTCSF: ID.AM-6, ID.GV-2
SP80053: SA-3
SP800161: SA-3

PO.2.2: Provide role-based training for all personnel
with responsibilities that contribute to secure
development. Periodically review personnel proficiency
and role-based training, and update the training as
needed.

EO14028: 4e(ix)
NISTCSF: PR.AT
SP80053: SA-8
SP800161: SA-8

PO.2.3: Obtain upper management or authorizing
official commitment to secure development, and
convey that commitment to all with development-
related roles and responsibilities.

EO14028: 4e(ix)
NISTCSF: ID.RM-1, ID.SC-1

Implement Supporting Toolchains (PO.3):
Use automation to reduce human effort and
improve the accuracy, reproducibility, usability,
and comprehensiveness of security practices
throughout the SDLC, as well as provide a way
to document and demonstrate the use of these
practices. Toolchains and tools may be used at

PO.3.1: Specify which tools or tool types must or
should be included in each toolchain to mitigate
identified risks, as well as how the toolchain
components are to be integrated with each other.

EO14028: 4e(iii), 4e(ix)
SP80053: SA-15
SP800161: SA-15

PO.3.2: Follow recommended security practices to
deploy, operate, and maintain tools and toolchains.

EO14028: 4e(i)(F), 4e(ii), 4e(iii), 4e(v), 4e(vi), 4e(ix)
SP80053: SA-15
SP800161: SA-15

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 11

Practices Tasks References
different levels of the organization, such as
organization-wide or project-specific, and may
address a particular part of the SDLC, like a
build pipeline.

PO.3.3: Configure tools to generate artifacts of their
support of secure software development practices as
defined by the organization.

EO14028: 4e(i)(F), 4e(ii), 4e(v), 4e(ix)
SP80053: SA-15
SP800161: SA-15

Define and Use Criteria for Software Security
Checks (PO.4): Help ensure that the software
resulting from the SDLC meets the
organization’s expectations by defining and
using criteria for checking the software’s security
during development.

PO.4.1: Define criteria for software security checks
and track throughout the SDLC.

EO14028: 4e(iv), 4e(v), 4e(ix)
SP80053: SA-15, SA-15(1)
SP800161: SA-15, SA-15(1)

PO.4.2: Implement processes, mechanisms, etc. to
gather and safeguard the necessary information in
support of the criteria.

EO14028: 4e(iv), 4e(v), 4e(ix)
SP80053: SA-15, SA-15(1), SA-15(11)
SP800161: SA-15, SA-15(1), SA-15(11)

Implement and Maintain Secure
Environments for Software Development
(PO.5): Ensure that all components of the
environments for software development are
strongly protected from internal and external
threats to prevent compromises of the
environments or the software being developed
or maintained within them. Examples of
environments for software development include
development, build, test, and distribution
environments.

PO.5.1: Separate and protect each environment
involved in software development.

EO14028: 4e(i)(A), 4e(i)(B), 4e(i)(C), 4e(i)(D),
4e(i)(F), 4e(ii), 4e(iii), 4e(v), 4e(vi), 4e(ix)
NISTCSF: PR.AC-5, PR.DS-7
SP80053: SA-3(1), SA-8, SA-15
SP800161: SA-3, SA-8, SA-15

PO.5.2: Secure and harden development endpoints
(i.e., endpoints for software designers, developers,
testers, builders, etc.) to perform development-related
tasks using a risk-based approach.

EO14028: 4e(i)(C), 4e(i)(E), 4e(i)(F), 4e(ii), 4e(iii),
4e(v), 4e(vi), 4e(ix)
NISTCSF: PR.AC-4, PR.AC-7, PR.IP-1, PR.IP-3,
PR.IP-12, PR.PT-1, PR.PT-3, DE.CM
SP80053: SA-15
SP800161: SA-15

Protect All Forms of Code from Unauthorized
Access and Tampering (PS.1): Help prevent
unauthorized changes to code, both inadvertent
and intentional, which could circumvent or
negate the intended security characteristics of
the software. For code that is not intended to be
publicly accessible, this helps prevent theft of
the software and may make it more difficult or
time-consuming for attackers to find
vulnerabilities in the software.

