

SOFTWARE ASSET
MANAGEMENT
Continuous Monitoring

V.2
This revision incorporates comments from the public.

David Waltermire
Information Technology Laboratory
david.waltermire@nist.gov

September 16, 2015

 BU
ILDIN

G
 BLO

CK W
HITE PAPER

Building Block | Software Asset Management ii

The National Cybersecurity Center of Excellence (NCCoE) at the National Institute of Standards
and Technology (NIST) works with industry, academic and government experts to find practical
solutions for businesses’ most pressing cybersecurity needs. The NCCoE collaborates to build
open, standards-based, modular, end-to-end reference designs that are broadly applicable and
help businesses more easily align with relevant standards and best practices. To learn more
about the NCCoE, visit http://nccoe.nist.gov. To learn more about NIST, visit
http://www.nist.gov.

NCCoE building blocks address technology gaps that affect multiple industry sectors.

ABSTRACT

Software asset management (SAM) is a key part of continuous monitoring. The approach
described here is intended to support the automation of security functions such as risk-based
decision making, collection of software inventory data, and inventory-based network access
control. SAM, as envisioned in this project, uses a standardized approach providing a
comprehensive, integrated view of software on the endpoint to support the following
capabilities:

• publication of installed software inventory
• authorization and verification of software installation media
• software execution whitelisting
• software inventory-based network access control

At the core of this solution is the software identification (SWID) tag, an XML-based data format
containing information describing a unit of software. A collection of SWID tags provides timely
and accurate information about the current state of computing devices, also called endpoints.
Organizations need to utilize this state information to measure the level of assurance of the
software used to access organizational resources and to support critical business functions.

Automating SAM requires timely collection of software inventory data in the form of SWID tags
and depends crucially on the trustworthiness of the SAM processes implemented for each
endpoint. Secure transport protocols are required to enable SWID tag data to be exchanged.
Trusted Network Connect (TNC) specifications provide the standards-based mechanisms to
support the secure exchange of SWID tag information from and between computing devices.

Capabilities supporting this approach will be developed using existing commercial and open-
source software with additional functional development as needed. As each capability is
completed, it will be assessed against the original objective and this document will be revised to
reflect relevant changes to the original approach.

http://nccoe.nist.gov/
http://www.nist.gov/

Building Block | Software Asset Management iii

KEYWORDS

access control; continuous monitoring; policy server; risk-based decision; security automation;
software asset management; software identification; software inventory; visibility into endpoint

DISCLAIMER

Certain commercial entities, equipment, or materials may be identified in this document in
order to describe an experimental procedure or concept adequately. Such identification is not
intended to imply recommendation or endorsement by NIST or NCCoE, nor is it intended to
imply that the entities, materials or equipment are necessarily the best available for the
purpose.

COMMENTS on NCCoE DOCUMENTS

Organizations are encouraged to review all draft publications during public comment periods
and provide feedback. All publications from NIST’s National Cybersecurity Center of Excellence
are available at http://nccoe.nist.gov.

Comments on this publication may be submitted to: conmon_nccoe@nist.gov.

ACKNOWLEDGEMENTS

The following people provided support to the development of the Software Asset Management
building block:

Name Organization

Valery Feldman G2 Incorporated

Timothy McBride NIST NCCoE

Greg Witte G2 Incorporated

We gratefully acknowledge the contributions of all those who commented on the first edition of
the Software Asset Management building block. Your comments helped make this a better
document.

http://nccoe.nist.gov/

DRAFT

Building Block | Software Asset Management

TABLE OF CONTENTS
Abstract ..ii
Keywords ... iii
Disclaimer .. iii
Comments on NCCoE Documents .. iii
Acknowledgements ... iii
1. Executive Summary .. 1
2. Description ... 2

Goal ... 2
Background ... 2
Security Challenge ... 3

3. Security Characteristics .. 5
4. Approach .. 6

Capability 0 – Establish SWID Tag Environment ... 8
Development Approach .. 8
Outcomes .. 9

Capability 1 – Publish Installed SWID Tag Data .. 10
Development Approach .. 10
Outcomes .. 10

Capability 2 – Media Verification Using SWID Tags .. 11
Development Approach .. 11
Outcomes .. 11

Capability 3 – Execution Authorization Using Installed SWID Data 12
Development Approach .. 12
Outcomes .. 12

Capability 4 – Network-Based Policy Enforcement Based on SWID Information 12
Development Approach .. 13
Outcomes .. 14
Other Possible Capabilities ... 14

5. High-Level Architecture ... 14
6. Relevant Standards .. 15
7. Security Controls Mapping .. 16

DRAFT

Building Block | Software Asset Management

8. Component List .. 26
9. Comments .. 26

DRAFT

Building Block | Software Asset Management

1. EXECUTIVE SUMMARY 1

This document describes the technical challenge of collecting accurate and timely 2
software inventory data, the desired security characteristics of a solution, and an 3
approach using software identification (SWID) tags—a collection of data about software 4
and its lifecycle and dependencies—and commercial, off-the-shelf technologies. 5

To build an effective security program, organizations need to know what software is 6
running on their networks. Software asset management (SAM) can help organizations 7
develop an inventory of installed software across their information technology (IT) 8
networks, providing accurate and timely information about the current status of the 9
software that accesses organizational resources and supports critical business functions. 10
Software inventory in turn, supports the automation of security measures so that 11
software running on business-critical systems can be routinely verified as authorized, 12
not tampered with, and with vulnerabilities patched. 13

In many organizations, SAM processes are either manual or supported by a collection of 14
disparate proprietary solutions. The approach to SAM described in this document 15
addresses the technical challenge of collecting accurate and timely software inventory 16
data using commercial, off-the-shelf products that are available to organizations of all 17
sizes. We have employed a standardized approach that provides an integrated view of 18
software and allows organizations to make risk-based decisions about their software 19
vulnerabilities. 20

The core of this example solution is the software identification (SWID) tag, an XML-21
based data format describing a unit of software. A collection of SWID tags provides 22
timely and accurate information about the current state of computing devices. 23
Automating SAM also requires the secure exchange of SWID tag information between 24
computing devices using the Trusted Network Connect (TNC) specifications, which 25
provide the standards-based mechanisms. 26

This project was initiated in consultation with members of industry and other 27
government agencies, who expressed a need for improved software asset management 28
capabilities. An earlier draft of this document was made available for public comment, 29
and those comments along with our responses are included at the end of the document. 30
We invite readers to comment on this draft as well, so that the problem statement is as 31
broadly applicable as possible before we begin work in NCCoE labs implementing model 32
solutions. Please provide your comments to conmon-nccoe@nist.gov. 33

This project is part of a larger effort to show organizations how to implement 34
continuous monitoring of their IT systems, and will result in a freely available NIST 35
Cybersecurity Practice Guide. 36

mailto:conmon-nccoe@nist.gov

DRAFT

Building Block | Software Asset Management

2. DESCRIPTION 37

Goal 38

Continuous monitoring includes, but is not limited to, the monitoring of IT security and 39
operational practices of asset management, configuration management, and 40
vulnerability management. This building block—an NCCoE project that is applicable to 41
multiple sectors—will demonstrate software asset management capabilities supporting 42
continuous monitoring by focusing on accurate, timely collection of software inventory 43
data and the secure exchange of software inventory data from and between computing 44
devices. The software asset management functionality demonstrated by this building 45
block may be used as part of a larger continuous monitoring capability supporting basic 46
situational awareness of the software that is installed and in use on monitored devices. 47

In the context of this paper, the term ‘situational awareness’ represents timely 48
collection and use of endpoint software installation state data that is collected using 49
automated means. This includes software and patch inventory, software change data, 50
and software footprint data (e.g., filenames, versions, hashes). This information is 51
maintained by installers and other system processes used to manage the deployment of 52
software (see Figure 1) and is communicated through standardized protocols (see Figure 53
2). 54

