Communications protocol implications of using code-based cryptography

Tanja Lange

Eindhoven University of Technology

NCCoE workshop on migrating to post-quantum cryptography

History of code-based cryptography

1978 McEliece: Public-key encryption using error-correcting codes.

- Original parameters designed for 2⁶⁴ security.
 Using 1962 Prange information-set decoding for parameter choice.
- ▶ 2008 Bernstein–Lange–Peters: broken original parameters in \approx 2⁶⁰ cycles.
- Easily scale up for higher security.
- ► The McEliece system (with later key-size optimizations) achieves 2^{λ} security against Prange's attack using $(0.741186...+o(1))\lambda^2(\log_2\lambda)^2$ -bit keys as $\lambda\to\infty$.

Security analysis of McEliece encryption

```
Some papers studying algorithms for attackers:
1962 Prange; 1981 Clark-Cain, crediting Omura; 1988 Lee-Brickell; 1988 Leon;
1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey-Goodman; 1990 van Tilburg;
1991 Dumer; 1991 Coffey-Goodman-Farrell; 1993 Chabanne-Courteau; 1993 Chabaud;
1994 van Tilburg; 1994 Canteaut-Chabanne; 1998 Canteaut-Chabaud;
1998 Canteaut-Sendrier; 2008 Bernstein-Lange-Peters; 2009 Bernstein-Lange-Peters-van
Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier;
2010 Bernstein-Lange-Peters: 2011 May-Meurer-Thomae: 2012 Becker-Joux-May-Meurer:
2013 Hamdaoui-Sendrier; 2015 May-Ozerov; 2016 Canto Torres-Sendrier;
2017 Kachigar-Tillich (post-quantum); 2017 Both-May; 2018 Both-May; 2018 Kirshanova
(post-quantum).
```

All of these attacks involve huge searches, like attacking AES. The quantum attacks (Grover etc.) leave at least half of the bits of security.

Attack progress over time

$$\lim_{K \to \infty} \frac{\mathsf{log}_2\,\mathsf{AttackCost}_{\mathsf{year}}(K)}{\mathsf{log}_2\,\mathsf{AttackCost}_{\mathsf{2020}}(K)}$$

NIST PQC submission Classic McEliece

No patents. ✓

Shortest ciphertexts of all Round-2 candidates. ✓

Fast open-source constant-time software implementations. \checkmark

Very conservative system, expected to last; has strongest security track record. \checkmark

Sizes with similar post-quantum security to AES-128, AES-192, AES-256:

Metric	mceliece348864	mceliece460896	mceliece6960119
Public-key size	261120 bytes	524160 bytes	1047319 bytes
Secret-key size	6452 bytes	13568 bytes	13908 bytes
Ciphertext size	128 bytes	188 bytes	226 bytes
Key-generation time	52415436 cycles	181063400 cycles	417271280 cycles
Encapsulation time	43648 cycles	77380 cycles	143908 cycles
Decapsulation time	130944 cycles	267828 cycles	295628 cycles

See https://classic.mceliece.org for authors, details & parameters.

BIG PUBLIC KEYS.

- Sending 1MB takes time and bandwidth.
- ► Google—Cloudflare experiment:

in some cases the public-key + ciphertext size was too large to be viable in the context of TLS

and even 10KB messages dropped.

But users send big data anyway. We have lots of bandwidth.

A key takes less space than a kitten picture.

Each client spends a small fraction of a second generating new ephemeral 1MB key.

- Sending 1MB takes time and bandwidth.
- ► Google–Cloudflare experiment:

in some cases the public-key + ciphertext size was too large to be viable in the context of TLS

and even 10KB messages dropped.

But users send big data anyway. We have lots of bandwidth. A key takes less space than a kitten picture.

Each client spends a small fraction of a second generating new ephemeral 1MB key.

▶ But: If any client is allowed to send a new ephemeral 1MB McEliece key to server, an attacker can easily flood server's memory. **This invites DoS attacks.**

Use cases for Classic McEliece

- Standard public-key encryption, e.g. GnuPG/PGP with long-term keys.
- ▶ PQ-Wireguard (Hülsing, Ning, Schwabe, Weber, Zimmermann; IEEE S&P 2021).
 - Uses McEliece for long-term identity key in KEM-KEM construction.
 - McEliece key exchanged out of band at registration.
 - Strong benefit from short ciphertexts.
 - Combined with lattice-based scheme for ephemeral keys.
- ► McTiny (Bernstein, Lange; USENIX 2020)
 - McEliece also used for ephemeral keys.
 - Avoids DoS memory flooding attacks by using structure of code-based encryption. Server returns partial encryption and state in cookie encrypted to itself; cookie is smaller than network packet sent to server.
 - Good speed and security with congestion control and surrounding protocol.

Measurements of our software (https://mctiny.org)

Client time vs. bytes sent, bytes acknowledged, bytes in acknowledgments. Curve shows packet pacing from our new user-level congestion-control library.