PS.1.1: Store all forms of code – including source
code, executable code, and configuration-as-code –
based on the principle of least privilege so that only
authorized personnel, tools, services, etc. have
access.

EO14028: 4e(iii), 4e(iv), 4e(ix)
NISTCSF: PR.AC-4, PR.DS-6, PR.IP-3
SP80053: SA-10
SP800161: SA-8, SA-10

Provide a Mechanism for Verifying Software
Release Integrity (PS.2): Help software
acquirers ensure that the software they acquire
is legitimate and has not been tampered with.

PS.2.1: Make software integrity verification information
available to software acquirers.

EO14028: 4e(iii), 4e(ix), 4e(x)
NISTCSF: PR.DS-6
SP80053: SA-8
SP800161: SA-8

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 12

Practices Tasks References
Archive and Protect Each Software Release
(PS.3): Preserve software releases in order to
help identify, analyze, and eliminate
vulnerabilities discovered in the software after
release.

PS.3.1: Securely archive the necessary files and
supporting data (e.g., integrity verification information,
provenance data) to be retained for each software
release.

EO14028: 4e(iii), 4e(vi), 4e(ix), 4e(x)
NISTCSF: PR.IP-4
SP80053: SA-10, SA-15, SA-15(11), SR-4
SP800161: SA-8, SA-10, SA-15(11), SR-4

PS.3.2: Collect, safeguard, maintain, and share
provenance data for all components of each software
release (e.g., in a software bill of materials [SBOM]).

EO14028: 4e(vi), 4e(vii), 4e(ix), 4e(x)
SP80053: SA-8, SR-3, SR-4
SP800161: SA-8, SR-3, SR-4

Design Software to Meet Security
Requirements and Mitigate Security Risks
(PW.1): Identify and evaluate the security
requirements for the software; determine what
security risks the software is likely to face during
operation and how the software’s design and
architecture should mitigate those risks; and
justify any cases where risk-based analysis
indicates that security requirements should be
relaxed or waived. Addressing security
requirements and risks during software design
(secure by design) is key for improving software
security and also helps improve development
efficiency.

PW.1.1: Use forms of risk modeling – such as threat
modeling, attack modeling, or attack surface mapping
– to help assess the security risk for the software.

EO14028: 4e(ix)
NISTCSF: ID.RA
SP80053: SA-8, SA-11(2), SA-11(6), SA-15(5)
SP800161: SA-8, SA-11(2), SA-11(6), SA-15(5)

PW.1.2: Track and maintain the software’s security
requirements, risks, and design decisions.

EO14028: 4e(v), 4e(ix)
SP80053: SA-8, SA-10, SA-17
SP800161: SA-8, SA-17

PW.1.3: Where appropriate, build in support for using
standardized security features and services (e.g.,
enabling software to integrate with existing log
management, identity management, access control,
and vulnerability management systems) instead of
creating proprietary implementations of security
features and services. [Formerly PW.4.3]

EO14028: 4e(ix)

Review the Software Design to Verify
Compliance with Security Requirements and
Risk Information (PW.2): Help ensure that the
software will meet the security requirements and
satisfactorily address the identified risk
information.

PW.2.1: Have 1) a qualified person (or people) who
were not involved with the design and/or 2) automated
processes instantiated in the toolchain review the
software design to confirm and enforce that it meets all
of the security requirements and satisfactorily
addresses the identified risk information.

EO14028: 4e(iv), 4e(v), 4e(ix)

Verify Third-Party Software Complies with
Security Requirements (PW.3): Moved to
PW.4

PW.3.1: Moved to PO.1.3
PW.3.2: Moved to PW.4.4

Reuse Existing, Well-Secured Software When
Feasible Instead of Duplicating Functionality
(PW.4): Lower the costs of software
development, expedite software development,
and decrease the likelihood of introducing
additional security vulnerabilities into the

PW.4.1: Acquire and maintain well-secured software
components (e.g., software libraries, modules,
middleware, frameworks) from commercial, open-
source, and other third-party developers for use by the
organization’s software.