Background 55

Many, if not all, of an organization’s mission or business essential functions—56
governance structure and core business processes—are dependent upon information 57
technology. It is critical that organizations deploy solutions based on sound architectural 58
approaches that support operational and security needs to protect the confidentiality, 59
integrity and availability of information. Identifying and responding to new 60
vulnerabilities, evolving threats and an organization’s constantly changing security and 61
operational environment is a dynamic process that must be effectively and proactively 62
managed. 63

Continuous monitoring is defined as maintaining ongoing awareness to support 64
organizational risk decisions1. Maintaining awareness of the software assets that reside 65
on an enterprise network is critical to risk management and for defining the scope of 66
authorization activities. A continuous monitoring system is composed of many different 67
capabilities that support collection of security and operational data, analysis of real-time 68
and historic data, and reporting of metrics in support of risk-based decision making at 69
many different levels and contexts within an organization. To achieve this, a continuous 70
monitoring system must provide visibility into organizational assets, awareness of 71

1 NIST SP 800-137: Information Security Continuous Monitoring (ISCM) for Federal Information Systems
and Organizations

DRAFT

Building Block | Software Asset Management

threats and vulnerabilities, and support measurement of the effectiveness of deployed 72
security controls. 73

A significant number of security controls relate to the management of software. These 74
controls address the processes and technology required to successfully manage 75
software throughout its deployed lifespan. Software is released by a publisher, acquired 76
by an organization, installed by an administrator or user, maintained by applying 77
patches (e.g., hot fixes, service packs) and updated software versions, and finally is 78
uninstalled or retired when it is no longer of use or when the product reaches end-of-79
life. Throughout this lifecycle, a number of business processes are performed to manage 80
the software. Licenses are tracked and purchased as needed as part of a license 81
management process; software media is acquired as part of a supply chain; software is 82
updated to take advantage of new features as part of a change management process; 83
and patches are applied to fix security and functional flaws as part of vulnerability and 84
patch management processes. 85

Automating SAM practices requires timely collection of software inventory data in 86
support of ongoing awareness. SAM also supports disciplined network operations, 87
change control, configuration management, and other IT and security practices. Tools 88
supporting SAM help maintain an inventory of software installed and used on devices to 89
access services and information maintained by an organization. Automating the 90
management of software can be accomplished with a combination of system 91
configuration, network management and license management tools, or with other 92
special-purpose tools. SAM capabilities track the life cycle of an organization’s software 93
assets and provides automated management functions such as remote management of 94
devices. The deployment and effective use of SAM capabilities is a key component of 95
the implementation, assessment and continuous monitoring of software-related 96
security controls such as those found in NIST Special Publication (SP) 800-53 Revision 4, 97
ISO/IEC 27001:2013 Annex A , and other community-specific control catalogs. 98

Security Challenge 99

In order to support risk-based decision making and automated action, it is necessary to 100
have accurate, timely information about the current state of computing devices, also 101
called endpoints, to include the current state of software installed, authorized and used 102
on each endpoint. Organizations need to utilize this state information to measure and 103
sustain the level of assurance of the software used to access organizational resources 104
and to support critical business functions. 105

The automated collection and secure exchange of software inventory data can further 106
this assurance through automation systems that: 107

• provide an understanding of what patches and software updates are needed to 108
ensure software vulnerabilities are minimized 109

DRAFT

Building Block | Software Asset Management

• determine what software configurations need to be applied to ensure 110
compliance with organizational configuration policies 111

• discover unauthorized installed software (or prevent the installation of 112
unauthorized software) 113

• authorize the execution of software, preventing the execution of unauthorized 114
or malicious code 115

In many organizations, SAM processes are either manual or are supported by a 116
collection of proprietary solutions that do not scale for a variety of reasons. Often, 117
proprietary solutions lack integration with other operational and security systems, are 118
aligned with specific product families, and provide different informational views into the 119
software they manage. As a result of implementing proprietary approaches, current 120
SAM tools often don’t use information provided by the publisher to definitively identify 121
and track software and its updates/patches. 122

This leads to significant issues, risks, and ongoing costs, such as: 123

• Current techniques are prone to errors in software identification and latency in 124
support for new releases, and require on-going tweaking by the administrator. 125

• Software data is not normalized across tool sets making consistent, correlation 126
and reporting difficult. 127

• Current tools cannot authenticate installation media using vendor-neutral 128
methods resulting in implementation and deployment complexity, and often 129
allow the installation of tampered software. 130

• Knowledge about the composition of installed software is not provided by most 131
publishers as a common practice, making it difficult to detect unauthorized 132
software modifications. 133

• Many software installation mechanisms do not associate installed software with 134
dependent components (e.g., shared libraries, patches) in a way that is usable by 135
software inventory and other software management tools, reducing the 136
effectiveness of these tools. 137

SAM, as envisioned in this building block, requires a standardized approach that 138
provides an integrated view of software throughout its lifecycle. Such an approach must 139
support the following capabilities: 140

• Publication of installed software inventory – When connected to an authorized 141
network, a device’s full or updated software inventory is securely reported to a 142
central configuration management database that aggregates the software 143
inventory of multiple devices for further analysis. 144

• Authorization and verification of software installation media - The ability to 145
verify that the media is from a trusted publisher and that the integrity of the 146
installation media has been maintained. 147

DRAFT

Building Block | Software Asset Management

• Software execution whitelisting – The execution environment verifies that the 148
software to be executed is authorized for execution and that the executable files 149
and associated libraries have not been tampered with. 150

• Software inventory-based network access control – Control access to network 151
resources at the time of connect based on published installed software 152
inventory. Access to network resources can be limited if software is outdated or 153
patches are not installed based on digital policies. 154

 155
When used together, these capabilities enable enterprise-wide management of what 156
software is allowed to be installed and executed. The collected information will also 157
provide software version information to support license, vulnerability, and patch 158
management needs. If historic software inventory information is maintained, retroactive 159
analysis techniques can be applied on this data to determine historic vulnerable 160
conditions in support of incident response and recovery processes. Finally, using 161
collected software inventory, network access can be controlled, enabling the device to 162
be connected to a remediation network, if necessary, so the appropriate software 163
changes can be made before allowing it full access to the operational network. 164

The ability to support the intended business processes and the value obtained from 165
automated collection and exchange of endpoint software inventory data depends 166
crucially on the trustworthiness of the SAM processes implemented for each endpoint. 167
At the very least, SAM processes must not undermine the trustworthiness of an 168
endpoint by becoming a new avenue for attack. Therefore, SAM processes must 169
leverage an appropriate set of security protections available on each particular platform 170
to protect the confidentiality, integrity, and availability of software information. Since 171
endpoints are highly variable in terms of available security protections, and since 172
protection mechanisms should be increasing and improving all the time, it is neither 173
practical nor desirable to establish a security threshold. Rather, the goal is for SAM 174
processes to be flexible or configurable to take advantage of the best security features a 175
platform has to offer. 176

3. SECURITY CHARACTERISTICS 177

The building block’s SAM processes will: 178
• provide organizational visibility into endpoint software inventory supporting 179

security and operational, risk-based decision making 180
• provide assurance that software installation media is authentic based on digital 181

signatures and cryptographic hashes 182
• identify and support decision making related to software vulnerabilities prior to 183

installation and during the lifecycle of installed software 184
• maintain a comprehensive, up-to-date view of the state of software installed on 185

computing devices using one or more enterprise data stores 186

DRAFT

Building Block | Software Asset Management

• uphold or improve the assurance of an endpoint’s effective trusted computing 187
base; endpoint SAM processes must not degrade an endpoint’s security 188
assurance 189

4. APPROACH 190

This building block focuses on the demonstration of SAM capabilities, based on 191
standardized data formats and transport protocols. The general approach will address 192
the following capabilities: 193

