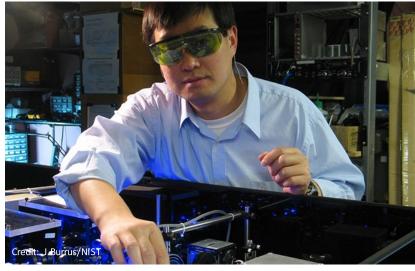
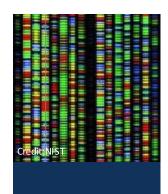
Automation of the NIST Cryptographic Module Validation Program (CMVP)

October 5, 2020 NCCoE National Cybersecurity Center of Excellence



National Institute of Standards and Technology

Mission


To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life

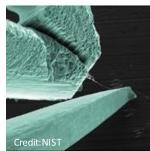
Laboratory Programs

Material

Measurement

Laboratory

Physical Measurement Laboratory


Engineering Laboratory

Information Technology Laboratory

Communication Technology Laboratory

Center for Nanoscale Science and Technology

NIST Center for Neutron Research

Information Technology Laboratory — itl.nist.gov Cultivating Trust in IT and Metrology

Standards and Guidelines Development – csrc.nist.gov

- Cryptographic Development AES, SHA-3, PQC, etc.
- Cryptographic Validation FIPS 140-3
- Risk Management Framework –
 Cybersecurity Framework, FISMA,
 SP 800-53, SP 800-171, etc.
- Technology Guidelines Virtualization,
 Containers, Security Automation, etc.
- Framework for cybersecurity, privacy, workforce, and secure software development
- Identity Management

Cybersecurity Program **Fundamental** research **Standards** development **Applied IT** research and and technology development transfer

National Cybersecurity Center of Excellence (NCCoE) – nccoe.nist.gov

Accelerate adoption of secure technologies: collaborate with innovators to provide real-world, standards-based cybersecurity capabilities that address business needs

DEFINE

ASSEMBLE

BUILD

ADVOCATE

Introduction to NCCoE

NCCoE Mission

NCCoE Engagement & Business Model

DEFINE

ASSEMBLE

BUILD

ADVOCATE

OUTCOME:

Define a scope of work with industry to solve a pressing cybersecurity challenge

OUTCOME:

Assemble teams of industry orgs, govt agencies, and academic institutions to address all aspects of the cybersecurity challenge

OUTCOME:

Build a practical, usable, repeatable implementation to address the cybersecurity challenge

OUTCOME:

Advocate adoption of the example implementation using the practice guide

SP 1800 Series: Cybersecurity Practice Guides

CSF Function	CSF Subcategory	SP800-53R4 ^a	IEC/ISO 27001 ^b	CIS CSC ^c	NERC-CIP v5 ^d
Identify	ID.AM-1: Physical devices and systems within the organization are inventoried	CM-8	A.8.1.1 A.8.1.2	CSC-1	CIP-002-5.1
	ID.AM-2: Software platforms and applications within the organization are inventoried	CM-8	A.8.1.1 A.8.1.2	CSC-2	CIP-002-5.1
Protect	PR.AC-2: Physical access to assets is managed and protected	PE-2, PE-3, PE-4, PE-5, PE-6, PE-9	A.11.1.1 A.11.1.2 A.11.1.4 A.11.1.6 A.11.2.3		CIP-006-6
	PR.DS-6: Integrity checking mechanisms are used to verify software, firmware, and information integrity	SI-7	A.12.2.1 A.12.5.1 A.14.1.2 A.14.1.3		
Detect	DE.AE-1: A baseline of network operations and expected data flows for users and systems is established and managed	AC-4, CA-3, CM-2, SI-4			
	DE.AE-2: Detected events are analyzed to understand attack targets and methods	AU-6, CA-7, IR-4, SI-4	A.16.1.1 A.16.1.4		CIP-008-5
	DE.AE-3: Event data are aggregated and correlated from multiple sources and sensors	AU-6, CA-7, IR-4, IR-5, IR-8, SI-4			CIP-007-6

- Volume A: Executive Summary
- High-level overview of the project, including summaries of the challenge, solution, and benefits
- Volume B: Approach, Architecture, and Security Characteristics
- Deep dive into challenge and solution, including approach, architecture, and security mapping to the Cybersecurity Framework and other relevant standards
- Volume C: How-To Guide
- Detailed instructions on how to implement the solution, including components, installation, configuration, operation, and maintenance

NCCoE Tenets

Standards-based

Apply relevant industry standards to each security implementation; demonstrate example solutions for new standards

Modular

Develop components that can be easily substituted with alternates that offer equivalent input-output specifications

Repeatable

Provide a detailed practice guide including a reference design, list of components, configuration files, relevant code, diagrams, tutorials, and instructions to enable system admins to recreate the example solution and achieve the same results

Commercially available

Work with the technology community to identify commercially available products that can be brought together in example solutions to address challenges identified by industry

Usable

Design blueprints that end users can easily and cost-effectively adopt and integrate into their businesses without disrupting day-to-day operations

Open and transparent

Use open and transparent processes to complete work; seek and incorporate public comments on NCCoE publications

Sector-Based Projects

- Commerce/Retail (SP 1800-17)
- Energy (SP 1800-2 & SP 1800-7)
- Financial Services (SP 1800-5 & SP 1800-9 & SP 1800-18)
- Healthcare (SP 1800-1 & SP 1800-8)
- Hospitality
- Manufacturing
- Public Safety/First Responder (SP 1800-13)
- Transportation

Cross-Sector Projects

- Attribute Based Access Control (SP 1800-3)
- Data Integrity (SP 1800-11)
- Derived PIV Credentials (SP 1800-12)
- DNS-Based Secured Email (SP 1800-6)
- Mitigating IoT-Based DDoS (SP 1800-15)
- Mobile Device Security (SP 1800-4 & SP 1800-21)
- Secure Inter-Domain Routing (SP 1800-14)
- TLS Server Certificate Management (SP 1800-16)
- Trusted Geolocation in the Cloud (SP 1800-19)

Thank you!