EO14028: 4e(iii), 4e(vi), 4e(ix), 4e(x)
NISTCSF: ID.SC-2
SP80053: SA-4, SA-5, SA-8(3), SA-10(6), SR-3,
SR-4
SP800161: SA-4, SA-5, SA-8(3), SA-10(6), SR-3,
SR-4

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 13

Practices Tasks References
software by reusing software modules and
services that have already had their security
posture checked. This is particularly important
for software that implements security
functionality, such as cryptographic modules and
protocols.

PW.4.2: Create and maintain well-secured software
components in-house following SDLC processes to
meet common internal software development needs
that cannot be better met by third-party software
components.

EO14028: 4e(ix)
SP80053: SA-8(3)
SP800161: SA-8(3)

PW.4.3: Moved to PW.1.3
PW.4.4: Verify that acquired commercial, open-source,
and all other third-party software components comply
with the requirements, as defined by the organization,
throughout their life cycles.

EO14028: 4e(iii), 4e(iv), 4e(vi), 4e(ix), 4e(x)
NISTCSF: ID.SC-4, PR.DS-6
SP80053: SA-9, SR-3, SR-4, SR-4(3), SR-4(4)
SP800161: SA-4, SA-8, SA-9, SA-9(3), SR-3, SR-
4, SR-4(3), SR-4(4)

PW.4.5: Moved to PW.4.1 and PW.4.4
Create Source Code by Adhering to Secure
Coding Practices (PW.5): Decrease the
number of security vulnerabilities in the software,
and reduce costs by minimizing vulnerabilities
introduced during source code creation that
meet or exceed organization-defined
vulnerability severity criteria.

PW.5.1: Follow all secure coding practices that are
appropriate to the development languages and
environment to meet the organization’s requirements.

EO14028: 4e(iv), 4e(ix)

PW.5.2: Moved to PW.5.1 as example

Configure the Compilation, Interpreter, and
Build Processes to Improve Executable
Security (PW.6): Decrease the number of
security vulnerabilities in the software and
reduce costs by eliminating vulnerabilities before
testing occurs.

PW.6.1: Use compiler, interpreter, and build tools that
offer features to improve executable security.

EO14028: 4e(iv), 4e(ix)
SP80053: SA-15
SP800161: SA-15

PW.6.2: Determine which compiler, interpreter, and
build tool features should be used and how each
should be configured, then implement and use the
approved configurations.

EO14028: 4e(iv), 4e(ix)
SP80053: SA-15, SR-9
SP800161: SA-15, SR-9

Review and/or Analyze Human-Readable
Code to Identify Vulnerabilities and Verify
Compliance with Security Requirements
(PW.7): Help identify vulnerabilities so that they
can be corrected before the software is released
to prevent exploitation. Using automated
methods lowers the effort and resources needed
to detect vulnerabilities. Human-readable code
includes source code, scripts, and any other
form of code that an organization deems human-

PW.7.1: Determine whether code review (a person
looks directly at the code to find issues) and/or code
analysis (tools are used to find issues in code, either in
a fully automated way or in conjunction with a person)
should be used, as defined by the organization.

EO14028: 4e(iv), 4e(ix)
SP80053: SA-11
SP800161: SA-11

PW.7.2: Perform the code review and/or code analysis
based on the organization’s secure coding standards,
and record and triage all discovered issues and
recommended remediations in the development
team’s workflow or issue tracking system.

EO14028: 4e(iv), 4e(v), 4e(ix)
SP80053: SA-11, SA-11(1), SA-11(4), SA-15(7)
SP800161: SA-11, SA-11(1), SA-11(4), SA-15(7)

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 14

Practices Tasks References
readable.
Test Executable Code to Identify
Vulnerabilities and Verify Compliance with
Security Requirements (PW.8): Help identify
vulnerabilities so that they can be corrected
before the software is released in order to
prevent exploitation. Using automated methods
lowers the effort and resources needed to detect
vulnerabilities and improves traceability and
repeatability. Executable code includes binaries,
directly executed bytecode and source code,
and any other form of code that an organization
deems executable.

PW.8.1: Determine whether executable code testing
should be performed to find vulnerabilities not
identified by previous reviews, analysis, or testing and,
if so, which types of testing should be used.