• verify the identity of the software publisher-provided installation media 194
• verify that installation media is authentic and hasn’t been tampered with 195
• determine what software is installed and in use on a given endpoint device, 196

including legacy and end-of-life products 197
• determine whether there is installed software on an endpoint that was not 198

deployed using authorized mechanisms 199
• restrict execution of software that was not installed using authorized 200

mechanisms 201
• identify the presence of software flaws in installed software 202
• enforce access control rules for network resources based on software inventory 203

data 204

At the core of this solution is the software identification (SWID) tag, which is an XML-205
based data format containing a collection of information describing a unit of software. A 206
SWID tag contains data elements that identify a specific unit of software and provides 207
other data elements that enable categorization, identification and hashing of software 208
components, references to related software and dependencies, and other data points. 209
SWID tags can be associated with software installation media, installed software and 210
software updates (e.g., service packs, patches, hotfixes). SWID tags associated with 211
installation media (e.g., download package, DVD media) are called “media tags.” SWID 212
tags associated with software and associated software updates (e.g., patches) that have 213
been installed are called “installation tags.” 214

SWID media tags enable the associated media to be identified and verified using hash 215
algorithms, and the publisher of the media to be authenticated using XML digital 216
signatures containing an X.509 certificate. 217

Installation SWID tags managed by software installers or by system processes are 218
responsible for describing, in a machine-readable form, the software and software 219
updates that have been deployed to an endpoint. These tags are often organized in 220
storage locations on the endpoint device. These tags enable installed software and 221
software updates to be identified. Using this identification data, the relationship to 222
software dependencies can be identified, the installation location to be found, and 223
executables and other supporting files that are part of the installation can be identified 224

DRAFT

Building Block | Software Asset Management

and verified using associated version and hash information in the SWID tag’s package 225
footprint. Data pertaining to executable files can be used to verify executables at 226
runtime, which partially supports whitelisting and blacklisting of application execution. 227
Caution should be exercised when implementing runtime software footprint verification 228
as part of a boot sequence for operating environments. Such capabilities may be 229
necessary to ensure safe execution, but could also prevent execution of important 230
system, maintenance or update processes. 231

Today, SWID tags are available for some commercially available software. Development 232
of this building block should encourage additional commercial software vendors to 233
provide additional SWID tagging support. For software that currently supports SWID 234
tagging, support for SWID tagging will be expanded as needed. Additionally, SWID tags 235
can be developed and deployed for custom software created by an organization, 236
allowing this software to be managed using commodity software asset management 237
tools. Third-party generation of SWID tags will be explored, which can be used to 238
provide the data needed to manage custom or legacy products that do not have 239
publisher-provided SWID tags. 240

Secure transport protocols are required to enable SWID tag data to be exchanged. The 241
Trusted Network Connect (TNC) specifications provide the standards-based mechanisms 242
to support the secure exchange of SWID tag information. The TNC standards enable 243
accurate software inventory information to be made available to the enterprise. Using 244
the TNC protocols, collected SWID tag data can be published to a data store managed by 245
a policy server. This persisted information can be used to support configuration, 246
vulnerability management, attack detection, network access control decision making, 247
and other security automation tasks. 248

The building block’s SAM capabilities, based on SWID tags and TNC transport protocols, 249
will: 250

• allow installation media to be verified as authentic 251
• enable software execution to be limited to authorized software based on 252

organizational policies 253
• demonstrate a standardized approach for securely collecting and exchanging 254

software inventory data from networked endpoints, including those 255
accessing a network remotely 256

• enable use of authoritative, vendor-provided SWID tag information to drive 257
business processes 258

• make exchanged software inventory data available to operational and 259
security systems where it can be evaluated against organizational policies 260
supporting human-assisted and automated, risk-based decision making 261

 262

The solution should conform to the Trusted Computing Group (TCG) Trusted Network 263
Connect (TNC) Endpoint Compliance Profile (ECP) where possible. Data collection of 264

DRAFT

Building Block | Software Asset Management

SWID tag-based software inventories must occur based on software installation change 265
events. For the full value of this building block to be realized, both the SWID Tag and 266
TNC ECP standards must be adopted by the SAM tools used. 267

Capabilities supporting the building block will be developed using existing commercial 268
and open-source software with additional functional development as needed. As each 269
capability is completed it will be assessed against the original objective and this 270
document will be revised to reflect relevant changes to the original approach. 271

Gaps in technology and standards will be identified and solutions to these gaps will be 272
proposed. Where practical, feedback will be provided to the standards development 273
organizations to support revisions to the underlying standards. 274

The scope of the proposed solution is to demonstrate SAM capabilities, based on 275
standardized data formats and transport protocols. The SAM building block focuses on 276
the use of software identification methods for locally installed software applications and 277
related installation/management processes. This document does not address the 278
emerging examples of ephemeral software instances, such as cloud-based applications 279
or other client-side active content technologies2. 280

The use of ephemeral software brings additional security and asset management 281
requirements; future iterations of this building block may explore management of active 282
content as part of an overall software asset management solution. Additionally, this 283
building block will investigate the appropriate means to use SWID tags for executable 284
modules which might not be physically present on the local system, but may be 285
accessible from network-based shares and removable drives; as well as, from software 286
virtualization services. 287

The capabilities for this building block will be developed in the following manner: 288

Capability 0 – Establish SWID Tag Environment 289

The first capability prepares an environment for deployment and management of SWID 290
tag data in the end-point device. It is a pre-condition for the other capabilities. 291

Development Approach 292
This capability will demonstrate three functions for supported platforms: a managed 293
SWID tag installation environment, installer support for deploying SWID tags, and 294
methods for tagging legacy software that have not been provided with a SWID tag by 295
the software vendor. 296

2 Client-side active content is described in NIST Special Publication 800-44: Guidelines on Securing Public
Web Servers, version 2.

DRAFT

Building Block | Software Asset Management

Management of Installed SWID Tags 297
This function will establish an environment on each endpoint 298
platform for storage of installed SWID tag data as shown in 299
Figure 1. During software installation, installers will deploy 300
SWID tag information for the installed software to the SWID 301
tag data store. This data store is typically the directory 302
location identified by the SWID tag specification. For 303
platforms that do not have an identified location, alternate 304
storage mechanisms will be identified and used. 305

The development of this function will identify platform-306
specific security mechanisms to protect the SWID data from 307
tampering and unauthorized access. Techniques will be 308
employed to maintain and verify the integrity of stored data 309
and limit access to read and modify SWID tags to authorized processes and users. 310

Installation environments will: 311

• limit write and modify access to the stored SWID tag data to software 312
installation, inventory, and discovery processes 313

• limit read access to the stored SWID tag data to installation processes and other 314
processes that are authorized to access SWID tag information 315

Deployment of SWID Tag Data During Software Installation 316
During software installation, the software installer is responsible for deployment of 317
SWID tag information to the SWID tag data store. Development in this area will 318
demonstrate that the appropriate capabilities are present in installers to manage the 319
deployment and maintenance of SWID tags. 320

Installers will: 321

• deploy SWID tag data to the SWID tag data store for installed software and 322
software deltas (e.g., patches, updates) 323

• clean up any legacy SWID tag data for software that is uninstalled or upgraded 324
during the installation process. 325

Deployment of SWID Tags for Legacy Software 326
For software that does not have an associated SWID tag provided by the software 327
vendor, it will be necessary to discover such software and to deploy or create an 328
appropriate SWID tag. This function may be supported through the application of 329
software patches that retroactively deploy a SWID tag for the patched software or by 330
3rd-party tools that provide this capability. 331

Outcomes: 332
• maintain an accurate accounting of installed software utilizing SWID tags 333
• uphold or improve the assurance of an endpoint’s effective trusted computing 334

base; endpoint SAM processes must not degrade endpoint security assurance 335

Figure 1 - Capability 0

Architecture

Endpoint

Installation
Environment

SWID Tag
Data Store

DRAFT

Building Block | Software Asset Management

Capability 1 – Publish Installed SWID Tag Data 336

The SWID tag information in an endpoint’s SWID tag data store is useful to capabilities 337
implemented on the endpoint. However, the ability to share this information with 338
external capabilities enables the endpoint SWID tag information to support a variety of 339
enterprise business, operational and security processes. 340

Development Approach 341
Prerequisite: Capability 0 – Establish SWID Tag Environment 342

Development of this capability will focus on using 343
the transport protocols from the TNC standards 344
to establish a secure channel between the 345
endpoint and the policy server. Then SWID tag 346
data for software installed on an endpoint can be 347
used to securely communicate accurate software 348
inventory to the policy server. This exchange 349
between a SWID collector on the endpoint and a 350
policy server receiving the published SWID tag 351
data is depicted in Figure 2. Two modes of 352
exchange must be supported: collector initiated publication of full or incremental SWID 353
data and policy server initiated requests for specific SWID tag data. 354

Regardless of the mode of exchange, the policy server will interact with the SWID 355
collector on an endpoint device to access current and ongoing updates of SWID tag 356
data. The policy server will maintain historic information for the software inventory of 357
each endpoint it manages. Techniques will be identified to secure historic SWID tag data 358
over the long-run. 359

The SWID collector will: 360

• support publication of SWID data based on the Endpoint Compliance Profile 361
using the SWID Message and Attributes for IF-M specification which provides a 362
standardized interface for messaging 363

• support publishing of full and incremental, event-driven SWID data to a policy 364
server 365

The policy server will: 366

• receive exchanged SWID data 367
• store published SWID tag data for future retrieval, analysis, and possible 368

automated or manual policy decision making and action 369

Outcomes: 370
• provide organizational visibility into endpoint device software inventory 371

supporting security and operational, risk-based decision making 372
• enable identification of software with vulnerabilities throughout the lifecycle of 373

installed software 374

Figure 2 - Capability 1 Architecture

Endpoint

Installation
Environment

SWID Tag
Data Store

Policy Server

Software Inventory
Database

DRAFT

Building Block | Software Asset Management

• maintain a comprehensive, up-to-date view of the state of software installed on 375
endpoints using an enterprise data store 376

• actively monitor software changes on one or more endpoints 377
• enforce enterprise policies based on missing patches or the presence of 378

unapproved software 379
• provide support for other capabilities that are “downstream” processes (e.g., 380

verification of configuration baselines related to specific software, vulnerability 381
detection, patch management) that require enterprise knowledge of endpoint 382
software inventory 383

Capability 2 – Media Verification Using SWID Tags 384

Media tampering is a significant attack vector presenting challenges for both software 385
publishers and consumers. One of the benefits of a SWID tag is that it can be used to 386
authenticate the publisher and verify the integrity of installation media. This enables 387
install-time verification of the software media providing greater software assurance at 388
the point of install. 389

Development Approach 390
Prerequisite: Capability 0 – Establish SWID Tag Environment 391

Development of this capability augments installation by enabling verification of 392
installation media using a media tag. A media tag is a variant of a SWID tag that is 393
bundled with the software installation media. The media can be an optical disk (e.g., 394
DVD, BluRay), a shared network resource or a downloadable installation package. A 395
media tag contains information that identifies the installation media, the software 396
revision to be installed, and a file manifest containing paths and cryptographic hashes 397
for each component of the software media. This collection of information can be signed 398
using the XMLD Signature Syntax and Processing standard. 399

Processing of installation media by this capability requires incorporation of the SWID 400
media tag in the installation media. 401

Installation environments will support: 402

• verification of the XML digital signature, including validating the certificate 403
included in the signature based on a collection of available trusted root 404
certificates 405

• verification of the installation media based on the file manifest and associated 406
cryptographic hashes 407

Outcomes: 408
• provide assurance that software installation media is authentic based on digital 409

signatures and cryptographic hashes 410
• verify the integrity of installation media prior to software installation 411
• enable the authorization of software installation based on the identification of 412

the publisher and product 413

DRAFT

Building Block | Software Asset Management

Capability 3 – Execution Authorization Using Installed SWID Data 414

The threat of many potential attack vectors is reduced by establishing greater trust that 415
installed software has come through authorized channels. With this higher degree of 416
assurance and verification that the software is trusted to perform as intended, policies 417
such as whitelists can be used to limit software execution. 418

This building block capability will only be applicable to software with associated SWID 419
tags that include footprint details. Absence of footprint details for software may be a 420
policy item to consider as a part of this protection scheme. There is a desire to make this 421
protection configurable so that policies may apply at the system, user, or process level. 422

This building block capability will also explore how SWID tags can help to enforce an 423
authorized software list, such as a whitelist, that might be established by an 424
organizational change management process. 425

Development Approach 426
Prerequisite: Capability 0 – Establish SWID Tag Environment 427

Development of this capability will utilize 428
executable and shared library information 429
defined in a SWID tag to allow or restrict 430
program execution, based on an organizationally 431
defined whitelist or blacklist. To support this, the 432
execution environment will access installed SWID 433
data, illustrated in Figure 3. These solutions will 434
verify the integrity of the executable prior to 435
execution using the cryptographic hash 436
information associated with the executable in 437
the installed SWID tag’s package footprint. If this verification fails, then the execution 438
will be prevented. 439

Additional policies may be employed to restrict execution privileges for specific users 440
based on available SWID tag data. These policy expressions will use normalized software 441
identifiers and metadata attributes in the SWID tag. 442

Outcomes: 443

• execution is restricted to software installed through authorized channels 444
• organizations define software execution policies based on SWID tag data 445
• policies are able to be defined and shared across multiple organizations, tools 446

and processes 447

Capability 4 – Network-Based Policy Enforcement Based on SWID Information 448

Organizations ensure that the state of an endpoint is acceptable by controlling access to 449
network resources at the time of connection and on an ongoing basis. Detecting and 450
evaluating the software inventory of a device is an important dimension of network 451
access control decisions. 452

Figure 3 - Capability 3 Architecture

Endpoint

Execution
Environment

Installation
Environment

SWID Tag
Data Store

SWID Data

Execution
Authorization
Capability

DRAFT

Building Block | Software Asset Management

Development Approach 453
Prerequisite: Capability 1 – Publish Installed SWID Tag Data 454

Development of this capability will use a policy 455
server to make network access control decisions. 456
Using published information collected from the 457
endpoint, supported by capability 1, the policy 458
server will authorize a computing device’s 459
connection to the network. The endpoint’s 460
software inventory will be monitored on an 461
ongoing basis to detect software changes that 462
violate network policy. If the endpoint’s software 463
inventory is found to be non-compliant at any point in time, the endpoint will be 464
segregated for remedies to be addressed or disconnected. 465

Developed solutions will need to: 466

• establish TNC compliant infrastructure (e.g., policy decision point, policy 467
enforcement point) 468

• implement network access control based on configured software usage and 469
patching policy: 470

– virtual local area network (VLAN) segregation of non-compliant hosts 471
– patching on segmented VLAN 472

Solutions will support the following workflow: 473

1. When connecting to a network, the endpoint will discover the policy 474
enforcement point. 475

2. The endpoint will publish full or updated software inventory using SWID data. 476
3. If the published software inventory is determined not to be compliant, access 477

will be rejected or limited according to policy. If the endpoint is compliant, it 478
will be granted access to network resources. 479

4. Endpoints will continue to publish changes to their software inventory on an 480
ongoing basis while connected, allowing for compliance to be continuously 481
measured. 482

Non-compliant endpoints will be handled according to the configured policy. If remedies 483
can be applied, the following workflow will be supported: 484

1. The endpoint will be relocated to a remediation VLAN. 485
2. Patches will be downloaded and applied. 486
3. Non-compliant software will be requested for removal. 487
4. Once deficiencies are addressed, the endpoint will be re-verified and allowed 488

access to the network. 489

Figure 4 - Capability 4 Architecture

DRAFT

Building Block | Software Asset Management

Another supported variation will be to move the endpoint to a monitoring LAN with 490
limited access if unapproved software is present. 491

Outcomes: 492

• prevent endpoints from accessing network resources if installed software is not 493
compliant with software whitelist/blacklist or patch policy 494