EO14028: 4e(ix)
SP80053: SA-11
SP800161: SA-11

PW.8.2: Scope the testing, design the tests, perform
the testing, and document the results, including
recording and triaging all discovered issues and
recommended remediations in the development
team’s workflow or issue tracking system.

EO14028: 4e(iv), 4e(v), 4e(ix)
SP80053: SA-11, SA-11(5), SA-11(8), SA-15(7)
SP800161: SA-11, SA-11(5), SA-11(8), SA-15(7)

Configure Software to Have Secure Settings
by Default (PW.9): Help improve the security of
the software at the time of installation to reduce
the likelihood of the software being deployed
with weak security settings, putting it at greater
risk of compromise.

PW.9.1: Define a secure baseline by determining how
to configure each setting that has an effect on security
or a security-related setting so that the default settings
are secure and do not weaken the security functions
provided by the platform, network infrastructure, or
services.

EO14028: 4e(iv), 4e(ix)

PW.9.2: Implement the default settings (or groups of
default settings, if applicable), and document each
setting for software administrators.

EO14028: 4e(iv), 4e(ix)
SP80053: SA-5, SA-8(23)
SP800161: SA-5, SA-8(23)

Identify and Confirm Vulnerabilities on an
Ongoing Basis (RV.1): Help ensure that
vulnerabilities are identified more quickly so that
they can be remediated more quickly in
accordance with risk, reducing the window of
opportunity for attackers.

RV.1.1: Gather information from software acquirers,
users, and public sources on potential vulnerabilities in
the software and third-party components that the
software uses, and investigate all credible reports.

EO14028: 4e(iv), 4e(vi), 4e(viii), 4e(ix)
SP80053: SA-10, SR-3, SR-4
SP800161: SA-10, SR-3, SR-4

RV.1.2: Review, analyze, and/or test the software’s
code to identify or confirm the presence of previously
undetected vulnerabilities.

EO14028: 4e(iv), 4e(vi), 4e(viii), 4e(ix)
SP80053: SA-11
SP800161: SA-11

RV.1.3: Have a policy that addresses vulnerability
disclosure and remediation, and implement the roles,
responsibilities, and processes needed to support that
policy.

EO14028: 4e(viii), 4e(ix)
SP80053: SA-15(10)
SP800161: SA-15(10)

Assess, Prioritize, and Remediate
Vulnerabilities (RV.2): Help ensure that
vulnerabilities are remediated in accordance with

RV.2.1: Analyze each vulnerability to gather sufficient
information about risk to plan its remediation or other
risk response.

EO14028: 4e(iv), 4e(viii), 4e(ix)
SP80053: SA-10, SA-15(7)
SP800161: SA-15(7)

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 15

Practices Tasks References
risk to reduce the window of opportunity for
attackers.

RV.2.2: Plan and implement risk responses for
vulnerabilities.

EO14028: 4e(iv), 4e(vi), 4e(viii), 4e(ix)
SP80053: SA-5, SA-10, SA-11, SA-15(7)
SP800161: SA-5, SA-8, SA-10, SA-11, SA-15(7)

Analyze Vulnerabilities to Identify Their Root
Causes (RV.3): Help reduce the frequency of
vulnerabilities in the future.

RV.3.1: Analyze identified vulnerabilities to determine
their root causes.

EO14028: 4e(ix)

RV.3.2: Analyze the root causes over time to identify
patterns, such as a particular secure coding practice
not being followed consistently.

EO14028: 4e(ix)

RV.3.3: Review the software for similar vulnerabilities
to eradicate a class of vulnerabilities, and proactively
fix them rather than waiting for external reports.

EO14028: 4e(iv), 4e(viii), 4e(ix)
SP80053: SA-11
SP800161: SA-11

RV.3.4: Review the SDLC process, and update it if
appropriate to prevent (or reduce the likelihood of) the
root cause recurring in updates to the software or in
new software that is created.