• demonstrate support for a variety of mechanisms for remedy 495

Other Possible Capabilities 496
The demonstrable capabilities defined in this document represent areas where 497
standards and product capabilities exist or are supportive of the solution. Additional 498
capabilities may be added to the building block that address other requirements, 499
building on these foundations. The SAM capabilities can be used with other security 500
capabilities and tools that may be deployed at an endpoint or server to meet additional 501
requirements. These may include dashboards that provide a network, enterprise, or 502
organizational view of software inventory and software vulnerability information among 503
other possibilities. Other avenues of collaboration will uncover new areas for expansion 504
that will be added to the building block. 505

5. HIGH-LEVEL ARCHITECTURE 506

The architecture for this building block, illustrated in Figure 5, depicts two distinct 507
components: the policy server and the endpoint. The endpoint represents the 508
computing device for which the software inventory is monitored. The policy server is the 509
point of publication for software inventory data generated at the computing device. It is 510
expected that multiple computing devices will interact with a single policy server. 511
Organizations can also engage existing inventory management solutions to work with 512
this building block to enhance the organizational view of software. For example, 513
organizations may choose to implement multiple policy servers responsible for 514
maintaining software inventory data for a network, office, data center or other 515
organizational scope. 516

 517

Endpoint

Execution
Environment

Installation
Environment

SWID Tag
Data Store

Execution
Authorization
Capability

Policy Server

Software Inventory
Database

 518
Figure 5 - Building Block Architecture 519

DRAFT

Building Block | Software Asset Management

The diagram, illustrated in Figure 6, represents the TNC architecture that is used to 520
transport software inventory data and to support network access control functionality 521
supported by this building block. 522

 523
Figure 6 - TNC Architecture 524

In this diagram the endpoint is the access requestor (AR) and the policy server is the 525
policy decision point (PDP). Access control is enforced by the policy enforcement point 526
(PEP) which is typically a network device (e.g., wireless access point, switch, and 527
firewall). 528

6. RELEVANT STANDARDS 529

ISO/IEC 27001:2013, Information technology—Security techniques—Information 530
Security Management—Requirements 531

ISO/IEC 19770-2:2009, Information technology—Software asset management—Part 2: 532
Software identification tag 533

XML Signature Syntax and Processing (Second Edition), W3C Recommendation 10 June 534
2008 535

TCG TNC Endpoint Compliance Profile Version 1.0, Revision 9, 23 August 2013 536

TCG TNC SWID Message and Attributes for IF-M Version 1.0, Revision 14, 23 August 537
2013 538

TCG TNC IF-IMC Version 1.3, Revision 18, 27 February 2013 539

TCG TNC IF-IMV Version 1.4, Revision 8, 23 August 2013 540

TCG TNC IF-T: Binding to TLS Version 2.0, Revision 7, 27 February 2013 541

PDPEndpoint

Integrity
Measurement

Collector
(IMC)

TNC Client
(TNCC)

Network
Access

Requestor

TNC Server
(TNCS)

Network
Access

Authority

IF-T
IF-T TLS

IF-IMC

SWID Messages
IF-M

IF-TNCCS

IF-IMV

IF-PEP

Integrity
Measurement

Verifier
(IMV)

PEP

Configuration
Management

Database (CMDB)

Policy
Enforcement

Point
(PEP)

DRAFT

Building Block | Software Asset Management

TCG TNC IF-TNCCS: TLV Binding Version 2.0, Revision 16, 22 January 2010 542

TCG TNC IF-PEP: Protocol Bindings for RADIUS, Specification Version 1.1, February 2007 543

TCG TNC PDP Discovery and Validation Version 1.0, Revision 9, 23 August 2013 544

7. SECURITY CONTROLS MAPPING 545

The following table maps the security controls relevant to the SAM building block. It is 546
intentionally over-inclusive including controls that contribute to and utilize the type of 547
functionality enabled by SWID-aware software asset management. One should use the 548
mapping to assist in evaluating implementations of the SAM building block and in 549
deploying the building block within a broader IT security management regime. 550

Column one lists the security characteristic being described. Column two describes the 551
example capability. The third column differentiates between controls that are enabled-552
by or contributed-to by SAM functionality. The purpose of this distinction is to indicate 553
whether the SAM capability is essential to implementing this control or would assist in 554
implementing the control. The fourth, fifth and sixth columns give the NIST 555
Cybersecurity Framework Function, Category and Subcategory from the core controls 556
list. The seventh and eighth columns give the crosswalk to IEC controls and NIST 800-557
53r4 controls from the Cybersecurity Framework Core crosswalk. 558

This exercise is meant to demonstrate the real-world applicability of standards and best 559
practices, but does not imply that products with these characteristics will meet your 560
industry's requirements for regulatory approval or accreditation561

DRAFT

Building Block | Software Asset Management 17

Security
Characteristic

Example
Capability

Enables,
Contributes

CSF
Function

CSF
Category

CSF Subcategory ISO/IEC NIST 800-53 rev4

Device
security

Use SWID tags
to support the
inventory of
devices and
systems

Enables Identity Access
management

ID.AM-1: Physical devices
and systems within the
organization are inventoried

ISO/IEC
27001:2013

A.8.1.1, A.8.1.2

NIST SP 800-53
Rev. 4 CM-8

Software
inventory

Use SWID tags
to support the
inventory of
software
platforms and
applications

Enables Identity Access
management

ID.AM-2: Software
platforms and applications
within the organization are
inventoried

ISO/IEC
27001:2013

A.8.1.1, A.8.1.2

NIST SP 800-53
Rev. 4 CM-8

System
mapping

Map
organizational
data flows

Enables Identity Access
management

ID.AM-3: Organizational
communication and data
flows are mapped

ISO/IEC
27001:2013

A.13.2.1

NIST SP 800-53
Rev. 4 AC-4, CA-3,

CA-9, PL-8

System
mapping

Use SWID tag
capabilities to
inventory
external
information
systems

Enables Identity Access
management

ID.AM-4: External
information systems are
catalogued

ISO/IEC
27001:2013

A.11.2.6

NIST SP 800-53
Rev. 4 AC-20, SA-9

DRAFT

Building Block | Software Asset Management 18

Security
Characteristic

Example
Capability

Enables,
Contributes

CSF
Function

CSF
Category

CSF Subcategory ISO/IEC NIST 800-53 rev4

Software
classification

Leverage
tagging to
prioritize
resources

Enables Identity Access
management

ID.AM-5: Resources (e.g.,
hardware, devices, data,
and software) are
prioritized based on their
classification, criticality,
and business value

 ISO/IEC
27001:2013 A.8.2.1

NIST SP 800-53
Rev. 4 CP-2, RA-2,

SA-14

Vulnerability
identification

Utilize tagging
to assist in the
identifying of
asset
vulnerabilities

Enables Identity Risk
assessment

ID.RA-1: Asset
vulnerabilities are identified
and documented

ISO/IEC
27001:2013

A.12.6.1, A.18.2.3

NIST SP 800-53
Rev. 4 CA-2, CA-7,
CA-8, RA-3, RA-5,
SA-5, SA-11, SI-2,

SI-4, SI-5

Access Use tagging to
assist in the
managing of
physical access

Contributes Protect Access
control

PR.AC-2: Physical access
to assets is managed and
protected

ISO/IEC
27001:2013

A.11.1.1, A.11.1.2,
A.11.1.4, A.11.1.6,

A.11.2.3

NIST SP 800-53
Rev. 4 PE-2, PE-3,
PE-4, PE-5, PE-6,

PE-9

Asset
management

Use tagging to
support the
formal
management of
assets

Enables Protect Data security PR.DS-3: Assets are
formally managed
throughout removal,
transfers, and disposition

ISO/IEC
27001:2013

A.8.2.3, A.8.3.1,
A.8.3.2, A.8.3.3,

A.11.2.7

NIST SP 800-53
Rev. 4 CM-8, MP-

6, PE-16

DRAFT

Building Block | Software Asset Management 19

Security
Characteristic

Example
Capability

Enables,
Contributes

CSF
Function

CSF
Category

CSF Subcategory ISO/IEC NIST 800-53 rev4

Integrity
verification

Leverage
tagging to
support
integrity
checking

Enables Protect Data security PR.DS-6: Integrity
checking mechanisms are
used to verify software,
firmware, and information
integrity

ISO/IEC
27001:2013

A.12.2.1, A.12.5.1,
A.14.1.2, A.14.1.3

NIST SP 800-53
Rev. 4 SI-7

Configuration
management

Leverage
tagging to
support creation
of an IT
baseline
configuration

Enables Protect Data security PR.IP-1: A baseline
configuration of
information
technology/industrial
control systems is created
and maintained

ISO/IEC
27001:2013

A.12.1.2, A.12.5.1,
A.12.6.2, A.14.2.2,
A.14.2.3, A.14.2.4

 NIST SP 800-53
Rev. 4 CM-2, CM-

3, CM-4, CM-5,
CM-6, CM-7, CM-

9, SA-10

Configuration
management

Leverage
tagging to
support
configuration
change control

Contributes Protect Information
protection

PR.IP-3: Configuration
change control processes
are in place

ISO/IEC
27001:2013

A.12.1.2, A.12.5.1,
A.12.6.2, A.14.2.2,
A.14.2.3, A.14.2.4

NIST SP 800-53
Rev. 4 CM-3, CM-

4, SA-10

DRAFT

Building Block | Software Asset Management 20

Security
Characteristic

Example
Capability

Enables,
Contributes

CSF
Function

CSF
Category

CSF Subcategory ISO/IEC NIST 800-53 rev4

Process
improvement

Utilize tagging
to support
improvement of
protection
processes

Contributes Protect Information
protection

PR.IP-7: Protection
processes are continuously
improved

 NIST SP 800-53
Rev. 4 CA-2, CA-7,
CP-2, IR-8, PL-2,

PM-6

Process
improvement

Utilize tagging
to support
protection
effectiveness
sharing

Contributes Protect Information
protection

PR.IP-8: Effectiveness of
protection technologies is
shared with appropriate
parties

ISO/IEC
27001:2013

A.16.1.6

NIST SP 800-53
Rev. 4 AC-21, CA-

7, SI-4

Configuration
management

Leverage
tagging to
support timely
maintenance,
repair and
logging

Contributes Protect Maintenance PR.MA-1: Maintenance and
repair of organizational
assets is performed and
logged in a timely manner,
with approved and
controlled tools

ISO/IEC
27001:2013

A.11.1.2, A.11.2.4,
A.11.2.5

NIST SP 800-53
Rev. 4 MA-2, MA-

3, MA-5

Configuration
management

Remote
maintenance
while
preventing
unauthorized
access

Contributes Protect Maintenance PR.MA-2: Remote
maintenance of
organizational assets is
approved, logged, and
performed in a manner that
prevents unauthorized
access

ISO/IEC
27001:2013

A.11.2.4, A.15.1.1,
A.15.2.1

NIST SP 800-53
Rev. 4 MA-4

DRAFT

Building Block | Software Asset Management 21

Security
Characteristic

Example
Capability

Enables,
Contributes

CSF
Function

CSF
Category

CSF Subcategory ISO/IEC NIST 800-53 rev4

Integrity
verification

Utilize tagging
to support the
detection of
malicious code

Enables,
contributes

Detect Continuous
Monitoring

DE.CM-4: Malicious code
is detected

ISO/IEC
27001:2013

A.12.2.1

NIST SP 800-53
Rev. 4 SI-3

Integrity
verification

Leverage
tagging to
support the
detection of
unauthorized
mobile code

Enables,
contributes

Detect Continuous
Monitoring

DE.CM-5: Unauthorized
mobile code is detected

ISO/IEC
27001:2013

A.12.5.1

 NIST SP 800-53
Rev. 4 SC-18, SI-4.

SC-44

Asset
management

Leverage
tagging to
support the
monitoring for
unauthorized
activity

Enables,
contributes

Detect Continuous
Monitoring

DE.CM-7: Monitoring for
unauthorized personnel,
connections, devices, and
software is performed

 NIST SP 800-53
Rev. 4 AU-12, CA-
7, CM-3, CM-8,
PE-3, PE-6, PE-20,
SI-4

Detection
process

Use tagging to
support
definition of
responsibilities

Contributes Detect Detection
Process

DE.DP-1: Roles and
responsibilities for
detection are well defined
to ensure accountability

ISO/IEC
27001:2013 A.6.1.1

NIST SP 800-53
Rev. 4 CA-2, CA-7,

PM-14

DRAFT

Building Block | Software Asset Management 22

Security
Characteristic

Example
Capability

Enables,
Contributes

CSF
Function

CSF
Category

CSF Subcategory ISO/IEC NIST 800-53 rev4

Detection
Process

Detection
Activities
Comply with
Requirements

Contributes Detect Detection
Process

DE.DP-2: Detection
activities comply with all
applicable requirements

 ISO/IEC
27001:2013

A.18.1.4

NIST SP 800-53
Rev. 4 CA-2, CA-7,

PM-14, SI-4

Detection
Process

Leverage
tagging in
testing detection
processes

Contributes,
Utilizes

Detect Detection
Process

DE.DP-3: Detection
processes are tested

ISO/IEC
27001:2013

A.14.2.8

NIST SP 800-53
Rev. 4 CA-2, CA-7,
PE-3, PM-14, SI-3,

SI-4

Detection
Process

Leverage
tagging to
support
communication
of detection
information

Contributes Detect Detection
Process

DE.DP-4: Event detection
information is
communicated to
appropriate parties

 ISO/IEC
27001:2013

A.16.1.2

NIST SP 800-53
Rev. 4 AU-6, CA-2,
CA-7, RA-5, SI-4

Detection
Process

Leverage
tagging to
improve
detection
processes

Contributes,
Utilizes

Detect Detection
Process

DE.DP-5: Detection
processes are continuously
improved

ISO/IEC
27001:2013

A.16.1.6

NIST SP 800-53
Rev. 4, CA-2, CA-

7, PL-2, RA-5, SI-4,
PM-14

DRAFT

Building Block | Software Asset Management 23

Security
Characteristic

Example
Capability

Enables,
Contributes

CSF
Function

CSF
Category

CSF Subcategory ISO/IEC NIST 800-53 rev4

Analysis
Process

Utilizing
tagging in
investigating
notifications
from detection
systems

Contributes Response Analysis RS.AN-1: Notifications
from detection systems are
investigated

ISO/IEC
27001:2013

A.12.4.1, A.12.4.3,
A.16.1.5

NIST SP 800-53
Rev. 4 AU-6, CA-7,

IR-4, IR-5, PE-6,
SI-4

Analysis
Process

Utilize tagging
to support the
analysis and
understand of
incident impact

Contributes Response Analysis RS.AN-2: The impact of
the incident is understood

 ISO/IEC
27001:2013

A.16.1.6

NIST SP 800-53
Rev. 4 CP-2, IR-4

Analysis
Process

Use tagging to
support the
utilization of
forensics

Enables,
Contributes

Response Analysis RS.AN-3: Forensics are
performed

ISO/IEC
27001:2013

A.16.1.7

 NIST SP 800-53
Rev. 4 AU-7, IR-4

Analysis
Process

Categorize
Incidents

Contributes Response Analysis RS.AN-4: Incidents are
categorized consistent with
response plans

ISO/IEC
27001:2013

A.16.1.4

NIST SP 800-53
Rev. 4 CP-2, IR-4,

IR-5, IR-8

Mitigation
Process

Use tagging to
support the
containing of
incidents

Enables,
Contributes

Response Mitigation RS.MI-1: Incidents are
contained

ISO/IEC
27001:2013

A.16.1.5

NIST SP 800-53
Rev. 4 IR-4

DRAFT

Building Block | Software Asset Management 24

Security
Characteristic

Example
Capability

Enables,
Contributes

CSF
Function

CSF
Category

CSF Subcategory ISO/IEC NIST 800-53 rev4

Mitigation
Process

Use tagging to
support the
mitigating of
incidents

Contributes Response Mitigation RS.MI-2: Incidents are
mitigated

 ISO/IEC
27001:2013
A.12.2.1, A.16.1.5

NIST SP 800-53
Rev. 4 IR-4

Mitigation
Process

Use tagging to
support the
mitigation or
accepting of
new
vulnerabilities

Enables,
Contributes

Response Mitigation RS.MI-3: Newly identified
vulnerabilities are mitigated
or documented as accepted
risks