EO14028: 4e(ix)
SP80053: SA-15
SP800161: SA-15

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 16

APPENDIX A REFERENCES 326
[1] J. Boyens et al., Cybersecurity Supply Chain Risk Management Practices for Systems and 327

Organizations, National Institute of Standards and Technology (NIST) Special Publication 328
(SP) 800-161 Revision 1, Gaithersburg, Md., May 2022, 326 pp. Available: 329
https://doi.org/10.6028/NIST.SP.800-161r1 330

[2] M. Souppaya et al., Secure Software Development Framework (SSDF) Version 1.1: 331
Recommendations for Mitigating the Risk of Software Vulnerabilities, National Institute 332
of Standards and Technology (NIST) Special Publication (SP) 800-218, Gaithersburg, Md., 333
February 2022, 36 pp. Available: https://doi.org/10.6028/NIST.SP.800-218 334

[3] NIST, Framework for Improving Critical Infrastructure Cybersecurity, Version 1.1, 2018. 335
https://doi.org/10.6028/NIST.CSWP.04162018 336

[4] M. Souppaya et al., Application Container Security Guide, National Institute of Standards 337
and Technology (NIST) Special Publication (SP) 800-190, Gaithersburg, Md., September 338
2017, 63 pp. Available: https://doi.org/10.6028/NIST.SP.800-190 339

[5] E. LeMay et al., The Common Misuse Scoring System (CMSS): Metrics for Software 340
Feature Misuse Vulnerabilities, National Institute of Standards and Technology (NIST) 341
Internal Report (IR) 7864, Gaithersburg, Md., July 2012, 39 pp. Available: 342
https://doi.org/10.6028/NIST.IR.7864 343

[6] Executive Order on Improving the Nation’s Cybersecurity, Executive Order (EO) 14028, 344
May 12, 2021. Available: https://www.whitehouse.gov/briefing-room/presidential-345
actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/ 346

[7] Joint Task Force, Security and Privacy Controls for Information Systems and 347
Organizations, National Institute of Standards and Technology (NIST) Special Publication 348
(SP) 800-53 Revision 5, Gaithersburg, Md., September 2020, 492 pp. Available: 349
https://doi.org/10.6028/NIST.SP.800-53r5 350

https://doi.org/10.6028/NIST.SP.800-161r1
https://doi.org/10.6028/NIST.SP.800-218
https://doi.org/10.6028/NIST.CSWP.04162018
https://doi.org/10.6028/NIST.SP.800-190
https://doi.org/10.6028/NIST.IR.7864
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://doi.org/10.6028/NIST.SP.800-53r5

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 17

APPENDIX B ACRONYMS AND ABBREVIATIONS 351

ATO Authorization to Operate

CI/CD Continuous Integration/Continuous Delivery

CIS Center for Internet Security

CISQ Consortium for Information & Software Quality

CMU Carnegie Mellon University

CSA Cloud Security Alliance

C-SCRM Cybersecurity Supply Chain Risk Management

CSIAC Cyber Security & Information Systems Information Analysis Center

DevOps Software Development and IT Operations

DevSecOps Software Development, Security, and IT Operations

DISA Defense Information Systems Agency

DoD Department of Defense

EO Executive Order

FOSS Free and Open Source Software

GSA General Services Administration

IoT Internet of Things

IT Information Technology

NCCoE National Cybersecurity Center of Excellence

NICE National Initiative for Cybersecurity Education

NIST National Institute of Standards and Technology

OLIR Online Informative References

OpenSSF Open Source Security Foundation

OT Operational Technology

PC Personal Computer

RMF Risk Management Framework

SaaS Software as a Service

SAFECode Software Assurance Forum for Excellence in Code

SARD Software Assurance Reference Dataset

SBOM Software Bill of Materials

SCAP Security Content Automation Protocol

SDLC Software Development Life Cycle

DRAFT

Project Description: Software Supply Chain and DevOps Security Practices 18

SEI Software Engineering Institute

SLSA Supply-Chain Levels for Software Artifacts

SP Special Publication

SSDF Secure Software Development Framework

STIG Security Technical Implementation Guide

VM Virtual Machine

	1 Executive Summary
	Purpose
	Scope
	Assumptions/Challenges
	Background

	2 Scenarios
	Scenario 1: Free and Open Source Software (FOSS) Development
	Scenario 2: Commercial-Off-the-Shelf Software Development

	3 High-Level Architecture
	Component List
	Desired Security Capabilities

	4 Relevant Standards and Guidance
	5 Security Control Map