ISO/IEC
27001:2013

A.12.6.1

NIST SP 800-53
Rev. 4 CA-7, RA-3,

RA-5

Process
Improvement

Update
response plans

Contributes Response Improvements RS.IM-1: Response plans
incorporate lessons learned

ISO/IEC
27001:2013

A.16.1.6

NIST SP 800-53
Rev. 4 CP-2, IR-4,

IR-8

Process
Improvement

Update
response
strategies

Contributes Response Improvements RS.IM-2: Response
strategies are updated

 NIST SP 800-53
Rev. 4 CP-2, IR-4,
IR-8

Recovery
Process

Execute
recovery plan

Contributes Recovery Response
Planning

RC.RP-1: Recovery plan is
executed during or after an
event

ISO/IEC
27001:2013

A.16.1.5

NIST SP 800-53
Rev. 4 CP-10, IR-4,

IR-8

Process
Improvement

Adapt recovery
plans

Contributes Recovery Improvements RC.IM-1: Recovery plans
incorporate lessons learned

 NIST SP 800-53
Rev. 4 CP-2, IR-4,

IR-8

DRAFT

Building Block | Software Asset Management 25

Security
Characteristic

Example
Capability

Enables,
Contributes

CSF
Function

CSF
Category

CSF Subcategory ISO/IEC NIST 800-53 rev4

Process
Improvement

Update
recovery
strategies

Contributes Recovery Improvements RC.IM-2: Recovery
strategies are updated

 NIST SP 800-53
Rev. 4 CP-2, IR-4,

IR-8

 562

DRAFT

Building Block | Software Asset Management

8. COMPONENT LIST 563

• network infrastructure devices (e.g., routers, switches, firewalls) 564
o vendor provided 565
o either physical or virtualized 566

• operating system virtualization cluster 567
o various operating system installations (e.g., Windows, OS X, Linux) 568
o virtualization hardware 569
o virtualization stack 570

• application software 571
o Policy server 572
o Policy enforcement point 573
o Policy decision point 574
o Software with SWID tags 575

9. COMMENTS 576

We received 21 comments regarding the draft building block. The following listing in this 577
section includes a brief summary of each comment and the associated response. Where 578
necessary, we have revised the building block accordingly. 579

1. This document should clearly identify that many current SAM tools use proprietary 580
techniques and are not using information provided by the publisher to definitively 581
identify and track software and its updates/patches. This leads to significant issues, 582
risks, and ongoing costs such as: 583

• Current techniques are prone to errors, latency in support for new releases, and 584
require on-going tweaking by an administrator; 585

• Data is not normalized across tool sets making consistent, centralized reporting 586
difficult; 587

• Current tools cannot authenticate installation media and installed files using 588
standard data for each software release and for patches and updates; 589

• Often necessary software metadata is not provided by publishers as a best 590
practice; 591

• Many tools are unable to associate installed software with dependent 592
components, patches, etc.; and 593

• Current approaches don’t scale. 594

Response: Text was added to the third and fourth paragraphs in the Security 595
Challenge section of the Description to address these concerns. 596

DRAFT

Building Block | Software Asset Management

2. The building block addresses tracking software installed to file system. Not all 597
software is installed directly to a file system. For example, some software may be 598
installed within a database or application server. Other installation contexts should 599
be allowed that account for different installation contexts. 600

Response: There is no reason to constrain software installation to file system-based 601
methods. We have removed references to the “file system” and instead refer 602
generally to the “installation environment” which allows for a number of different 603
installation contexts to include databases, virtual containers, etc. 604

3. Use and meaning of the term “situational awareness” is not clear in the draft. It is 605
not clear if this “situational awareness” is provided by humans and/or a computer 606
system. 607

Response: The text in section 1 under the “Goal” subheading has been clarified to 608
describe the use of standardized protocols to exchange software and patch 609
inventory data collected using specialized automation software on a device. This 610
data can be used provide greater enterprise “situational awareness” over the 611
software installed on computing devices as a foundational part of a continuous 612
monitoring capability. 613

4. Using SWID tags to limit software execution and network access is too broad. You 614
should consider using permission management functionality available in mobile 615
operating systems to manage software on a much finer grained level to manage 616
access to OS and device resources. 617

Response: The goal of this building block is demonstrate the use of SWID tags, 618
deployed during the management of software installations on devices, to support 619
policy enforcement based on the collection of installed software inventory and 620
software integrity measurements. Use of fine-grained application permissions for 621
further policy enforcement is beyond the scope of this building block. This may be 622
addressed by another project in the future. 623

5. It is not clear how listings and hashes of files within a SWID tag support verification 624
of both software media pre-installation and installed software post-installation. 625

Response: Changes have been made to introduce terminology and concepts in the 626
third and fourth paragraphs of section 3. Approach relating to the use of file listings 627
and hashes in SWID tags to support pre-installation verification of installation media 628
and post-installation verification of installed software. These capabilities 2 and 3 629
amplify this approach. 630

6. In some installation environments, software is installed on a network share or 631
removable drive. How will this building block address this type of installation 632
environment? 633

Response: Use of dynamically mounted drives is an area that we would like to 634
explore under this building block. Text has been added to the 11th paragraph of 635
section 3. Approach to clarify this intent. 636

DRAFT

Building Block | Software Asset Management

7. It is not a good practice to use execution whitelisting when booting an OS in a 637
maintenance mode such as Windows “Safe-Mode” or UNIX single-user mode. 638

Response: Added text to the end of the 4th paragraph of section 3. Approach 639
indicating that the application of whitelisting needs to be done with caution to avoid 640
this situation. As part of the engineering work involved in developing a 641
demonstration of this building block, we will need to consider how best to apply 642
whitelisting capabilities to avoid preventing operation system booting/startup. To do 643
this the capabilities of each target platform will need to be considered. 644

8. If the software creator’s SWID tag does not contain the full component list (e.g., 645
libraries, executables) in the footprint, it may not be possible to whitelist software 646
execution for that software. Use of 3rd-party SWID tags would be needed to ensure 647
full coverage of all software components and patches. At execution this creates a 648
potential race condition between the whitelisting capability and any 3rd-party 649
functionality that might be deploying tags. How will this situation be handled? 650

Response: The whitelisting capability will only be able to whitelist execution based 651
on available information. Use of 3rd-party tags to address information gaps is 652
something we would like to explore in the building block. In doing so there will be a 653
number of “race conditions” and deconfliction scenarios that will need to be 654
explored and addressed with regards to 1st-party and 3rd-party SWID tags. 655

9. Since the SWID standard only supports one of each of the footprint sections in a 656
single tag, and it is recommended that the software creator self-heal the footprint 657
sections, it is not advisable for Third Parties to modify the footprint sections of the 658
software creator’s tag. 659

Response: The ISO/IEC 19770-2 standard is currently undergoing revision. The 2009 660
version of this specification allowed for signing parts of the SWID tag to validate the 661
integrity of the tag’s content to detect changes. The revision requires that SWID tags 662
produced by software creators, publishers, etc. is not modified once produced. One 663
way of addressing this revised requirement is for a supplementary tag to be created 664
by 3rd-parties to provide additional information without changing the original tag. 665

10. It would be advisable to define a best practice of maintaining “base-line” tags that 666
would define the “authorized baselines” for an endpoint. These baselines would 667
represent a definition of what software is authorized for use on the device. These 668
tags would have the secondary or related footprint sections populated with the list 669
of files that are included in the package. File hashes would be omitted in these tags 670
since they are included in the software creator’s SWID tag. 671

Response: Using SWID tags for establishing software baselines is an interesting idea. 672
Software baseline information could be used to extend both endpoint- and network-673
based policy enforcement capabilities. Exploration of software baseline capabilities 674
is currently beyond the scope of this building block, but may be addressed by this or 675
another project in the future. 676

DRAFT

Building Block | Software Asset Management

11. This project should promote SAM capabilities for use in web application 677
environments. SWID tags can be used for commercially available and custom web 678
applications. 679

Response: Addressing web application deployment environments, along with 680
database and other compositional installation contexts, is a stretch goal of this 681
building block. While this type of SAM capability is in scope, such functionality will 682
likely not get addressed in the initial iterations of this building block and may be 683
deferred to another project. 684

12. It would be good to tie the building block to the NIST cybersecurity framework and 685
CAESARS-FE documents. By tying in these concepts, the building block should make 686
clear what SAM capabilities are significantly inhibited by the lack of standardized 687
SAM capabilities and information. It should be very clear that this SAM building 688
block intends to demonstrate improvements to SAM capabilities based on 689
standardized COTS implementations. 690

Response: TODO: reference the controls information. 691

13. There are multiple standards used as part of the building block – SWID and TNC ECP. 692
It appears that the two are linked/dependent and both must be adopted by tools for 693
the value of SWIDs to be realized. 694

Response: Text has been added to the end of the 8th paragraph of section 3. 695
Approach to indicate that both standards are needed for this building block. All 696
capabilities require the availability and use of SWID tags. Capabilities 2 and 3 do not 697
require a transport protocol since no information needs to be exchanged with a peer 698
outside the endpoint. Capabilities 1 and 4 require the use of the TNC ECP for 699
transporting software inventory data. 700

14. Publishing software with standardized, high-quality SWID tags and having SAM tools 701
capable of using these tags provides a basis for software identification and 702
management under this building block. This represents a clear improvement over 703
current SAM capabilities based on other proprietary and standardized approaches. A 704
clear milestone-oriented plan is needed to communicate what is needed to drive 705
definitive procurement requirements for SWID tags. 706

Response: The purpose of this building block is to demonstrate the operational 707
viability of using SWID tags and related standards to address a number of security 708
challenges (see section “Security Challenge”) by realizing a number of security 709
characteristics (see section 3). Through the production of a reference design, an 710
associated build, and a resulting solutions guide, we hope to accelerate the adoption 711
of commercial solutions based on this building block. Developing an implementation 712
plan and procurement requirements for use of SWID tags is outside the mission of 713
NIST and the NCCoE, and is beyond the scope of this project. 714

15. This building block should be based on clearly defined use cases that align with 715
pressing problems resulting from poor SAM capabilities and data. The building block 716

DRAFT

Building Block | Software Asset Management

should first clearly demonstrate the current challenges with multiple SAM tools (e.g., 717
lack of standardized information and techniques, lack of integration, etc.) and then 718
measure how the use of SWID tags resolve these issues in other capabilities. 719

Response: This building block identifies a number of capabilities in section 4 which 720
roughly equate to use cases. Evaluating the capabilities of existing solutions is 721
beyond the scope of this building block. Through the development of this building 722
block, the security characteristics and capabilities address will be identified and 723
documented. As indicated in the beginning of the 10th paragraph of Section 3. 724
Approach, any gaps will be identified and any feedback will provided to the 725
appropriate organizations. 726

16. As part of establishing the software environment for capability 0, a base 727
environment needs to be established with a set of core applications across a variety 728
of platforms (e.g., typical laptop, server, virtual) using a commonly used set of 729
software. 730

Response: The actual platforms, environments, and software used as part of this 731
building block will be selected in cooperation with and provided by the vendors 732
participating in the development of the build and through available open source 733
solutions. 734

17. For capability 0, the technologies used for securing SWID tags on a given platform 735
should not require new capabilities for current operating systems. 736

Response: While it would be ideal to use existing access control and other 737
technologies to secure the stored SWID tags, existing approaches may not be 738
sufficient. We plan to explore this issue during the reference design and build 739
processes to evaluate the use of existing approaches. Any gaps will be identified and 740
potential mitigations will be explored. 741

18. This building block should validate that the ISO SWID standard meets the 742
requirements for DHS’s CDM project. It should also validate best practices outlined 743
by TagVault.org. 744

Response: This building block addresses basic secure software asset management 745
capabilities that are needed by most enterprise environments including government 746
agency environments. We have consulted DHS in the development of this building 747
block and have worked to align the capabilities explored with their functional needs 748
for continuous monitoring of software assets. As part of the reference design and 749
build, we plan to use any appropriate best-practices for design, use of SWID tags, 750
and implementation. Specific practices will be identified collaboratively with the 751
organizations participating in this process and through public comment. While 752
validation of specific requirements and best-practices is out of scope for this effort, 753
we will document the overall approach and any best practices used and will work to 754
identify any gaps in the existing guidance. 755

DRAFT

Building Block | Software Asset Management

19. Capability 1 should be more focused on the downstream uses of exchanged 756
software inventory data collected from endpoints. This should include use of a 757
configuration management database (CMDB) to allow for storage and retrieval of 758
previously exchanged data. 759

Response: As part of producing a demonstration of capability 1 functionality, the 760
NCCoE will need to identify uses of the exchanged software inventory data. This will 761
be an active area of engineering as part of development of the reference 762
architecture with the participating partners. 763

20. Regarding capability 1, there are current techniques for exchanging software 764
inventory data. This building block should focus on normalized, standard information 765
exchanged via SWIDs rather than focus on a new protocol. Use of the TNC protocols 766
should be a much later capability. 767

Response: One of the purposes of this building block is to demonstrate an 768
interoperable, standards-based, platform-neutral approach for exchanging software 769
inventory data. To achieve this degree of interoperability, we need to consider 770
standardized transport protocols and data formats. The TNC ECP supports 771
interoperability by providing both a standardized transport and a standardized data 772
format with existing adoption in the marketplace. Use of these standards does not 773
preclude the use of other standards or proprietary solutions in other deployment 774
scenarios. 775

21. In capability 3, execution authority appears to be a more advanced used case. Some 776
caution should be exercised to avoid making SWID tags appear more complicated 777
than they actually are or that industry needs to wait until the this building block 778
explores all of these capabilities. It needs to be clear that this building block wants to 779
validate the most basic capabilities first, with the aim for getting the industry moving 780
to integrate these capabilities into their available solutions quickly. 781

Response: Development of this building block will be based on an iterative 782
approach. Basic capabilities will be explored in capabilities 0 and 1. Capabilities 2, 3 783
and 4 represent advanced building blocks for SWID tags that are included as stretch 784
goals. For each build iteration, we will collaborate with the build participants to 785
determine what capabilities to incorporate. Based our initial analysis, we believe 786
there are existing fielded APIs and capabilities that provide the pieces needed to 787
fully explore this building block. Some minimal “glue code” may be needed to 788
integrate these capabilities as part of developing this building block. What will not 789
be clear until we get further into the reference design and build process is how 790
much glue code will be needed to knit these capabilities together. 791

	Abstract
	Keywords
	Disclaimer
	Comments on NCCoE Documents
	Acknowledgements
	1. Executive Summary
	2. Description
	Goal
	Background
	Security Challenge

	3. Security Characteristics
	4. Approach
	Capability 0 – Establish SWID Tag Environment
	Development Approach
	Management of Installed SWID Tags
	Deployment of SWID Tag Data During Software Installation
	Deployment of SWID Tags for Legacy Software

	Outcomes:

	Capability 1 – Publish Installed SWID Tag Data
	Development Approach
	Outcomes:

	Capability 2 – Media Verification Using SWID Tags
	Development Approach
	Outcomes:

	Capability 3 – Execution Authorization Using Installed SWID Data
	Development Approach
	Outcomes:

	Capability 4 – Network-Based Policy Enforcement Based on SWID Information
	Development Approach
	Outcomes:
	Other Possible Capabilities

	5. High-Level Architecture
	6. Relevant Standards
	7. Security Controls Mapping
	8. Component List
	9. Comments

